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Abstract. As a by-product of the negative solution of Hilbert’s 10*®
problem, various prime-generating polynomials were found. The best
known upper bound for the number of variables in such a polynomial, to
wit 10, was found by Yuri V. Matiyasevich in 1977.

We show that this bound could be lowered to 8 if the converse of Wolsten-
holme’s theorem (1862) holds, as conjectured by James P. Jones. This
potential improvement is achieved through a Diophantine representation
of the set of all integers p > 5 that satisfy the congruence (2pp) =2

mod p%. Our specification, in its turn, relies upon a terse polynomial
representation of exponentiation due to Matiyasevich and Julia Robin-
son (1975), as further manipulated by Maxim Vsemirnov (1997).

We briefly address the issue of also determining a lower bound for the
number of variables in a prime-representing polynomial, and discuss the
autonomous significance of our result about Wostenholme’s pseudopri-
mality, independently of Jones’s conjecture.

Keywords. Diophantine representations, Hilbert’s 10" problem, DPRM
theorem, Wolstenholme’s theorem, Siegel’s theorem on integral points.

Introduction

At the beginning of the 1960’s, one decade after Martin Davis had set forth the
‘daring hypothesis - - - that every semidecidable set is Diophantine’ [Mat93l p.
99], it became clear that finding a proof of that conjecture would have entailed
the possibility to construct a polynomial with integer coefficients whose positive
values, as the variables run through all nonnegative integers, form the set of
prime numbersﬂ The existence of such a prime-generating polynomial seemed,
at the time, rather unlikely; in fact, Davis’s conjecture was received with under-
standable skepticism.

* Work partially supported by the project FRA-UniTS (2014) “Learning specifications
and robustness in signal analysis (with a case study related to health care).”

3 Cf. [DMRT6, Sec. 1]: “This corollary was deduced by Putnam in 1960 from the then
conjectured Main Theorem and it was considered by some to be an argument against
its plausibility.”



With [Mat70], Yuri V. Matiyasevich positively settled Davis’s conjecture and
so provided a negative answer to Hilbert’s 10** problem [Hil00, p. 276]. Soon
afterward, the same scholar obtained two polynomials representing primes and
only primes, one in 24 and one in 21 variables [Mat71]; in [MR75], Matiyasevich
and Julia Robinson brought the number of variables down to 14; then other
researchers succeeded in bringing it further down, to 12 (cf. [JSWWT6]). The
record number, 10 as of today, was achieved by Matiyasevich in 1977: in fact,
[Mat81] produces a prime-generating polynomial in 10 variables, of degree 15905
(reducible to 13201 (139837?) or to 11281 [Mat81l p. 44], or even to 10001 [Vse97,
p. 3204]).

Although methods have significantly evolved over time, the rigmarole for
getting prime-representing polynomials usually results from the combination of
ideas already present in [Rob52] (see Fig. [1) with a Diophantine polynomial
specification of exponentiation, such as the masterpiece proposed in [MR75] (see
Fig. [2), which Maxim A. Vsemirnov refined somewhat in [Vse97].
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Fig. 1. Binomial coefficient, factorial, and “p is a prime” are existentially defin-
able by means of exponential Diophantine equations, cf. pp. 446-447].
Throughout, ‘%’ designates the integer remainder operation.

Ameliorations along this pipeline are possible: e.g., Wilson’s theorem enables
one to state that p is a prime number through the formula dq, u (p =q+
2&pu—(¢g+1) = ); and an improved exponential Diophantine representation
of the binomial coefficient can be obtained through the theorem

nHr )
(;)ZVU—QZ)J%U forr >0,5>0,andu > 17,

as remarked in [MR75 pp. 544-545]. However, a more decisive enhancement
in the formulation of a prime-generating polynomial would ensue if one could
remove factorial from the pipeline and could avoid exploiting the binomial coef-
ficient in its full strength.

