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Abstract. The Linux kernel is a highly configurable software sys-
tem. The aim of this paper is to develop a formal method for the
analysis of the configuration space. We first develop a Linux prod-
uct overview formula (L-POF), which is a Boolean formula repre-
senting the high-level configuration constraints of the kernel. Using
SAT solving on this L-POF, we can then answer many questions,
such as which options are possible, mandatory, or impossible for any
of the processor architectures for which the kernel may be config-
ured. Other potential applications include building a configurator or
counting the number of kernel configurations. Our approach is anal-
ogous to the methods we use for automobile configuration. However,
in the Linux case the configuration options (e.g. the individual de-
vice drivers) are represented by symbols in Tristate Logic, a special-
ized three-valued logic system with several different data types, and
the configuration constraints are encoded in a somewhat arcane lan-
guage. We take great care to compile the L-POF directly from the
files that hold the configuration constraints in order to achieve max-
imum flexibility and to be able to trace results directly back to the
source.

1 Introduction

Linux is a kernel for a broad range of platforms with highly versa-
tile configurations of peripheral components. Static configuration at
compile time helps to adapt to the different requirements. The central
tool for configuring this is LinuxKernelConf, abbreviated LKC. The
input to LKC uses a domain specific language to describe configu-
ration constraints. A common alternative name for LKC is Kconfig,
and they are often used interchangeably. In this document, we refer
to the configuration system as LKC and we denote the language as
Kconfig. The input is large and stored in files which we call Kcon-
fig files. They continuously change as kernel development goes on.
Automatic checks for semantic consistency on Kconfig files are de-
sirable, but LKC has no such checks implemented.

At the Workshop on Configuration 2010 in Lisbon, Zengler and
Kiichlin presented an approach [11] to encode the whole Linux ker-
nel configuration in Propositional Logic. Conceptually this work
parses the Kconfig files and stores the relevant information in a
database. Subsequently, this database is translated into a product
overview formulaz, abbreviated POF, in Propositional Logic. While
it demonstrates central ideas and shows the technical feasability of
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2 A POF is a single Boolean formula which captures all configuration con-
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been introduced in [4] to capture the high-level configuration model of
Mercedes-Benz, which is called “Product overview” (German: Produkt-
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the project, it is a first prototype with only a simplified view on the
Kconfig files. As a consequence, the results were of the proof-of-
concept type and of very limited use for verification purposes.

The comprehensive VAMOS project® at Friedrich-Alexander-
Universitit Erlangen-Nuremberg has lead to numerous results and
publications, including the uncovering of hundreds of real world
bugs. It also analyses the Linux kernel configuration with the means
of Propositional Logic, but goes much further by considering the ac-
tual effects on the kernel code and applying the tools to other projects
that use LKC as well. The PhD Thesis of Reinhard Tartler [9] from
2013 gives a detailed overview over the model, the implemented
tools, and most of the applications and results.

The PhD Thesis of Sarah Nadi [5] from 2014 picks up the VAMOS
project and extends it to not only consider the Kconfig files and the
kernel code, but to additionally take the build system into account.
Even more, it extracts configuration constraints from the implemen-
tation.

In this work, we focus solely on the Kconfig files. Although the
VAMOS model proves to yield good results, it does not aim at being
exact and relies on parts of LKC. We present a fairly precise model
and translation process into a product overview formula in Proposi-
tional Logic with the goal to account for all details that are relevant in
real-world use cases. Our implementation works independently from
LKC and we show the results from running it against Linux 4.0.

This work is loosely based on the paper by Zengler and Kiichlin
from 2010 [11] in that it picks up and uses central ideas, but elabo-
rates on many more details.

There is no precise specification of Kconfig. So we consider what
information is available in the documentation, the implementation,
and the way the input language is used. Section 2 gives a rough
overview over this input language.

Our translation uses several intermediate stages. First we create
what we call the Zengler Model in Section 3. In this step we abstract
from technical details of reading the configuration input and isolate
the data that is relevant for our purposes.

The Zengler Model retains some parts of the input structure that
have an impact on the meaning. In Section 4, we transform it into the
Attributes Model, resolving these parts and switching from a repre-
sentation that focuses on input structure to one that revolves around
the constraints.

