
Different Solving Strategies on PBO Problems from
Automotive Industry

Thore Kübart 1 and Rouven Walter 2 and Wolfgang Küchlin2

Abstract. SAT solvers have proved to be very efficient in verifying
the correctness of automotive product documentations. However, in
many applications a car configuration has to be optimized with re-
spect to a given objective function prioritizing the selectable product
components. Typical applications include the generation of predic-
tive configurations for production planning and the reconfiguration of
non-constructible customer orders. So far, the successful application
of core guided MaxSAT solvers and ILP-based solvers like CPLEX
have been described in literature. In this paper, we consider the linear
search performed by DPLL-based PBO solvers as a third solution ap-
proach. The aim is to understand the capabilities of each of the three
approaches and to identify the most suitable approach for different
application cases. Therefore we investigate real-world benchmarks
which we derived from the product description of a major German
premium car manufacturer. Results show that under certain circum-
stances DPLL-based PBO solvers are clearly the better alternative to
the two other approaches.

1 Introduction

An already well-established approach in the automotive industry is
to describe the set M of technically feasible vehicle configurations
by a propositional formula ϕ such that M = {τ | τ(ϕ) = 1} holds,
where τ is a satisfying assignment of formula ϕ [11, 19], i.e. every
model of ϕ is a feasible configuration. SAT solvers are the method
of choice for calculating configurations that comprise certain options
o1, . . . , om: A model has to be determined that satisfies the formula
ϕ ∧

∧m
i=1 oi. If there is no such model of the desired configuration,

the user is often interested in an alternative model of optimal config-
ured options oi with respect to given priorities wi. To reach a best
possible configuration, a model of the formula ϕ has to be calculated
that optimizes the target function

∑m
i=1 wioi.

In the literature of the last few years different applications of this
optimization problem are described as well as several approaches to
solve it. Similar optimization problems arise for example from the
task to minimize or maximize product properties such as price or
weight [21]. Another example is the task of optimal reconfiguration,
e.g., the selected options for a car are not feasible with the constraint
set [21]. Furthermore valid configurations that optimize linear objec-
tive functions play an important role in demand forecasts [18]. We
compare the underlying solving approaches by analyzing real-world
instances of a major German premium car manufacturer.

This work is organized as follows: Section 2 introduces the basics

1 Steinbeis-Transferzentrum Objekt- und Internet-Technologien, Sand 13,
72076 Tübingen, Germany

2 Symbolic Computation Group, WSI Informatics, Universität Tübingen,
Germany, www-sr.informatik.uni-tuebingen.de

of Propositional Logic, Maximum Satisfiability (MaxSAT), Pseudo-
Boolean Optimization (PBO) and Integer Linear Programming (ILP)
and their respective algorithmic solving techniques. Section 3 points
out related work. Section 4 describes different optimization problems
in automotive configuration. Section 5 presents a detailed evaluation
of the different introduced optimization approaches for these prob-
lems including a discussion of the results. Finally, Section 6 con-
cludes this work.

2 Preliminaries
In this work, we focus on propositional logic with the standard logi-
cal operators ¬,∧,∨,→,↔ over the set of Boolean variables X and
with the constants⊥ and>, representing false and true, respectively.
The set of variables of a formula ϕ is denoted by var(ϕ). A formula
ϕ is called satisfiable, if and only if there is an assignment τ , a map-
ping from the set of Boolean variables var(ϕ) to {0, 1}, under which
the formula ϕ evaluates to 1. The evaluation of a formula under an
assignment τ is the standard evaluation procedure for propositional
logic, denoted by τ(ϕ). The values 0 and 1 are also referred to as
false and true. The well-known NP-complete SAT problem asks the
question whether a formula is satisfiable or not [6].

