
A Context Model for Personal Knowledge
Management

Sven Schwarz

Sven.Schwarz@dfki.de

German Research Center for Artificial Intelligence (DFKI GmbH)
D-67608 Kaiserslautern, Germany

Abstract. In the research project EPOS1 we build a pro-active, context-
sensitive support system to aid the user with his knowledge work, which
is mostly about searching, reading, creating, and archiving of documents.
In order to avoid distracting the user, the context gathering is realized
by installable user observation plugins for standard applications such as
Mozilla Firefox and Thunderbird.
The main part of this paper is about the definition of a context model
for the personal knowledge management domain. The context model in-
corporates only contextual elements relevant to satisfy the knowledge
worker’s potential information need. It stores only information items
known to the user (such as links to his own documents, folders, etc.), as
well as, shared ontologies to assure an understanding of the context.
The context is modeled in RDF/S and can be retrieved by context-aware
applications from the context support system via an XML-RPC call.

1 Introduction

Although the same term is used by linguists, psychologists, and computer scien-
tists, “context” is understood in a variety of ways. To talk about context does
not make sense without talking about its application and the scenario it is used
in. We will therefore start with a short introduction of the research scenario.

The overall goal of the research project EPOS [4] (Evolving Personal to Or-
ganizational knowledge Spaces) is to build up organizational/group-wide struc-
tured knowledge from the information items and structures (already) present at
the members of the organization/group. In order to encourage each worker to
archive and structure his own knowledge, the worker himself should be the first
person to utilize his own structuring effort. This is the knowledge management
bait. Instead of doing it because of an obligation, the worker does it to enhance
his own support, to make his own work faster and better.

Now, what does it mean to support a worker with his own structures and
information items? There are two alternatives for potential support: First, a
sophisticated retrieval of structures (folders/categories) and information items

1 This work has been supported by a grant from The Federal Ministry of Education,
Science, Research, and Technology (FKZ ITW–01 IW C01).

39

(documents) will support the user when he searches for material. Second, ac-
cording to the worker’s current context, potentially relevant structures and in-
formation items can be presented in a pro-active way, i. e., without the worker
even asking for them.

Without going into discussions about good, humane assistance interfaces, the
second alternative demands for capturing the worker’s context as unobtrusive
as possible. EPOS relies on user observation to gather evidences for contextual
information.

The remaining of this paper is structured as follows: Section 2 describes our
scenario and the knowledge worker’s world. Section 3 defines an appropriate
context model for that scenario. Section 4 then explains how the context model
is being filled. Section 5 shows how the context can be retrieved and used. After
some related work in section 6, the paper concludes with section 7.

2 The EPOS Scenario

A knowledge worker searches for documents, reads, writes, archives, and struc-
tures (classifies) them. A lot of the work is already done with the standard
functionality of today’s PCs, that is, by using the functionality of standard appli-
cations (web browser, email client, text processor) and the operating system (file
system). Structuring/classification of documents is, for instance, typically done
using file folders. However, classification using file folders poses two problems:
First, a document can only be classified using one folder, and second, folder hier-
archies nearly never follow a consistent scheme. Therefore, EPOS initially starts
with folder hierarchies already present on the user’s PC. Beyond this, EPOS
allows to build up additional, more consistent container hierarchies, which can
then be used for a more consistent and multiple classification of documents.

A user will typically create several such container hierarchies, resembling
his individual and subjective views of the world. Consequently, these container
hierarchies are also called views. One view can be the topics view containing a
hierarchy of containers representing scientific topics. To be more precise, such a
view is a DAG (directed acyclic graph), so a topic can have more than just one
super topic. That way the user creates a simple topic ontology. Analogously, the
user can also build a projects view including containers for relevant projects. It
can also be useful to have a contacts view, and maybe an events view, too, and
so on. The point is, a document can be classified by putting it into all relevant
containers. Let’s take this paper as an example: It is about context and user
observation, and it has to do with project EPOS. Hence, we can put that paper
into the following three containers (see figure 1):

– Topics/KnowledgeManagement/Context

– Topics/MachineLearning/UserObservation

– Projects/EPOS

40

Fig. 1. Container hierarchies resemble the user’s individual views, for example,
relevant Projects and Topics.

2.1 The Personal Knowledge Space

EPOS makes use of and accesses the native structures present on the user’s
PC. These are the documents (files), folders, emails, and so on. We pointed out,
that EPOS also promotes building up multiple and more consistent container
hierarchies (views). Documents can be put into these containers as a form of
classification. It is important to note, that for the personal knowledge space
these view-containers do not simply contain some documents. Moreover, the
semantics of the container is defined by the contained documents (instance-based
semantics). That way, EPOS can help to classify both old and new documents.