LKC uses a three-valued logic, called Tristate Logic, that is un-
common in academic discourse. We take a look at this logic system
in Section 5 and introduce some extensions to it. We then proceed by
generating a product overview formula in this extended logic from
the Attributes Model, encoding the set of all valid Linux kernel con-
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figurations.

Eventually, we translate the product overview formula from the
three-valued logic into Propositional Logic in Section 6. With com-
mon transformation into CNF and SAT solving, we can reason about
the set of valid configurations, yielding first results in Section 7.

2 The Linux Kernel Configuration System

Kconfig is a specialized input language for LKC that describes
available features in terms of symbols and offers several different
means to encode constraints and interdependencies. Kernel devel-
opers maintain this information in hierarchically organized Kconfig
files.
Listing 1. Example Kconfig file

config TO

tristate

prompt "feature TO"

select TI1

depends on T2 && !CO
config TI1

tristate

prompt "feature TI" if CO

config T2
tristate
default y

choice
tristate
prompt "CHOICE 0"

config CO
prompt "feature CO"
config ClI
prompt "feature CI1"
endchoice

"submenu"
visible if TI1

menu

config SO

string

default "default string"
config BO

bool

prompt "custom SO0"
if BO
config SO

prompt "S0"
endif
endmenu
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LKC reads these files with a scanner and a parser that are gener-
ated using flex* and GNU Bison.” Exploring the Bison grammar is
clearly beyond the scope of this document as it consists of more than
100 production rules. Suffice it to say that the grammar we use very
closely ressembles the grammar of LKC.

To give an overview over the relevant parts of the configuration
language, we confine ourselves to explaining an artificial example. A
concise formal description of the relevant parts was done by She and
Berger [7].

Listing 1 contains most of the relevant language features. The
central element everything else is built around is the configuration
block. Its purpose is to declare and to describe symbols. The keyword
config starts a configuration block and is followed by the name of
the symbol it refers to. A configuration block contains one or more
lines that further specity what we call properties of that symbol. Each
symbol must have at least one configuration block. In practice, for the
majority of symbols there is exactly one configuration block for each
symbol, but there may be more. In Linux 4.0, there are up to six per
symbol.

Each symbol has one of the five types tristate, bool,
string, int, and hex. In our example, the symbols 70, T1, and
T2 have the type t ristate, the symbol B0 has the type bool, and
the symbol SO has the type st ring. We call a symbol declared if it
has at least one configuration block and one of the five types.

On actual configuration, each symbol is assigned an unambigu-
ous value from their respective domains. The domain of tristate
symbols is {0, 1, 2} and the domain of bool symbols is {0, 2}. The
purpose of the three-valued tristate type is to encode the three
possible activation states that apply to many features in the kernel:
Turn it off (0), compile it as a runtime-loadable module (1) or com-
pile it into the kernel (2). The bool type is the same except that it is
missing the value 1 for the module state.

To identify the three different states in syntax, there are the three
constants n, m, and y, which evaluate to 0, 1, and 2, respectively.

The domain of string symbols is the set of all valid strings.
Similar to the domain of bool being a subset of the domain of
tristate, the domains of int and hex symbols both are subsets
of the domain of st ring symbols, in that their elements are strings
that read as valid integers or hexadecimal numbers, respectively.

There are different types of dependencies that affect properties,
thus most properties can be active or inactive. The symbol type is the
only unconditional property. It is always active and cannot dynami-
cally change during configuration. It is also the only property that is
mandatory for every symbol. However, to allow the user to directly
assign a value, the symbol needs a prompt property. In our exam-
ple, there are several such prompt properties, one of them for the
symbol TO. The prompt keyword is followed by a string parame-
ter "feature TO". This parameter is mandatory and shows up as short
description in the configuration interface.

The symbol TO also has a select property with the argument
T1. This property is only valid with bool and tristate symbols.
The select property sets up a direct relation between the values of
two symbols. The value of the selected symbol is always at least as
high as the value of the symbol that the select property belongs
to. So, in our example the value of T1 is always at least as high as
the value of T0. The documentation calls this a reverse dependency.

The last line of the configuration block of TO starts with depends
on and is followed by an expression in Tristate Logic T2 && !CO.

4 flex: The Fast Lexical Analyzer, flex.sourceforge.net
5GNIJBEon,www.qnu.org/software/bison/



This is a dependency that applies to the whole configuration block,
i.e. in our case it is a dependency to the prompt and to the select
property. The actual dependency is encoded in the expression. It has
no direct influence on the value of the symbol, but rather on the prop-
erties which in turn set up constraints to the value.We take a closer
look at Tristate Logic and the mechanisms of dependencies in sec-
tion 5.