Joseph Wolstenholme proved the congruence (2pp:11) =1 mod p? for all
prime numbers p > 3 in 1862 [Wol62]; and it was conjectured by James P. Jones
(cf. p. 23] and [McI95, p. 381]) that, conversely, every integer p > 3

satisfying the said congruence is prime. If true, this conjecture would ease our
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A1DFI=0, FIH-C, B<C|E1|[((M?-1)L*+1=0O
A2|D = (A*-1)C*+1 E2/I?-4(C—-Ly’zyn>0
A3 E=2(i+1)C*D E3 M =4n(y+1)+z+2
A4 F = (A2 -1 E?+1 E4L=n+1+£(M-1)
A5|G=(F-A)F+ A E5A= Mz
A6|H=B+2jC E6|B=n+1

AT =(G*-1)H?+1 E7C=k+B

Fig. 2. Polynomial specification of the triadic relation ™ = y. Besides the parameters
x,y,n, this involves four existential variables (also ranging over N): ¢, 4, k, ¢; a fifth
unknown is implicit in the constraint A1l stating that the product DFI must be a
perfect square with F' dividing H — C'. The notation ‘V = P’ defines V to be an alias
for the (integer-valued) polynomial P; hence all uppercase letters can be eliminated,
e.g. in the order: M,B; A,C,L; H,D; E; F; G; I. By themselves, A1-A7 form a
polynomial specification of the relation ¥ 4(B) = C defined by the recurrence 9 4(0) =
0,%a(1) =1,and Ya(h +2) = 2Aa(h + 1)—1pa(h), if one takes A, B, C' as parameters
subject to the preconditions A > 1, B > 0, C > 0.

present task, enabling us to express primality without factorial and in terms of
the central binomial coefficient (2p).

After recalling, in Sec. [I] the basic definitions and techniques we need, in Sec.
we produce a Diophantine polynomial generator in 8 variables for the numbers
meeting the just mentioned ‘Wolstenholme’s pseudoprimality’ criterion. In Sec.
[B] we give clues about the proof that the proposed polynomial operates properly.
In the conclusions, we briefly discuss the autonomous significance of our specifi-
cation independently of Jones’s conjecture, and address the issue of determining
a lower bound for the number of variables in a polynomial representation of
primality.

1 Main definitions and presupposed notions

Let us recall here the notion of Diophantine representation of a relation R, which
historically played an essential role in the study of Hilbert’s 10** problem:

Definition 1. A relation R among n natural numbers is said to be DIOPHAN-
TINE if one can precisely characterize which are the n-tuples {(a1,...,a,) con-
stituting R through a bi-implication of the form

variables

R(ar,...,an) ¢ Jxy-- Ty (D(al,...,an, TlyeeeyTyp ) = O)
—_———— — —
parameters unknowns
which musto be true under the replacement a1 — a1, ..., a, — a,, where D 1is

a polynomial with coefficients in Z whose variables are seen as ranging over N.



In the common case when n = 1 one calls such an R a Diophantine set, and one
readily gets from the defining D the polynomial (zq+1) (1 —D*(xo, ..., :z:m)) -1,
whose non-negative values (under replacement of the variables zg,..., . by
natural numbers xg, ..., x,,) are precisely the elements of R.

For example, classical results on the so-called Pell equation tell us that the
equation 22 — d (y + 1) — 1 = 0 in the parameter d and in the unknowns z,y
makes a Diophantine representation of the set

R={0} U {deN | dis not a perfect square } ;
therefore the non-negative values of the polynomial
(z+1) (1—($2—z(y+1)2—1)2) -1,

as x,y, z range over N, will form this R.

The Pell equation of the special form 22 = (a* —1)y*+1 enters extensively in
the ongoing; thus we find it convenient to denote its right-hand side as Pell(a, y).
We adopt Pell(S, T) as an analogous syntactic abbreviation also in the case when
S and T are Diophantine polynomials, as shown in Fig. |§| (top).

As is well-known (see, e.g., [Dav73|), the solutions to the said equation x
Pell(a,y) when a > 2 form a doubly recurrent infinite sequence

2:

(1,0),{a, 1),(2a®> -1, 2a), (4a®>-3a, 4a®>-1), ...

of pairs whose first and second components constitute the respective increasing

progressions X4 (0), Xa(1), Xa(2),... and 14(0),14(1),... shown in Fig. [3| (the
latter was formerly introduced in the caption of Fig. [2)). Figures recapitulate
important properties enjoyed by these sequences.