Moreover, EPOS allows for relating several resources with each other. A
document can be linked to some other document via a dc:relation link for
example. Even more interesting is the usage of links with richer semantics: Using
dc:creator some web page can be linked to some person (address book contact),
declaring this person is the creator of that web page (see figure 2). To be more
precise, EPOS supports building up a personal semantic web on the user’s PC.
This approach has been described in [10, 11].

2.2 The Knowledge Worker’s World

Let’s sum up the facts about our scenario by defining the (closed) world of a
knowledge worker by giving a concrete list of the objects and tools he uses:

Document-like objects:

– Documents (HTML, plain text, wiki pages, PDF)
– Emails
– Notes (tiny text snippets created with EPOS Notes, a proprietary notes tool)

41

Fig. 2. EPOS allows for creating and browsing the personal semantic web.
Example: The resource Sven Schwarz is an organizational person with some
attributes and some links. Some attributed link (dc:creator) shows, he is the
creator of his homepage.

Objects useful for structuring/classification:

– File-Folders
– Topics (knowledge management, machine learning, etc.)
– Contacts, addresses (persons)
– Organizational entities (projects, organizations, etc.)
– Workflows and Tasks (from a workflow management system)

Note: All these structuring objects are potentially available both as individual
ones (stored on the user’s PC), as well as, organizational ones (hosted on some
group-wide server) [5].

Applications:

– Text processor
– Web browser
– Email client
– Address book (of the email client)
– EPOS Notes (proprietary, tiny notes tool, which is part of EPOS)
– File system, brainFiler2 (classification of documents)
– Organizational Repository (manages organizational entities, not handled in

detail in this paper)
– FRODO TaskMan (Workflow Management System [6, 1])

Now, that we have explained the scenario and defined the (abstract) world
of the knowledge worker, we can go over to explicitly model his context.
2 http://www.brainbot.de

42

Informational Aspect
- Touched Documents
- Relevant Domains

Operational Aspect
- Active Applications & Services

(recently used)

Organisational Aspect
- Current Role of the User
- Projects, Departments, etc.

Environmental Aspect
- Location (Room)
- Present Persons (Room)
- Used Hardware (PC vs. Laptop)Historical Aspect

- Previous Tasks

Attentional Aspect
- Text Scope (Cursor)

Behavioral Aspect
- Native Operations
- User Actions

Causal Aspect
- Task Concepts (Goals)
- Tasks / Workflows

Fig. 3. In EPOS, the user’s context comprises various aspects.

3 Modeling Context

When modeling the user’s context we have to take into account his working
(desktop) environment. In our scenario, a knowledge worker is mainly doing
document oriented work (searching, reading, creating, archiving, classifying), as
well as, organizational work (communicate with colleagues, executing workflow
tasks). Hence, the user’s context contains information about currently or recently
read documents, relevant topics, relevant persons, relevant projects, etc., that is,
exactly the objects listed in section 2.2. In EPOS, the user’s context comprises
a variety of aspects (see figure 3) each containing aspect-specific contextual ele-
ments. Examples in this paper focus on the informational and the organizational
aspect.

We used Protégé 3 to realize an explicit and formal context model in RDF/S4.
The classes, especially the Context class, and properties therein define the pa-
rameters for the user’s context. An actual user context is represented by an
instance of this context model, respectively, of the Context class. This instance,
simply called context object, is permanently kept up-to-date. Hence, the current
context of the user is then just a snapshot of the (one and only) context object
and its contents. For every contextual information available, the context object
contains so-called contextual elements wrapping the respective contextual infor-
mation. For example: There could be some contextual elements wrapping the
links to web pages the user recently browsed to while other contextual elements
wrap some of the user’s topics currently relevant.

Besides the core contextual information, these contextual elements also con-
tain information about their confidence. Observed contextual information will
have a confidence of 1.0 whereas estimated contextual elements, like automati-

3 http://protege.stanford.edu/
4 http://www.w3.org/TR/rdf-schema/

43

cally classified topics, will mostly have a lower confidence. Furthermore, contex-
tual elements contain information about their creation and the support they give
to or receive from other contextual elements. This allows for some explanation,
as well as, for some global probability calculation on all of the elements in the
user’s context.