The established input format of a SAT solver nowadays is a con-
junctive normal form (CNF) of a formula ϕ, where ϕ is transformed
into a conjunction of clauses and each clause is a disjunction of lit-
erals (variables or negated variables). The variable of a literal l is de-
noted by var(l). For a formula ϕ =

∧k
i=1

∨mi
j=1 li,j in CNF we also

make use of the notation of ϕ as a set of clauses where each clause
is a set of literals: ϕ = {{l1,1, . . . , l1,m1}, . . . , {lk,1, . . . , lk,mk}}.
The transformation of an arbitrary formula ϕ into a CNF is done by a
Tseitin- or Plaisted-Greenbaum-Transformation [16, 20] (denoted as
Tseitin(ϕ)). The resulting formula is not semantically equivalent,
but equisatisfiable. Also, the models of ϕ and Tseitin(ϕ) are the
same when restricted to the original variables var(ϕ).

2.1 MaxSAT
For a given clause set ϕ = {c1, . . . , cm}, m ∈ N, the MaxSAT
problem [13] asks for the maximum number of clauses which can be
simultaneously satisfied:

MaxSAT(ϕ) = max

{
m∑
i=1

τ(ci)
∣∣ τ ∈ {0, 1}|var(ϕ)|} (1)

The corresponding problem of finding the minimum num-
ber of clauses which can be simultaneously unsatisfied is called
MinUNSAT.

Juha Tiihonen, Andreas Falkner, and Tomas Axling, Editors
Proceedings of the 17th International Configuration Workshop

September 10-11, 2015, Vienna, Austria

67



The partial weighted MaxSAT problem is an extended version
where: (i) An additional clause set ϕhard of hard clauses is taken
into account, which has to be satisfied, and (ii) weights wi ∈ N are
assigned to the soft clauses ofϕ = {c1, . . . , cm}. The resulting prob-
lem, PWMaxSAT(ϕhard, ϕ), consists of finding the maximal sum
of weights of satisfied clauses of ϕ while satisfying ϕhard. To sim-
plify reading we refer to partial weighted MaxSAT just as MaxSAT
in the rest of this work.

MaxSAT can be solved by using a SAT solver as a black box,
e.g. by linear search or binary search. Firstly, a fresh variable bi,
called blocking variable, is added to each soft clause, which serves
to enable or disable the clause. Linear search iteratively checks the
SAT instance ϕhard and ϕ with an additional constraint

CNF

(
m∑
i=1

wi · ¬bi > k

)
, (2)

where initially k = 0. With this check we search for a model with a
sum of weights of at least 1. The constraint

∑m
i=1 wi · ¬bi > k is

a Pseudo-Boolean constraint (see Subsection 2.2 for details), which
can be transformed to a CNF, see for example [4, 8]. The degree k is
increased to the sum of weights of the last model plus one in order
to check if we can find a better model. Binary search, in contrast,
follows the same scheme but restricts the search space with a lower
and an upper bound simultaneously. Linear search requires m SAT
calls in the worst case, whereas binary search requires only log2(m)
SAT calls in the worst case.

Another approach is the usage of unsatisfiable cores delivered by a
SAT solver for the unsatisfiable case, which was introduced in [3, 9].
The idea is to iteratively call the SAT solver and relax the soft clauses
contained in the unsatisfiable core by introducing blocking variables
until the formula becomes satisfiable. Solvers using an unsatisfi-
able core approach performed well on industrial instances in recent
MaxSAT competitions3.

The OPEN-WBO framework [15] is based on using MiniSat-like
solvers [7] and was one of the best performing MaxSAT algorithms
on industrial instances in the recent MaxSAT competition. Both
linear search and unsatisfiable-core guided solvers are included in
different variations within the OPEN-WBO framework. The default
solver, called WBO, is an unsatisfiable-core guided modification
of [3] which partitions the soft clauses [2, 14]. Therefore, only a sub-
set of the soft clauses are given to the SAT solver to make the SAT
solver focus on relevant clauses. On the other hand, this can lead to
additional SAT calls in the case where a model is found but not all
soft clauses were considered. We used this solver for our evaluations,
see Section 5.