It is possible to add a dependency to a single property by append-
ing an expression with 1 f to the respective line, like for the configu-
ration prompt of T1.

A default property is used to non-bindingly suggest a value,
but it is also used to automatically set values of symbols that have
no active prompt. In our example, the symbol T2 uses the trivial
expression y as default value, but more complicated expressions
are possible.

Our example contains a choice block. This language con-
struct encloses a series of configuration blocks with choice and
endchoice, constituting a set of symbols that logically exclude
each other. This is useful for features that serve the same purpose
and which therefore naturally cannot be simultaneously active, like
e.g. the compression algorithm of the kernel image or the preemption
model. Like a symbol, a choice block has a type, but only the two
data types bool and tristate are valid. A choice block of type
bool enforces that exactly one of the enclosed symbols is set to 2.
The tristate type relaxes this strict constraint and allows to not
assign 2 to any of the symbols, while setting an arbitrary number of
symbols to 1. There is a property opt ional that even allows setting
all symbols to 0. In contrast to a symbol, a choice block must have a
prompt property. There may also be default properties, suggest-
ing one of the enclosed symbols, and dependencies using depends
on, which analogously to configuration blocks apply to the whole
choice block.

A hierarchical menu can be constructed using the menu blocks.
Its primary purpose is organizing the features to ease navigation. Just
like the prompt property, the menu keyword is followed by a string
that serves as user visible label for the menu. For our point of view it
is important that there may be dependencies added using depends
on that apply to the whole menu, and a second type of dependency
that is set up with visible if. That second kind of dependency
toggles only the parts that concern direct configurability by the user,
but leaves all other properties unaffected.

Finally it is also possible to add dependencies to an arbitrary se-
quence of configuration blocks, choice blocks, and menus as long as
it does not violate the logical hierarchy. This is done with the enclos-
ing keywords if and endif with the dependency expression right
behind if.

Our example covers those language constructs that we regard as
most important for variability, but there is more: For symbols with
the int or hex type, there is a range property that fixes a lower
and an upper bound for the value. Both bounds may depend on freely
changeable values of other symbols. In practice nearly all bounds
have constant values and those few bounds that are variable can be
manually checked for inconsistencies. From our perspective the im-
pact of range properties on the variability of the overall configura-
tion is mostly negligible in current versions of Linux. Therefore, we
incorporate range properties in our model, but ignore them when
creating a product overview formula as we do not expect any observ-
able consequences.

Another language feature that does not occur in our example is
the generic option line in configuration blocks, which allows ex-
tending the language with only minimal changes to the grammar and
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possibly gaining forward compatibility. It starts with the option
keyword, followed by one of a few option names, and depending on
that, the meaning varies and an argument may be appended. As of
Linux 4.0, two different options are defined that may be relevant in
our context: modules and env. The modules option makes only
sense with a bool symbol, and it may be only used once in the
whole configuration. It associates the corresponding symbol with the
availability of support for loading modules, i.e. as a consequence,
deactivating that symbol basically prohibits assigning the value 1
from the tristate domain. The env option is usually only used
for string symbols that have no prompt property as it imports
a value from the runtime environment of the system the configura-
tion system is running on. Only very few symbols use this option at
all and even fewer have an effect on the configuration that is worth
mentioning. Still, as we want to be precise, we account for them, too.

From our example it is also not apparent how Kconfig files are hi-
erarchically organized. It works similarly to #include directives
of the C preprocessor: A file inclusion is done with the keyword
string and a string argument. The string argument is treated as
path and the content of the file at that path is pasted at the position of
the string line.

Kconfig still offers more constructs that we have not mentioned,
but they are irrelevant at this point.

3 Zengler Model

Linux 4.0 supports 30 different main architectures. Each architecture
has its own tree of Kconfig files, but there are big overlaps across all
architectures by using common files. Accordingly we want to be able
to reason about the configurations across all architectures. However,
capturing several architectures in one data structure without losing
precision is very complicated as this requires keeping track of which
files are included for each architecture and in which order they are
read. Therefore, we create a separate model for each architecture and
consider them together if needed.