More important than the structure of the contextual element is the contex-
tual information they convey. Before applications can use a context snapshot
they have to understand the contextual information. As our context model is
grounded in the user’s personal knowledge space (see section 2.1), contextual el-
ements represent real-life entities of the user’s world. For example: touched doc-
uments, visited/classifying folders, recently touched or related persons, projects,
and so on. This makes it easy for applications to understand and use the con-
textual information provided by our context service. Figure 5 shows a concrete
real-life snapshot of the user’s context. Only the informational and the organi-
zational aspect have been extracted, e. g., behavioral information (actions of the
user) has been elided to keep the RDF data as readable as possible.

It is important, that the context relies on the user’s own personal knowledge
space, i. e., his individual and subjective view of the world; therein for example
the previously described topic ontology. This holds especially for the similarity of
two user contexts. Their similarity is grounded on the similarity of the user’s own
view of the world. For example: For one user the topics workflow and business
process modeling are the same while for a different user both topics are only
similar. This means, the context model and contextual similarity adapt to the
user.

4 Gathering and Eliciting Context

Context can be gathered and modeled using user observation and/or user feed-
back. However, relying on user feedback is critical. The context-sensitive support
must be nearly perfect to keep even motivated users doing feedback all of the
time. But still, even with perfect support, the user will stop giving feedback as
soon as he is feeling stress and has no more time “to feed his context tamagotchi”.
Thus, unobtrusive and reliable gathering and modeling of context demands for
permanent user observation. Of course the user must be able to toggle the user
observation on and off whenever he likes.

Instead of integrating some low-level hooks into the operating system, EPOS
created plugins for a set of standard applications from the scenario. The advan-
tage is, that the plugins integrated in the applications can deliver more precise
information than raw mouse movements, clicks, or key strokes. The price we
pay is, that new applications can not be observed unless someone writes an
observation plugin for it.

Again our scenario tells us, which applications we need to observe to gather
the most interesting elements of the user context:

– File Explorer (handling documents and folders)
– Email Client (communication with colleagues)

44

– Web Browser (searching and browsing for documents/information)
– Text Processor (reading and writing documents)

User Observation for Mozilla Thunderbird (email client) and Mozilla Firefox
(web browser) is realized in form of Mozilla extensions. That way they can be
easily installed using an XPI-file. Besides, the user can configure and (de)activate
the observation from within the application. File explorer and text processor
plugins are still in development, but email communication and web browsing
already allows for gathering very interesting contextual information. Anyway,
all plugins send the observed user operations via simple XML-RPC calls to the
listening Context Service, where the context object is updated accordingly. For
example, when I opened an email in Mozilla Thunderbird, the following XML-
RPC / HTTP POST is sent to http://localhost:9998/RPC2:

<methodCall>

<methodName>epos_context_MozUserObsApi.eventViewEmail</methodName>

<params><param><value><struct>

<member><name>EmailURI</name>

<value><string>imap://schwarz@serv-4100/INBOX#18423</string></value>

</member><member><name>FolderURI</name>

<value><string>imap://schwarz@serv-4100/INBOX</string></value>

</member><member><name>Subject</name>

<value><string>Personal and [...] - New Issue Alert</string></value>

</member><member><name>Sender</name>

<value><string>"alerts@springerlink.de</string></value>

</member>

...

</struct></value></param></params>

</methodCall>

Note, that the parameters are enclosed by <![CDATA[...]]>, really. For sim-
plicity, these tags have been removed in the snippet above. After the XML-RPC
has been sent, a servlet in the Context Server catches this event and calls the
corresponding method:

public void eventViewEmail(Hashtable hashtable) {

String emailURI = (String)hashtable.get("EmailURI");

String subject = (String)hashtable.get("Subject");

...

ViewEmail nop = new ViewEmail(); // nop stands for "native operation"

nop.setURI(emailURI);

nop.setSubject(subject);

...

getContextServer.addNopToContext(nop);

}

We created an ontology of user operations using Protégé and RDF/S. The
Java class ViewEmail used in the code snippet above has been generated by
rdf2java [2] to wrap the corresponding RDF class in the Context Model’s RDF
Schema. All properties (outgoing edges) of some RDF object can be get and

45

File system
wrapper

Mozilla / IE
plugins

Open Office
wrapper

jEdit
plugin

.

Workspace Interface / Event Collector

Personal Information Model (Overlap) Native Structures (workspace)

Object
Type Ident.

Organizational
Entity Ident.

Domain
Ident.

. . .

Object Context Identification

User Action(s) Mapping / Ident.

Task Concept (Goal) Ident.