2.2 DPLL-based PBO
In addition to clauses we consider linear pseudo-Boolean (LPB) con-
straints, which are linear inequalities of the form

k∑
i=1

aili . b, . ∈
{
<,≤, >,≥,=

}
, (3)

where ai ∈ Z and li are literals of Boolean variables. Under some
assignment τ , the left side is the sum over the coefficients of the
satisfied literals and the LPB constraint is satisfied iff the respective
inequality holds. For example, clauses

∨m
i=1 li can be generalized as

LPB constraints
∑m
i=1 li ≥ 1.

3 http://www.maxsat.udl.cat/

Pseudo-Boolean solving (PBS) is the decision problem whether a
set of LPB constraints can be satisfied by an assignment τ . Hence,
PBS is a generalization of SAT. Like SAT solvers, most PBS solvers
which prove satisfiability are able to provide a satisfying assignment
τ to the user.

Given a satisfiable set of LPB constraints another problem is to
identify a best possible assignment τ with respect to a linear objec-
tive function:

min
∑
i cili

s.t. ∧
j

[∑
i aj,ilj,i . bj

] (4)

This problem is called pseudo-Boolean optimization (PBO) [17].
In order to solve the satisifiability problem PBS, DPLL-style al-

gorithms can be used to benefit from recent progress of modern SAT
solvers. One approach is to transform the LPB-constraints into CNF
and to apply SAT solvers to the resulting formula. Another approach
is based on generalized constraint propagation and conflict-based
learning, i. e. DPLL-based SAT solvers are enabled to handle LPB
constraints directly. Generally learning methods analyze the conflict
and learn a new constraint which is falsified on the conflict level and
which propagates a new assignment on a higher decision level.

Given a PBS solver, the PBO problem of Formula (4) itself can be
solved by iteratively applying the solver to perform a linear search or
a binary search. Both approaches proceed analogously to the linear
and binary search approaches for MaxSAT using a SAT solver.

In the linear search approach, models of the formula ϕ are cal-
culated in order to gradually approach the optimal objective value.
Through an extra LPB constraint, a model providing a better objec-
tive value is enforced. If the extra LPB constraint leads to an unsat-
isfiable PBS instance, the model last calculated is the optimal one.

In the binary search approach the search space is bisected by every
single PBS-instance. If the optimal objective value lies inside the
interval [L,U ], a model with the objective value≤M = (L+U)/2
is searched for. If such a model exists, the minimal objective value
lies inside [L,M ]. If no such model exists, the minimal objective
value lies inside [M,U ].

For the calculations in Section 5 we used the Sat4j library. The li-
brary is based on a Java version of MiniSat, which was expanded by
generalized constraint propagation and conflict-based learning. The
PBO solver contained therein realizes a simple linear search. The
PBS solver called for this linear search is able to perform the follow-
ing two learning methods.

The clause-based learning method calculates so-called UIPs
(unique implications points) by means of propositional resolution
just like in modern SAT solvers. SAT solvers such as MiniSat de-
rive a UIP on the basis of the conflict clause and the reason clauses
which were propagating the assignments of the conflict clause. If a
conflict constraint occurs in the form of a LPB constraint, Sat4j first
reduces this constraint to a conflict clause

K =
∨

l∈ωC , β(l)=0

l, (5)

where β is the partial assignment, that leads to the conflict in the LPB
constraint ωC . Analogously, reasons given by LPB constraints are
reduced to reason clauses: If ω is a LPB constraint, that propagates l̃
under the partial assignment β, the clause

R(l̃) =
∨

l∈ω, β(l)=0

l ∨ l̃, ω |= R(l̃), (6)

Juha Tiihonen, Andreas Falkner, and Tomas Axling, Editors
Proceedings of the 17th International Configuration Workshop
September 10-11, 2015, Vienna, Austria

68



is an implication of ω and also propagates the literal l̃ under β.
In a second learning method that is implemented in Sat4j more

expressive LPB constraints instead of clauses are learned. For this
purpose the principle of propositional resolutions in forms of Hook-
ers cutting planes [10] is directly applied to the LBP constraints [5].