By considering one fixed architecture, we can deduce the full in-
clusion hierarchy of Kconfig files for that specific architecture. Ac-
cordingly, our parser moves through the file hierarchy in the same
way as LKC does, without the need to store which files we in-
clude. However, it produces different data structures. We create two
databases, a symbol database Ds, and a choice database D¢ . They
are heavily extended versions of the databases created by Zengler and
Kiichlin [11], hence we call these two databases the Zengler Model.

The symbol database contains symbol descriptors. Each configu-
ration block corresponds to a symbol descriptor. They are grouped by
the symbol they belong to. So, our symbol database is a set of pairs

Ds = (s,desc) where s is a symbol and desc is a list of symbol
descriptors desc with

desc = (¢, pmpt, ﬁ def, rangé, dep, opt, Kdesc)
pmpt = (ep, kp)
sel = (ss, es, ks)
def = (ev, €4, kq)
range = (ej, e}, er, k)
dep = (elf,edep,ems)
opt = (benv, bmod)-

The type t is one of the five types or it is a special type “unknown”
if the configuration block has no type property. It suffices if only one
descriptor holds a regular type.
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The properties prompt, select,default, and range appear
in the descriptor as the tuples pmpt, sel, def, and range, respec-
tively. As the input order plays a role, each of them and the descriptor
contain unique indices Kgesc, kp, ks, kq, and k- that are ascending in
input order.

The string argument of a prompt property is unimportant for the
configuration logic, so we only store the expression of the optional
if dependency e,. If there is no such dependency, we store a spe-
cial symbol as placeholder for an empty expression. Analogously,
the optional if dependencies for select, default, and range
properties are stored as e, €4, and €.

The target of a select property is a single symbol es. A
default value may be the result of a non-trivial expression e,. The
lower bound of a range property e¢; may be either another symbol
or a constant value. The same goes for the upper bound ey, .

We do not store any menus or enclosing ifs explicitely. Instead we
propagate their dependencies to the contained descriptors and store
the dependency expressions in lists that distinguish between the dif-
ferent types. The dependencies of surrounding ifs are stored in e_va) .
Those of depends on dependencies add up to ed—w> , including any
such dependencies contained in the configuration block under con-
sideration. The third list €,,5 contains the visible if dependen-
cies from menus.

The pair of bits opt indicates if there is a module or env option.
Even though env carries an argument in the configuration block, we
only care whether it is present.

Our choice database D¢ is a set of tuples which we call choice
descriptors:

ﬁ —_—
(t7 bOPt? pmpt, dep7 kdesc, kc)

Each choice block translates into a choice descriptor. The type ¢
is one of bool, tristate or “unknown”. The bit b, indicates
whether the choice block carries the optional flag. Just like in a sym-
bol descriptor, there is a list of pmpt tuples, dependencies lists dep,
and an index k.. Rather than storing the symbol names of the con-

tained symbol descriptors, we create a list of their indices kqesc-
In contrast to the symbol descriptors, the default properties of
choice blocks have no influence on variability and we ignore them.

4 Attributes Model

Although the Zengler Model is an abstraction from the underlying
Kconfig files, storing the relevant information in a normalized way,
its focus lies on the input structure: The symbol database holds in-
dividual symbol descriptors desc and lists of dependencies dep re-
flecting artifacts from the input structure. Furthermore, we have yet
to determine the final types of the symbols and choices and which
symbols a choice includes as this is not trivial in all cases.

In the next step, we resolve all this and create a model that fo-
cuses on the effective impact of the descriptor properties on the sym-
bols. For a better distinction from the properties of the descriptors in
the Zengler Model, we refer to their resulting equivalents in the new
model as attributes. Therefore we call the new model the Attributes
Model.

First we associate the attributes directly with the dependencies
from dep that control them. As already mentioned in Section 2, the
dependencies in €vit do not affect all types of attributes. In fact, they
control only our prompt attributes a”. We define them as

P:(Ep:kp):(‘?i})U%Ué;i—s)Uep,kp)
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We write E to denote sets of expressions. The other attributes are
only affected by the other dependencies, hence we define them as
follows:

= (Es, s, ks) = (&f U Ues, s, k)
b= (Eq, ev, ka) = (QU@Ued,emkd)
a = (Er,e} e, ke) = (Gif UéaeyUer, e}, ¢ ky)

With these definitions we collect for each symbol s the prompt at-
tributes o’ in a set P(s), the default attributes a” in a set D(s),
and the range attributes ™ in a set R(s). We also create a set S(s)
for each symbol, but note that the symbol in the definition of a” is
the symbol of the descriptor that contains the property and not the
symbol s, that is the select target. Accordingly we add each o
to the set of the target symbol. If there is no descriptor of the target
symbol we discard the attribute.