Work Item Identification

Context Identification

Fig. 4. The context elicitation is realized as a modular, pipelined architecture.

set by the Java wrapper. This allows very comfortable creation, handling, and
passing of RDF data.

Besides parameterizing, the user operations are modeled hierarchically (is-a
relations) to allow for fine, as well as, coarse handling of user operations. For
example: ViewEmail and SendEmail are EmailOperations; and AddBookmark
is both a BookmarkOperation and an ArchiveOperation. A context-aware ap-
plication can decide wether it is sufficient to know about the user doing some
EmailOperation or wether ViewEmail and SendEmail leads to different user
contexts and, thus, to different contextual support.

Adding the new native operation (nop) to the context means, first, creating a
ContextualElement for the nop, and, second, raising a ContextualElementAdded-
Event. This event will be catched by context elicitation modules. Taking the
received user operations as evidences, more higher-level contextual information
is estimated: Potentially relevant topics the user works on are inferred on the
basis of recently touched documents (see section 2). Additionally, a case-based
reasoning approach [12] estimates potential user goals and relevant workflow
tasks. Figure 4 shows the context elicitation modules working in a pipelined
architecture.

5 Retrieval and Usage of Context

In EPOS, context gathering and elicitation is realized as an autonomous, optional
service. That service is used in two ways: Context-Polling and Context-Listening.

Context-Polling: Requesting a snapshot of the user’s current context or a
specific part of it. This is often triggered by some user function. The context can
then be used, for instance, to to show him recent or relevant items at that specific

46

time. Another example: The user wants to save a downloaded document. The
current context can be used to propose a corresponding directory. Furthermore,
if the document is annotated with the context, the document can be retrieved
via a context-enabled query later. From inside the EPOS framework, the context
model can be retrieved simply by calling

Model model = ContextService.getContextApi().getSnapshot();

From outside the EPOS framework, or from non-Java code, the same can be
achieved by a simple XML-RPC call. Here is an example of how to request a
context snapshot from some Java application – the result will an output similar
to that in figure 5:

import org.apache.xmlrpc.XmlRpcClient;

...

XmlRpcClient c = new XmlRpcClient("localhost", 9998);

String method = "epos_context_ContextApi.getSnapshotAsRdfXml";

java.util.Vector params = new java.util.Vector();

Object result = c.execute(method, params);

System.out.println("context as RDF/XML:\n" + result);

Context-Listening: If some application/service registers at the Context Ser-
vice as a listener, it will be informed about some specific change (event) in the
user’s context. On one hand, this is heavily used by the context elicitation mod-
ules. They are triggered as soon as new contextual elements enter the context.
On the other hand, this is needed to realize pro-active support. If the user shifts
his actions towards some context for which relevant support is available, this
support can be presented to the user without him having to asking for it.

EPOS uses this method to trigger and supply a so-called EPOS Assistant
Bar, which presents currently relevant documents, topics, organizational entities
(persons, projects) and workflow tasks to the user. The context listening can also
be used to trigger some context-sensitive help system for instance. By now, the
context listening protocol is quite proprietary and can only be used by modules
inside the EPOS framework, but extending event listening to XML-RPC clients
is just a minor, technical issue.

6 Related Work

The Lumiere project [9] realized pro-active assistance for computer software
users. A bayesian user model was employed to infer a user’s information needs.
While Lumiere mainly focussed on enhancing the usage of some software, EPOS
pursues assisting the users’ work in general. That means, first, not only one
application is observed and enhanced with some (closed) assistance, and second,
not only the user’s information need is elicited, but his context.

Watson [3] observes user interaction with everyday applications and attempts
to automatically fulfil a user’s information need by querying common Internet
information sources automatically. Analogously to Watson, EPOS uses a Con-
tent Analyzer to automatically classify some viewed document and estimate

47

contextually relevant topics that way. Furthermore, EPOS also realizes a real
task-specific information delivery using the information stored in a workflow
management system. It knows about which documents are relevant for which
task. As the context also contains relevant workflow tasks, the corresponding
documents can be presented to the user [8].

Fenstermacher [7] envisions revealing and storing process-relevant informa-
tion by automatically classifying documents the user touches during his work.
For this purpose low-level observation hooks are installed directly into the oper-
ating system. EPOS relies on observed user actions with higher semantics, like
SendEmail, however, collaborating with Fenstermacher we may integrate these
low-level hooks to be able to observe applications without observation plugins
(see section 4).