Xa(h+2) =2axa(h+1) = xa(h)
Ya(h+2) =2aa(h+1) = pa(h)

Xa(l) =a
Ya(l) =1

Fig. 3. Recurrent specification of the solutions @ = xa(b), y = 1a(b) of Pell’s equation
2?2 —(a® —1)y* = 1. (These make sense even for a = 1.)

2 How to represent Wolstenholme’s pseudoprimality via
a Diophantine polynomial

To be better aligned with [Vse97], let us now agree that the variables appearing in
our Diophantine constraints must range over positive (instead of non-negative)
integers. A refined polynomial specification of the components which occupy
odd positions b in the progression ¥4 (b) = ¢ discussed above is shown in Fig. |§|
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2a—-1)" < Ya(n+1) < (2a)"

Fig. 4. Noteworthy inequalities holding for the progressions xa,%a (a = 2).

0.] xa(n) —Ya(n) (@a—4£) = £* mod (2al—¢*—1);
1.| Ya(n) =n mod (a —1) and ¥a(n) =n mod 2;

,| p=a mod 7 implics {m; Z el ot
r | (p—1) implies p(n) n mod 7 ;

Ya(n) | wa (nk);

Ya(n) [Yal(l)  iffn|E;

Ya(mr) =1 x5 (m) Pa(m) mod Pg(m);

Ya(n) | £ if $a(n) [ ¢a(l);

Ya(n) | Ya(nva(n));

Ya(i) = va(j) mod xa(m) implies (i=jVi=—j) mod (2m).

® N> g w

Fig. 5. Noteworthy congruences holding for the progressions xa, ¥q. Here it is assumed
that n >0, k>0, £ >0 and that p >0, ¢ >0, r >0, m > 0.

(right) and in Fig. [7] (left); in Fig. [7] (right) we extend it into an alike specifica-
tion, to be discussed next, of Wolstenholme’s pseudoprimality. In addition to the
6 unknowns z,w, s, h, 7, j which appear explicitly in this system of Diophantine
constraints, additional unknowns enter into play due to the presence of the con-
structs ‘07, ‘>’ ¢|’, and of a congruence. Eliminating such abbreviations seems,
at first glance, to call for five extra variables; a single, 7-th unknown suffices,
though, thanks to the following proposition:

Theorem 1 (Relation-combining theorem, [MRY75), pp. 525-527]). To
each q in N there corresponds a polynomial M, with coefficients in Z such that,
for all integers X1,..., Xy, J, R,V with J # 0, the conditions

X;=0,...,X,=0,J|R,V >0



[Pell(S,T) =p., (8> —1)T?+1]

Pel(A,C)FI=0, F|B+2jC—-C, BLC

D = Pell(4, C)
F=Pell(A,2(i+1)C* D) F = Pell(A, 2iC* D)
I=Pell((F-—A)F+A,B+2jC)|[I=Pell(A+1)F—A, B+2;C)

Fig. 6. Polynomial specifications of the relation 14 (B) = C (see Fig. . When con-
joined with the constraints in the middle, the two constraints appearing on the left
form an abridged formulation of the specification A1-A7 recalled above from [MR75]
pp. 532-533]: in this case, the unknowns 4,j etc. range over N and the parameters
A, B, C are assumed to satisfy A > 1, B > 0, C > 0. Likewise, the two constraints on
the right must be combined with the ones in the middle to get an abridged version of
the specification of [Vse97, pp. 3203-3204]: in this case, variables range over N\ {0}
and the assumed preconditions are A > 1, B > 1, and B =1 mod 2; a lower overall
degree results from (A + 1) F — A having superseded (F — A) F + A.

are all met if and only if the equation My (X1,...,X4 J,R,V,m) =0 admits
solutions for some value m in N of the variable m. b

This theorem is exploitable in the case at hand, with ¢ = 2, once the two
divisibility conditions (one of which is hidden inside the congruence 3w C =
2(w?—1) mod Q) are combined together by resorting to the double implication

dy | 21 Ndo | 29 < dids | z1do + zady
which holds when dy, ds, 21, 2o are positive integers and dy, ds are co-prime. All
in all, we will be able to fold our constraints into a single Diophantine polynomial
equation W(k, x1,...,27) = 0 over N whose degree is 5488 (as will be assessed
at the end of Sec. [3)) and which admits solutions in the 7 unknowns precisely for
those integer values of k£ which exceed 4 and which also satisfy Wolstenholme’s
congruence (2:) =2 mod k3.