2.3 Integer Linear Programming

Like linear programming, integer linear programming deals with the
optimization of linear objective functions over a set which is limited
by linear equations and inequations. The difference is that while in
linear optimizations any real values can be taken on, in integer opti-
mization some or all variables are restricted to whole-number values.

min
∑
i cixi

s.t. ∧
j

[∑
i aj,ixj,i . bj

]
xj,i ∈ Z

(7)

Pseudo-Boolean Optimization, see Formula (4), can be easily
transformed into 0-1 integer linear programming (ILP): Negative lit-
erals ¬x are replaced by (1− x) and Boolean variables become de-
cision variables x ∈ {0, 1}. Consequently, commercially available
state-of-the-art ILP solvers such as CPLEX [1] can be used to solve
PBO. Usually, they are based on the branch and cut strategy.

3 Related Work

Sinz et al. suggest a SAT-based procedure to check consistency of the
product documentation of a German car manufacturer [19]. There-
fore, they consider vehicle configurations as assignments to propo-
sitional variables and define a propositional formula, called product
overview formula (POF), which evaluates to true iff the vehicle con-
figuration is technically feasible. Their work also lays the foundation
for formulating the restrictions of the product documentation as a
constraint in mathematical models.

Tilak Singh et al. make use of such a product overview formula
in [18]. They describe a mathematical model to calculate car config-
urations aimed at providing the production planning with test vari-
ants before actual sales orders are received. Their configurations are
calculated on the basis of PBO problems that are solved by CPLEX.
This approach is described in greater detail in Section 4.

Walter et al. [21] describe the possible usage of MaxSAT in au-
tomotive configuration by pointing out various use cases. Whenever
faced with an over-constrained configuration, MaxSAT can be used
to reconfigure the invalid configuration by providing an optimal solu-
tion, e.g. giving a repair suggestion of the (possibly prioritized) over-
constrained selections of a user by a minimal number of changes.

4 Optimization Problems from Automotive
Configuration

The product overview defines the set of valid product configurations
and is usually describable as a set of propositional constraints. This
means a configuration is only valid if it satisfies the conjunction of all
constraints, which is also called the product overview formula (POF).
The physical demand of building components for a valid configura-
tion is determined by the bill of materials (BOM). The combination
of the product overview and the bill of material is referred to as the
product documentation.

Reconfiguration of invalid configurations, as described in [21], is
an important issue in automotive configuration. Several practical rel-
evant use cases exist, such as the reconfiguration of customer orders,
the reconfiguration of constraints for a given fixed order or the com-
putation of a maximal/minimal car w.r.t. to an assigned value of the
options like weights (kg).

Another major task is the prognosis of future part demands in pro-
duction planning. However, historical demands cannot easily be ex-
trapolated because planning situations in the automotive industry are
constantly changing. A typical planning state used for making a fore-
cast comprises

• the product documentation (option A is only available, if option B
is selected; part x is needed exactly iff the order satisfies the part
rule ϕx; etc.),

• estimated customer buying behavior (option C is selected by 30%
of the customers; etc.),

• capacity restrictions (only 5000 units of part X are available; etc.),
• production plans that fix the total number of planned vehicles.

From a mathematical point of view a planning state consists of two
parts:

1. The Boolean formula POF, whose models describe the technically
feasible configurations,

2. the statistical frequency of certain atoms of the product formula.

A common approach to evaluate the planning state is to calculate
an amount of N technically feasible variations that approximates
the statistical guidelines as good as possible. Eventually, for indi-
cating the future unit demand, the calculated variations are analyzed
by means of the BOM.

Singh et al. [18] propose a linear optimization model for finding
such a set of N technically feasible variations. A solution of their
model is calculated by column generation: In every iteration a tech-
nically feasible variation is determined which further improves the
solution set. For this, a PBO problem is solved. Its objective function
is given by the dual variables of the current approximation and its
constraints are given by the restrictions of the product overview.