To determine the symbol type that results from the types in the
corresponding descriptors, we take the type of the symbol descrip-
tor with the lowest kqesc that is not “unknown”. If there is no such
descriptor we also set the type of the symbol to “unkown”.

Finally we concatenate the opt bitvectors component-wise with a
logical or and store it with the symbol.

We do not need dep and kg4es. anymore and do not transfer them
into the Attributes Model.

Next we transform the choice descriptors from the Zengler Model
into what we call choice groups. Like for symbols, we determine the
type of the choice group. If ¢ in the choice descriptor is bool or
tristate, then this is also the type of the choice group. However,
it is a frequently used feature to skip the explicit type declaration
in choice blocks, resulting in choice descriptors with the special type
“unknown”. In that case the type is taken from the first symbol that is
enclosed in the choice descriptor and has a regular type. If any sym-
bol in the choice descriptor is lacking a regular type then it inherits
the type of the choice group.

Now that we have completed the type resolution for choice groups,
we determine which symbols are part of the choice group. This is not
trivial as not all symbols that correspond to symbol descriptors in the
choice descriptor are necessarily transferred. Symbols can be moved
into their own submenu by depending on a symbol that is immedi-
ately above, excluding them from the choice group. We actually see
this constellation intentionally used in Linux 4.0 and have to process
it adequately. LKC involves an extensive logic to determine whether
to move a symbol into a submenu, but a simple heuristic suffices to
correctly capture any real-world case.

As LKC ignores the attributes S(s) and D(s) of all symbols of
the choice group, we clear them if they have any content.

To complete the choice group, we generate a prompt attribute

P the same way we do from a symbol descriptor and we keep the
optional bit bope.

Our new databases D’ and D are now

Dy = (s, t, P(s), S(s), D(s), R(s), opt)

Y
D’C = (t>bopt7 P7?)

5 Tristate* Logic and POF

Our next step is to translate the Attributes Model into a coherent
product overview formula. While our goal is to arrive at a POF in
Propositional Logic, we prefer to split this translation into two steps.
First we define Tristate* Logic, an extension to Tristate Logic that



we specifically design to create an initial POF. Then we translate the
POF from Tristate* Logic into Propositional Logic in Section 6.

The following grammar describes the general syntax of expres-
sions in Tristate Logic:

(expression) ‘& &’ (expression)
(expression)‘ ||’ (expression)

(expression) — (expression symbol)
| (expression symbol) ‘=" (expression symbol)
| (expression symbol) ! =’ (expression symbol)
I < (expression)‘)’
| 1" (expression)
|
|

(expression symbol) — symbol name
| constant value

There are five operators and there are parentheses to override op-
erator precedences. We distinguish two groups of operators: The
tristate operators !, &&, and ||, and the string operators =
and !=. Both groups operate on their respective domains.

The tristate operators and their domain form a three-valued
logic like those of Lukasiewicz and Kleene. A comprehensive
overview of these logics has been done by Gabbay and Woods [2].

In fact, the three base operators !, &&, and || correspond to the
operators —, A and V in K3 and L3 from Kleene and Lukasiewicz.
This observation has already been made in 2010 by Berger et al. [1].
However, Tristate Logic itself is not expressive enough for a full POF.
We need to extend it for our purposes.

The nature of our dependencies is Boolean and not three-valued,
because either they are met or they are not. There is no third value
like the module state in Tristate Logic. Hence, when extending Tri-
state Logic to allow encoding all constraints in a POF, we look for
operators that operate on tristate values, but only yield two dif-
ferent values. Such operators are not typically part of K3 or L3 and
hence we exclude these logics from further consideration.

Instead we introduce our own new operators = and <> and define
their semantics as shown in Table 1 and Table 2.

Table 1. Truth table of tristate* operator <

N = O ﬂ
oOON| O
OoONO |+
NOO| N

Table 2. Truth table of tristate* operator =

N = O U
OON|O
ONN |+
NNN|N

They express equality and “less than or equal to” inequality on
tristate values. We call this extended version of Tristate Logic
the Tristate* Logic.