In order to get rid of the precondition k£ > 5 (Fig. m right), it suffices to
strenghten the inequality K2 —4(C — KY)? > 0 into (k—1) (k—2) (k—3) (k—
4) (K? —4(C = K'Y)?) > 0 before resorting to Thm. 1} Accordingly, denoting
by W(k, z1,...,z7) the polynomial equation that results after this preparatory
retouch, our conjectured prime-generating polynomial is:

o (1= (0 — 2)* (x0 — 3)> W3(x0, 21, ..., 27)) -

3 Correctness of our representation of Wolstenholme’s
pseudoprimality

The specification of Wolstenholme’s pseudoprimality which we are proposing
stems from ad hoc modifications to [Jon82] Lemma 2.25, pp. 556-557]; hence,
by bringing into our present discourse the main ingredients entering the proof
thereof, we will easily get our main claim, which is:



Pell(S,T) =, (S —1) T +1]

PellA,C)FI=0OANF|B+2;C~-C
D = Pell(A, C)
I=Pel((A+1)F—A, B+2;C)
F =Pell(A,2iC*DQ)
K?—4(C-KY)*>0
Pell(P, K) =0
3wC =2 (w?—1) mod Q
M=EkY
Y=k s+2
P=2M*U
Q=4A-5
U=k w
K=k+1+h(P-1)
A= M U+1)
B=2k+1
B<C C=B+=z
Domain: N\ {0}

Domain: N\ {0} Unknowns:  z,w, s, h,i,j,m

Unknowns: 1,7, m
105 Parameters: &

Parameters: A, B,C
Precond: A>1,B>1,2tB,C>1

Precondition: k > 5

L 2k ,
Specifies:  Ypa(B) =C Specifies: ( . > =92 mod k
Sources: [MR75], [Vse07) Sources: [Jon82, Lemma 2.25],

L. Vallata’s laurea thesis

Fig. 7. Polynomial specification of Wolstenholme’s pseudoprimality.

Theorem 2. Let W(k, z,w, s, h,i,j,m) = 0 be the Diophantine polynomial equa-
tion resulting from the system in Fig. @, right, via Thm. [1 Then the integer
values k > 5 for which the congruence ( kk) =2 mod k® holds are precisely the
ones for which the equation W(k, z,w, s, h,i,j,m) = 0—where k has superseded
the variable k—can be solved relative to the unknowns z,w,s, h,,j,m. B

First, we need an economical—as for the number of variables involved—
representation of the triadic relation ¥4 (B) = C. We resort to a slight variant
of the one which [Vse97, Lemma 8] proposed for an even number B, because an
odd B better fits our present aims.



Lemma 1. Let A, B,C,Q be integers with A > 1, B> 1, C > 1, B odd, and
Q@ > 0. The relationship ¥4 (B) = C holds if and only if there exist i,j such that

D = Pell(A, O) (P4)
DFI—0  (P1) E=2iC*’DQ (P5)
FlH-C (P2) F = Pell(A, E) (P6)
B<C (P3) G=(A+1)F-A (P7)
H=DB+2jC (P8)
I = Pell(G, H) (P9)

Proof: Minor modifications to the proof of [Vse97, Lemma 8, pp. 3203-3204]
(see also Remark 2 therein) yield the claim of this lemma. In its turn, that proof
mimicked the proof of [MR75, Theorem 4, pp. 532-533]. O

Second, we need a Diophantine representation of exponentiation:

Lemma 2. The relationship SB =Y holds for integers S, B,Y with S > 0 if
and only if there exist integers A, C such that

1.S< A,

4.9a(B)=C,
2.Y3 < A,

5.(2-1)YC = S(Y2—1) mod (2A8—S2—1).
3.538 < A,

Proof: See [Jon79, Lemma 2.8, pp. 213-214], where this result is credited to
Julia Robinson. A key congruence in Jones’s proof just cited is