In column generation, calculated configurations of previous itera-
tions are partially replaced by new configurations. Thus, solved PBO
instances do not necessarily result in a configuration also contained
in the final solution. Therefore, it is particularly important to ensure
an efficient calculation of the individual PBO instances.

0 100 200 300

0

1

2

3

4

#iterations

di
st

an
ce

to
th

e
op

tim
um

0 100 200 300

0

50

100

150

#iterations

#n
on

-z
er

o
du

al
va

ri
ab

le
s

Figure 1. Typical approximation to the optimum using column generation

The typical approximation to the planning state when using col-
umn generation is shown in Figure 1. As one can see on the left side,
the majority of iterations is used to overcome the last small step to-
wards the optimum. Yet, illustrated by the graph on the right side,

Juha Tiihonen, Andreas Falkner, and Tomas Axling, Editors
Proceedings of the 17th International Configuration Workshop

September 10-11, 2015, Vienna, Austria

69



approximation is accompanied by increasingly complex target func-
tions of the PBO instances: the number of non-zero dual variables is
increasing. It must be noted that the maximum number of non-zero
dual variables is usually proportional to the number of statistical re-
quirements of the planning state.

Concerning implementations of column generation described in
the literature, integer linear programming is the method of choice
for producing columns. This approach is also taken in [18] us-
ing CPLEX. An important objective of this paper is to investigate
whether DPLL-based methods are suitable alternatives to CPLEX
for calculating predictive configurations.

5 Experimental Evaluation
In this section we present our main contribution by evaluating the dif-
ferent previously described methods on optimization problems from
automotive configuration.

As test environment for the experimental evaluations we used
Windows 7 Professional 64 Bit on an Intel(R) Core(TM) i7-4800MQ
CPU with 2.70 GHz and 2 GB main memory.

5.1 Benchmark Statistics
We evaluate several test series, each of which is composed of a
real-world product overview and of randomly generated linear ob-
jective functions. We looked at product overviews of two different

Type Fixed Attributes #Clauses
A market, model, body type, en-

gine, steering type
1200-5900

B market, model, body type 19100-137700

Table 1. Characteristics of type A and B

types, see A and B in Table 1. Both types of product overviews dif-
fer in the extent to which attributes are fixed. Additionally, Table 1
shows the minimum and maximum number of clauses for the prod-
uct overviews of one type. For generating objective functions, n vari-
ables were randomly selected (by using Java’s Random class with the
default constructor) and each was assigned to a random integer coef-
ficient from a range between −10, 000, 000 and 10, 000, 000. That
way, 10 objective functions were generated for different numbers of
variables (n = 10, 20, . . . , 200) so that one test series contains a
total of 200 PBO instances. Corresponding test series were gener-
ated for 13 different product overviews of type A and for 6 different
product overviews of type B.

5.2 Results
The test series from the previous section were solved by 3 solvers:

1. OPENWBO as a core guided MaxSat solver [15].
2. Sat4j as an implementation of the DPLL-based linear search [12].
3. CPLEX as an ILP solver [1].

For solving the PBO instances a timeout of 60 seconds was set. In or-
der to set up the linear search correctly, two different learning meth-
ods of the underlying PBS solver of Sat4j were tested. Concerning
the test series of type A, Figure 2 shows the average running time for
learning of

0 50 100 150 200

0

1,000

2,000

3,000

4,000

#variables in the objective function

tim
e

in
m

s

Type A

Cutting Planes
Clauses

Figure 2. Learning Cutting Planes vs. Clauses in Sat4j

0 50 100 150 200

0

50

100

150

200

#variables in the objective function

tim
e

in
m

s
Type A

CPLEX
Sat4j

OPENWBO

0 50 100 150 200

0

500

1,000

#variables in the objective function

tim
e

in
m

s

Type B

CPLEX
Sat4j

OPENWBO

Figure 3. Running times for type A and B

Juha Tiihonen, Andreas Falkner, and Tomas Axling, Editors
Proceedings of the 17th International Configuration Workshop
September 10-11, 2015, Vienna, Austria

70



1. clauses
2. cutting planes

depending on the complexity of the objective function. Based on
these results, Sat4j was limited to learning clauses when comparing
the 3 solvers.