Note that Tristate* Logic also contains the st ring operators =
and !=. They compare values from the string domain and also
yield one of the two values 0 and 2. Mixing tristate and string

135

operators and symbols in expressions is actually a feature, leading to
frequent conversions between the two domains.

This may become quite complex. Consider the short expression
A=B. If both, A and B, are declared st ring symbols, their values
are compared, yielding 2 if they are exactly identical and O otherwise.
However, if A is a tristate symbol and B is undeclared, then the
values 0, 1, 2 of A are interpreted as the strings “n”, “m”, and “y” and
B is interpreted as the string “B”, i.e. in this case a string com-
parison is done on these letters, always yielding 0. We take all these
details into account when producing our POF in Tristate* Logic.

Encoding the constraints of bool and tristate symbols that
originate from their respective attributes, works in an indirect way:
For each of these symbols, we add two auxiliary variables which
represent a lower and an upper limit to the value of the symbol in
consideration, and, using the = operator, we append the constraint
that the value of the symbol must not exceed the values set up by the
auxiliary variables.

This is in contrast to encoding the choice groups: We encode the
exclusiveness of symbols with expressions that directly relate to the
symbols instead of their associated auxiliary variables.

Finally, we also take account of the mode without module support
by adding two different subformulae for tristate symbols and
tristate choice groups which depend on the symbol that has the
bimoq bit set.

6 POF in Propositional Logic

Translating the POF from Tristate* Logic into Propositional Logic
is mostly straightforward. We encode each symbol with the type
tristate or bool and all auxiliary variables using two variables
in Propositional Logic. The three values of the tristate domain
correspond to three states that the two Propositional Variables can
encode. We explicitely prohibit the fourth possible state.

Translating tristate constants, symbols, and operators works
mostly the same way as in the paper by Zengler and Kiichlin [11]
with the two projections 7 and 7 as listed in table 3. The three
constants y, m, and n map to corresponding combinations of T and
1, and similarly each t ristate symbol AT maps to two proposi-
tional variables po(A”) and p; (AT). Mapping the unary operator !
is simple, but the entries for the binary operators operators && and
|| stick out by being generalized to n-ary operators. This is an opti-
mization to keep the size of the formulae smaller for long chains of
the same operands.

Of course, the Tristate* operators < and = also have to be
translated into Propositional Logic. However, due to our definition
of these operands this is trivial for 71 as they yield only 0 and 2, and
To is intuitive. We use these two translations to also cover the usage
of the st ring operator = with t ristate operands.

Finding a Propositional encoding for st ring symbols requires
more work, because Propositional Logic is not well suited for encod-
ing arbitrary strings. For each st ring symbol, we iterate over our
POF in Tristate* Logic and collect all occurrences in expressions.
In our method we consider only cases of equal strings and resulting
other equalities and inequalities and define new propositional vari-
ables Py s, to encode that the st ring variable X 9 has the value
s and accordingly (X°=Y*) to encode if X*° and Y have the
same value. This suffices, because for the configuration space the ac-
tual value of a st ring is not important. The same goes for int and
hex symbols. Finally we use the mappings for = and ! to define the
mappings for !=.

With these mappings we create our POF in Propositional Logic.
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As it encodes the configuration space of the Linux kernel, we call it
L-POF.

To use modern SAT solvers we do one final step: Our L-POF is
not in CNF. So we use the Warthog Logic Framework® to generate an
equisatisfiable formula using the Plaisted-Greenbaum algorithm [6].

7 Results

Our implementation consists of more than 7,000 lines of Java Code,
using the features of Java SE 6. We measured execution times on a
computer with an Intel Core2Quad Q6600 using the Java implemen-
tation of the IcedTea project in version 6.1.13.7 on Gentoo Linux.
Creating the L-POFs from the Kconfig files for all 30 architectures,
takes on average less than 3 seconds per architecture. Transforma-
tion into CNF varies between 20 and 42 seconds, depending on the
architecture.

To give a rough impression of size of the configuration space, we
show the distribution of symbol types for each architecture in Table 4.
Across all architectures, the vast majority of symbols has one of the
two types tristate and bool which has a major impact on the
form of the formula.