(02 —=1)0"a(n)=L(P"—1) mod (2al—¢*—1),

which follows easily from Fig.[5((0), in light of the fact that @ = x4 (n), y = ¥a(n)
solves the equation 22 = (a? — 1) y? + 1. Making use of the easy implication

a<2al—-0?-1if0<tl<a,
Jones gets another key ingredient for the proof:
If0<{<a,y®<a,and 2> < a then, taken together, the congruences

(2 —-1)yp=L(y>—1) mod (2al— (> —1),
(2—1)z¢p=0(22—-1) mod (2al—¢*—-1)

imply that y = z, for any number .
The desired conclusion follows without difficulty. a

In the light of Lemma [I] and Lemma [2| minimal clues about the proof of
Theorem 2 should suffice to the reader: we will limit ourselves to indicating the
modifications which the statement of the above-cited Lemma 2.25 of [Jon82]
should undergo, so that its proof can then be adapted to our case without any



substantial changes. Some variables of the cited lemma must be replaced by
ours according to the rewritings: B’ ~» B, ¢ ~» 2z, W ~» w, R~ k, and N ~ k
(notice that we are thus enforcing the equality R = N). Moreover, one should:
remove condition (B11) W = bw of the cited lemma,; replace its conditions (B9)
U = N?w and (B10) Y = N?s by ours, namely U = k*w and Y = k% s + 2;
add our condition Q =4 A — 5.

Degree of the polynomial through which we have represented
Wolstenholme’s pseudoprimality

To end, let us calculate the degree of the polynomial W(k, z,w, s, h, 4, j,m) dis-
cussed above. To more easily get the degrees of the polynomials involved in
the right-hand specification of Fig. [7] we add a few more abbreviations to it:
H=B+2jC,E=2iC?DQ, and G = (A+1) F — A; then we get the degree
map:

B/1, U/4,Y/4; C/1, M/5; H/2, A/9, P/14;

D/20,Q/9, K/15; E/32; F/82; G/91; I/186.

To complete the assessment of the degree of W, we need to make the poly-
nomial M, of Thm. |1|rather explicit: according to [MRT7H],

R~ J2(2V —1) (32 FWIEY (—1)0<J'>¢)Tjwjfl) ) ,
where
W=1+ Y1, X7,
In the case at hand,
W(k,z,w,s,h,i,j,m) =p., Ma( X1, Xo, J, R,V , m),

where X1 = DFI and X3 = Pell(P, K); hence =2 and W = 1+ (D FI)? +
((P2 —-1) K2+ 1)2. The polynomial V' which we using in a statement V' > 0 is
V = K?—-4(C—KY)2. The polynomials J, R of which we are stating that J | R,
result from combination of the two conditions F' | H —C and 3w C = 2 (w? — 1)
mod Q: hence J = FQ and R = (H —C) Q + (2 (w®* —1) —3wC) F. The
polynomials just introduced have degrees:

W/576, V/38, J/91, R/84
and, consequently, VW has the degree

deg My =4 deg (J?(2V —1) W?) =4-1372 = 5488 .



Conclusions and future work

After explaining what it means for a relation o(z1,...,z,) to be Diophantine in
a set S, Julia Robinson proved in [Rob69] that every recursively enumerable set
is Diophantine in any infinite set of primes. We do not know whether Jones’s
conjectured converse of Wolstenholme’s theorem will be proved, hence we cannot
refer Robinson’s result just recalled to the set W of all integers k& > 5 such that
(Qkk) =2 mod k3, and we feel that it would add to the autonomous significance
of our polynomial representation of W if we succeeded in showing that every
recursively enumerable set is Diophantine in W.

Albeit subject to Jones’s conjecture, the result presented in this paper sug-
gests a new estimate for the rank (= least possible number of unknowns in a
Diophantine representation) of the set of primes, shifting it down from 9 to 7.
Although this was to be expected (cf. [Mat93| p. 56]), we could not find this
result published anywhere.

We would also like to determine a non-trivial lower bound for the rank of
primality. Pietro Corvaja gave us clues that the lower bound 2 can be obtained
through direct application of Siegel’s theorem on integral points (see [Sie29]E[).

It is a bit deceiving that we could not benefit from the celebrated [AKS04]
for the aims of this paper; an explanation might be that the complexity of prime-
number recognition has to do with bounds that one can place on the sizes of
the unknowns in a Diophantine representation of primality rather than on the
number of those unknowns.
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