0 50 100 150 200

0

1,000

2,000

3,000

#variables in the objective function

tim
e

in
m

s

product overview with 133700 clauses

CPLEX
Sat4j

OPENWBO

Figure 4. Running times for the largest product overview of type B

0 50 100 150 200

0

2

4

6

8

#variables in the objective function

av
er

ag
e

#t
im

eo
ut

s

Type A

Type A
Type B

Figure 5. Average number of timeouts for OPENWBO

In Figure 3 the running times of OPENWBO, Sat4j and CPLEX
are compared. The upper graph shows the average running times of
the test series of type A concerning objective functions of differ-
ent complexity. Accordingly the bottom graph displays the results
of the test series of type B. Time was limited in both subfigures
(200ms, 1400ms). In average, for all test series of type A and B,
the DPLL-based solvers OPENWBO and Sat4j perform significantly
better than CPLEX with regard to objective functions of low com-
plexity. In test series of type A the solver Sat4j performs better than
CPLEX concerning objective functions of up to N = 170 variables.

0 50 100 150 200
0

5

10

15

#variables in the objective function

av
er

ag
e

#i
te

ra
tio

ns

Type A

Sat4j
OPENWBO

Figure 6. Average number of DPLL-calls for OPENWBO and Sat4j

The MaxSAT solver OPENWBO, however, produces reliable run-
ning times for up to N = 70 variables.
In contrast to the DPLL-based solvers, there was only a slight in-
crease in the running times for CPLEX with a growing number of
variables in the objective function. Hence, once a certain length of
the target function has been reached, CPLEX leads to better results.

Across all test series of type B, Sat4j performed on average better
than CPLEX (Figure 3, bottom graph). Compared to CPLEX how-
ever, OPENWBO leads to slower running times for objective func-
tions of only N = 30 variables. This observation is especially il-
lustrated by the most extensive product overview of type B (137700
clauses) as demonstrated in Figure 4, where the time-domain is re-
stricted to 3400 ms.

Timeouts were observed exclusively for the MaxSAT solver
OPENWBO. Complementary to the results of running times, Fig-
ure 5 shows the average number of timeouts when solving 10 in-
stances.

For a better understanding of the observed difference in running
times of both DPLL-based approaches, Figure 6 shows the average
number of DPLL-calls. The graphs refer exclusively to the test se-
ries of type A and represent the numbers of SAT/UNSAT-calls for
OPENWBO or, in case of Sat4j, the numbers of PBS-calls.

5.3 Discussion
The test instances described in Section 5.1 differ with respect to the
following aspects:

• the complexity of the objective function (number of variables
N = 10, 20, . . . , 200)

• the size of the product overview (number of models and number
of clauses; type A and B)

The findings of the previous section lead us to the following conclu-
sions:

• Using DPLL allows the quick calculation of a model of a formula
- in that way DPLL-based solvers are superior to ILP solvers.

• Yet, when objective functions become more and more complex,
the particular suitability of CPLEX in solving 0-1-optimization
problems dominates.

Juha Tiihonen, Andreas Falkner, and Tomas Axling, Editors
Proceedings of the 17th International Configuration Workshop

September 10-11, 2015, Vienna, Austria

71



The latter point is evident in the strong increase of running times for
the DPLL-based methods once a certain length of objective functions
has been reached.

In comparison with OPENWBO, Sat4j leads to significantly bet-
ter running times. This is also due to the special suitability of the
examined instances for a linear search (see Figure 6). The number
of iterations for a linear search increases only linearly with the num-
bers of variables in the objective function - this is a surprising result.
Hence, the nonlinear increase of running times can only be explained
by the growing complexity of PBS instances in linear search.

Concerning product overviews of type A, the critical length of the
objective function for Sat4j is betweenN = 160 andN = 200. With
increasing scale of the product overview, this critical value shifts up-
wards. In some cases of the product overviews of type B, the critical
value is greater than N = 200, such as seen in Figure 4.