Table 4. Distribution of symbol types in Linux 4.0

arch tristate bool  string int  hex total
alpha 6317 3402 34 192 27 9972
arc 6293 3352 36 194 29 9904
arm 6371 4724 38 209 41 11383
armo64 6366 3511 36 195 27 10135
avr32 6360 3462 36 193 30 10081
blackfin 6380 3676 36 702 43 10837
c6x 6292 3293 35 189 28 9837
cris 6345 3436 45 254 78 10158
frv 6316 3378 35 192 28 9949
hexagon 6292 3292 35 190 27 9836
ia64 6400 3519 36 195 27 10177
m32r 6324 3361 34 194 31 9944
m68k 6322 3453 35 192 37 10039
metag 6293 3363 37 193 28 9914
microblaze 6294 3335 37 195 32 9893
mips 6391 3964 36 198 28 10617
mn10300 6316 3426 35 199 33 10009
nios2 6292 3303 36 191 36 9858
openrisc 6292 3292 36 188 27 9835
parisc 6325 3384 34 191 27 9961
powerpc 6404 3933 37 205 40 10619
$390 6313 3453 35 195 27 10023
score 6292 3292 35 188 28 9835
sh 6374 3640 37 198 34 10283
sparc 6370 3444 37 193 30 10074
tile 6306 3393 36 191 29 9955
um 6297 3362 38 193 27 9917
unicore32 6363 3425 36 191 27 10042
x86 6420 3781 40 206 32 10479
xtensa 6326 3379 41 194 29 9969

Table 5 gives a rough overview of how big the formulae grow.
It comes to no surprise that the translation from Tristate* Logic
to Propositional Logic and the transformation into CNF using the
Plaisted-Greenbaum algorithm both significantly increase the size.

The fact that there are more regular variables in the POF in Tristate*
Logic than there are declared symbols on the respective architecture
comes from the fact that it still contains expressions with undeclared
symbols. They are cleaned in the translation process into Proposi-
tional Logic. Each of our formulae in CNF contains roughly one
million Propositional variables. For some very basics analyses with

Table 6. Redundant or necessary symbols in Linux 4.0

arch redundant (< n)  necessary (not < n)
alpha 3223 55
arc 4263 63
arm 1691 75
arm64 3159 135
avr32 4522 54
blackfin 4430 47
cbx 4644 42
cris 3785 34
frv 3700 37
hexagon 4625 45
ia64 3454 74
m32r 4937 32
m68k 3741 32
metag 4301 67
microblaze 3251 71
mips 2773 64
mn10300 3702 39
nios2 4428 45
openrisc 4424 56
parisc 3499 51
powerpc 2652 94
$390 4149 107
score 7068 36
sh 3297 67
sparc 3201 51
tile 3633 57
um 7368 28
unicore32 3541 58
x86 2301 138
xtensa 3248 43
globally 135 1

SAT solving, we use PicoSAT/ Processing the CNF formula without
any additional clauses takes PicoSAT between 6 and 10 seconds. We
search for redundant bool or t ristate symbols, i.e. symbols that
can never be active, and for symbols that are necessary, i.e. it is not
possible to fully deactivate them. We find out if a symbol is redun-
dant by assuming that one of the two corresponding Propositional
variables is true. If this is not satisfiable, then the symbol is always
inactive. Vice versa by assuming that both Propositional variables are
false we find out whether a symbol must always be active. More than
99.8% of the individual tests run in less than three seconds.

Table 6 shows the results of these tests. The reason for the high
numbers of features that cannot be activated on each architecture is
that there are many features that run only on few architectures, but the
corresponding Kconfig files are common for all architectures. Sym-
bols that cannot be deactivated on the other side are less, but still a
lot. They are symbols that are intentionally not deactivatable and in
general they do not represent selectable features, but basic aspects of
an architecture.

6 Warthog Logic Framework: github.com/warthog-logic/warthog
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7 PicoSAT: fmv.jku.at/picosat/



Table 3. Translation rules for tristate™ operators

e’ o (6/) 1 (6/)

v T 1

m 1 T

n 1 1

AT po(AT) pi(AT)

le 7o (€) A =1 (e) 1 (e)