In order to optimally configure customer orders, an optimal subset
of about 20 options has to be determined. For this purpose the linear
search implemented in Sat4j and the core guided MaxSAT solver
OPENWBO are more than sufficient.

For calculating predictive configurations for the product planning
(see Figure 1) Sat4j can be far more effective than the other tested
methods, at least for the first iterations of a column generation based
process. Yet it is possible that the critical area of linear search is
reached depending on the given number of statistical requirements in
the planning state. In such a case configurations should be calculated
by CPLEX just like in [18].

6 Conclusion

We compared current state-of-the-art solvers to calculate optimal
product configurations of a major German car manufacturer. So far,
the use of core guided MaxSAT solvers and ILP solvers like CPLEX
for PBO-instances of automotive industry was described in the litera-
ture. For the purpose of comparison we additionally applied a DPLL-
based linear search.

Results were analyzed with respect to the granularity of the prod-
uct overview and with respect to complexity of the objective func-
tions. The results show that the investigated approaches have dif-
ferent suitability for different application cases. For reconfiguration
the linear search performed by a PBS-Solver is a stronger alternative
compared to core guided MaxSAT. For calculating predictive config-
urations – up to a certain amount of given frequency restrictions –
the DPLL-based linear search is even more suitable than CPLEX.

An important result is the small number of iterations observed in
linear search. The approach of linear search thus appears to be es-
pecially suitable for PBO-instances whose constraints are given by
a product overview. For reliable usage of the DPLL-based linear
search, also for instances of long objective functions, a customized
PBS solver needs to be developed. Such a solver must be able to
more efficiently solve PBS instances that are characterized by a set
of product overview clauses and one extensive LPB constraint.

REFERENCES
[1] IBM ILOG CPLEX Optimizer. http://www-

01.ibm.com/software/commerce/optimization/cplex-
optimizer/index.html, June 2015.

[2] Carlos Ansótegui, Maria Luisa Bonet, Joel Gabàs, and Jordi Levy, ‘Im-
proving SAT-based weighted MaxSAT solvers’, in Principles and Prac-
tice of Constraint Programming - 18th International Conference, CP
2012, ed., Michela Milano, volume 7514 of Lecture Notes in Computer
Science, pp. 86–101. Springer, (2012).

[3] Carlos Ansótegui, Maria Luisa Bonet, and Jordi Levy, ‘Solving
(weighted) partial MaxSAT through satisfiability testing’, in Theory
and Applications of Satisfiability Testing - SAT 2009, ed., Oliver Kull-
mann, volume 5584 of Lecture Notes in Computer Science, 427–440,
Springer Berlin Heidelberg, (2009).

[4] Olivier Bailleux, Yacine Boufkhad, and Olivier Roussel, ‘A transla-
tion of pseudo boolean constraints to SAT’, Journal on Satisfiability,
Boolean Modeling and Computation, 2(1–4), 191–200, (2006).

[5] Donald Chai and Andreas Kuehlmann, ‘A fast pseudo-boolean con-
straint solver’, IEEE Transactions on CAD of Integrated Circuits and
Systems, 24(3), 305–317, (2005).

[6] Stephen A. Cook, ‘The complexity of theorem-proving procedures’, in
Proceedings of the Third Annual ACM Symposium on Theory of Com-
puting, STOC ’71, pp. 151–158, New York, NY, USA, (1971). ACM.

[7] Niklas Eén and Niklas Sörensson, ‘An extensible SAT-solver’, in The-
ory and Applications of Satisfiability Testing—SAT 2003, eds., Enrico
Giunchiglia and Armando Tacchella, volume 2919 of Lecture Notes in
Computer Science, 502–518, Springer Berlin Heidelberg, (2004).

[8] Niklas Eén and Niklas Sörensson, ‘Translating pseudo-boolean con-
straints into SAT’, Journal on Satisfiability, Boolean Modeling and
Computation, 2, 1–26, (2006).

[9] Zhaohui Fu and Sharad Malik, ‘On solving the partial MAX-SAT prob-
lem’, in Theory and Applications of Satisfiability Testing—SAT 2006,
eds., Armin Biere and Carla P. Gomes, volume 4121 of Lecture Notes
in Computer Science, 252–265, Springer Berlin Heidelberg, (2006).

[10] John N. Hooker, ‘Generalized resolution and cutting planes’, Annals of
Operations Research, 12(1), 217–239, (1988).

[11] Wolfgang Küchlin and Carsten Sinz, ‘Proving consistency assertions
for automotive product data management’, Journal of Automated Rea-
soning, 24(1–2), 145–163, (2000).

[12] Daniel Le Berre and Anne Parrain, ‘The Sat4j library, release 2.2’, Jour-
nal on Satisfiability, Boolean Modeling and Computation, 7(2–3), 59–6,
(2010).

[13] Chu Min Li and Felip Manyà, ‘MaxSAT, hard and soft constraints’, in
Handbook of Satisfiability, eds., Armin Biere, Marijn Heule, Hans van
Maaren, and Toby Walsh, volume 185 of Frontiers in Artificial Intelli-
gence and Applications, chapter 19, 613–631, IOS Press, (2009).

[14] Ruben Martins, Vasco M. Manquinho, and Inês Lynce, ‘On partitioning
for maximum satisfiability’, in ECAI 2012 - 20th European Conference
on Artificial Intelligence, eds., Luc De Raedt, Christian Bessière, Di-
dier Dubois, Patrick Doherty, Paolo Frasconi, Fredrik Heintz, and Peter
J. F. Lucas, volume 242 of Frontiers in Artificial Intelligence and Ap-
plications, pp. 913–914. IOS Press, (2012).

[15] Ruben Martins, Vasco M. Manquinho, and Inês Lynce, ‘Open-WBO:
A modular MaxSAT solver’, in Theory and Applications of Satisfiabil-
ity Testing – SAT 2014, eds., Carsten Sinz and Uwe Egly, volume 8561
of Lecture Notes in Computer Science, pp. 438–445. Springer Interna-
tional Publishing, (2014).

[16] David A. Plaisted and Steven Greenbaum, ‘A structure-preserving
clause form translation’, Journal of Symbolic Computation, 2(3), 293–
304, (September 1986).

[17] Olivier Roussel and Vasco M. Manquinho, ‘Pseudo-boolean and car-
dinality constraints’, in Handbook of Satisfiability, eds., Armin Biere,
Marijn Heule, Hans van Maaren, and Toby Walsh, volume 185 of Fron-
tiers in Artificial Intelligence and Applications, chapter 22, 695–733,
IOS Press, (2009).

[18] Tilak Raj Singh and Narayan Rangaraj, ‘Generation of predictive con-
figurations for production planning’, in Proceedings of the 15th In-
ternational Configuration Workshop, eds., Michel Aldanondo and An-
dreas Falkner, pp. 79–86, Vienna, Austria, (August 2013).

[19] Carsten Sinz, Andreas Kaiser, and Wolfgang Küchlin, ‘Formal meth-
ods for the validation of automotive product configuration data’, Artifi-
cial Intelligence for Engineering Design, Analysis and Manufacturing,
17(1), 75–97, (January 2003). Special issue on configuration.

[20] G. S. Tseitin, ‘On the complexity of derivations in the propositional cal-
culus’, Studies in Constructive Mathematics and Mathematical Logic,
Part II, 115–125, (1968).

[21] Rouven Walter, Christoph Zengler, and Wolfgang Küchlin, ‘Applica-
tions of MaxSAT in automotive configuration’, in Proceedings of the
15th International Configuration Workshop, eds., Michel Aldanondo
and Andreas Falkner, pp. 21–28, Vienna, Austria, (August 2013).

Juha Tiihonen, Andreas Falkner, and Tomas Axling, Editors
Proceedings of the 17th International Configuration Workshop
September 10-11, 2015, Vienna, Austria

72