€0&& - -8&&€e, o (€0) A Ao (€n) /\iE{O,...,n} (7o (ei) V1 (ei))/\\/ie{ow.,n} 1 (€;)
eoll - Ilen  mo(eo) V- Vmo(en) Nicto,...ny (00 (€)) AVieqo,.ny ™ (€5)
e1 < e (mo (e1) <> mo (e2)) A (w1 (e1) <> (e2)) L

e] = e2 ) (62)\/—|7T0 (61)/\(—|7T1 (61)\/71'1 (62)) 1

AT =t mo (AT & t) 1

AT =B" mo (AT & BT) 1

X9 =5 Pxs ., 1

xX5=vy"% Pys_ys 1

e] l=ej -7 (e = €3) il

To get meaningful results, we merge the results. We collect all
symbols that do not have any architecture that allows activating, and
we collect all symbols that are declared across all architectures, but
may not be deactivated on any of them. These numbers are in the
line globally. For most of the 135 symbols that cannot be activated,
this is actually the intention of the maintainer. The one tristate
symbol that can never be deactivated may intentionally only alternate
between the two other possible states.

These results do not surprise as similar tests were also done in
the context of the VAMOS project and hence many problems have
already been uncovered and solved.

8 Conclusion

Our approach successfully leads to a precise product overview for-
mula. Although Linux has reached more than 10.000 features, our
implementation quickly creates the L-POF, a product overview for-
mula of the Linux kernel in Propositional Logic. Despite its consid-
erable size, fast SAT solving on the formula is in general possible. If
needed there is still much room for optimization.

A future research direction could be to investigate the possibility
of further verification tests beyond redundant and necessary symbols,
e.g. specialized verification tests for a choice block analogously to
verification tests for positions of a Bill of Materials as it is done in
automotive configuration [8].

As we do not use parts of LKC in our implementation, we now
have the option to extend our program to do fine-grained tests con-
sidering individual lines in Kconfig files and easily locate the origin
of inconsistencies.

Another interesting topic is re-configuration. Although LKC does
not permit invalid configurations by disabling options during the con-
figuration process, it might be useful for users to select all wanted
options first without caring about the validation. Afterwards, if the
configuration is invalid, we can re-configure the selections of the user
in an optimal way, i.e. by solving a MaxSAT optimization problem.

The reverse is also imaginable: If the selections of a user lead to
an invalid configuration, the user might want to know which config-
uration constraints have to change in order to make the configuration
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valid. Thus, we want to find the minimal set of constraints to remove
or change. Such MaxSAT re-configuration use cases have been de-
scribed in the context of automotive configuration in [10] and could
be adopted for the Linux kernel configuration.
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Table 5. Sizes of POFs for Linux 4.0

arch regular variables  auxiliary variables total number of  variables in L-POF  variables in CNF  clauses in CNF
in POF in in POF in variables in POF
Tristate* Logic Tristate* Logic inTristate* Logic
alpha 10673 48845 59518 117417 996839 1812856
arc 10602 48481 59083 116538 954428 1718683
arm 11976 55760 67736 134270 1299812 2849653
armo64 10824 49640 60464 119333 1007563 1828031
avr32 10793 49366 60159 118671 1001036 1816464
blackfin 11539 51058 62597 123096 1026513 1861942
cbx 10548 48174 58722 115799 949031 1708805
cris 10867 49279 60146 118559 999006 1812066
frv 10666 48722 59388 117126 990489 1797565
hexagon 10540 48169 58709 115795 981542 1781667
ia64 10866 49850 60716 119837 1010856 1834072
m32r 10643 48681 59324 117039 993691 1804508
m68k 10717 49136 59853 118115 1008800 1836987
metag 10605 48535 59140 116671 955382 1720572
microblaze 10591 48406 58997 116370 985108 1788040
mips 11249 52034 63283 125090 1048937 1909971
mn10300 10721 48974 59695 117738 994158 1804015
nios2 10566 48235 58801 115951 950035 1710610
openrisc 10544 48168 58712 115783 949121 1709044
parisc 10658 48794 59452 117297 996712 1810111
powerpc 11247 51964 63211 124935 1055822 1917736
$390 10699 49084 59783 117997 998901 1813210
score 10539 48168 58707 115783 949788 1710461
sh 10955 50336 61291 121037 1020515 1854779
sparc 10774 49327 60101 118582 1004762 1823946
tile 10655 48748 59403 117195 990749 1798113
um 10606 48550 59156 116723 998908 1821791
unicore32 10753 49191 59944 118246 998333 1811566
x86 11135 51280 62415 123314 1051478 1913811
xtensa 10674 48786 59460 117278 993296 1802906
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