Zacarias et al [13] introduce an operating systems metaphor, where the user’s
operating system acts as an engine managing the execution of pre-defined flows of
work. Besides that very interesting metaphor, the authors carry out a case study
where students observe and record the actual tasks, actions, and interactions of
persons at work. EPOS will keep up collaboration with Zacarias’ team to enhance
the context model according to their observations.

7 Conclusion

We have presented an explicit and formal model of a knowledge worker’s context.
The user’s context, being an instance of this context model, is fed by user obser-
vation plugins installed in standard applications like Mozilla Thunderbird and
Mozilla Firefox. The context relies on the user’s personal workspace, i.e., touched
or elicited resources in the context are mainly the user’s own files, folders, email
contacts, and so on. This means, that the contextual elements are known entities
and, hence, the context can be easily understood and used. It also means, that
the elicited context adapts to the specific user at a specific time. Even if the user
changes his working procedures and domain over time, the context will adapt
automatically, because according changes on the user’s PC will take place: new
folders and new documents emerge, re-classification of documents occurs, etc.

The set of supported applications and hence the set of observable user actions
is limited by the set of available user observation plugins. Implementing new
plugins for yet unsupported applications is merely a question of how to integrate
plugins into that application and how to recognize the the user’s actions therein.

An application can act context-aware by either explicitly requesting a context
snapshot or by registering itself as a listener to context changes. The context
service currently elicits projects, persons, and topics potentially relevant due to
text content created or viewed by the user. Ongoing research will cover the elici-
tation of higher-level contextual information such as the user’s goals or relevant
workflow tasks.

That research will be followed by an evaluation of the fitting and utility of
the elicited context. Furthermore, the evaluation will have to show whether and
how much the users really like and use the context-aware support.

48

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:context="http://km.dfki.de/context#"
xmlns:domain="http://km.dfki.de/domain#"
xmlns:org="http://km.dfki.de/org#"
xmlns:object="http://km.dfki.de/nasti/objects#">

<context:Context>
<context:informationalAspect>

<context:InformationalAspect>
<context:contains>

<object:EMail rdf:about="imap://schwarz@serv-4100/INBOX/;UID=17050">
<object:subject>paper on data integration framework, ISWC 2005</object:subject>
<object:recipients>Sven Schwarz <schwarz@dfki.uni-kl.de></object:recipients>
<object:sender>Leo Sauermann <leo@gnowsis.com></object:sender>
<object:content>Hi Sven! [...] I would like to write a paper about [...]

semantic web and desktop applications [...]
</object:content>
<object:lastAccess>2005-04-13T14:45:22</object:lastAccess>
<context:confidence>1.0</context:confidence>

</object:EMail>
</context:contains>
<context:contains>

<object:HtmlFile rdf:about="http://jena.sourceforge.net/">
<object:location>http://jena.sourceforge.net/</object:location>
<object:title>Jena Semantic Web Framework</object:title>
<object:fileType>text/html</object:fileType>
<object:lastAccess>2005-04-13T14:45:42</object:lastAccess>
<context:confidence>1.0</context:confidence>

</object:HtmlFile>
</context:contains>
<context:contains>

<domain:DomainConcept rdf:about="urn:brainfiler:dfkiklkm:schwarz:Category:136">
<domain:name>Gnowsis</domain:name>
<context:confidence>0.717095</context:confidence>
<context:supportedBy rdf:resource="http://jena.sourceforge.net/"/>
<context:supportedBy rdf:resource="imap://schwarz@serv-4100/INBOX/;UID=17050"/>

</domain:DomainConcept>
</context:contains>
<context:contains>

<domain:DomainConcept rdf:about="urn:brainfiler:dfkiklkm:schwarz:Category:105">
<domain:name>RDF[S]</domain:name>
<context:confidence>0.350096</context:confidence>
<context:supportedBy rdf:resource="http://jena.sourceforge.net/"/>

</domain:DomainConcept>
</context:contains>

</context:InformationalAspect>
</context:informationalAspect>
<context:organizationalAspect>

<context:OrganizationalAspect>
<context:contains>

<org:Person rdf:about="mailto:leo@gnowsis.com">
<org:eMail>leo@gnowsis.com</org:eMail>
<org:firstName>Leo</org:firstName>
<org:lastName>Sauermann</org:lastName>
<context:confidence>1.0</context:confidence>
<context:supportedBy rdf:resource="imap://schwarz@serv-4100/INBOX/;UID=17050"/>

</org:Person>
</context:contains>

</context:OrganizationalAspect>
</context:organizationalAspect>

</context:Context>
</rdf:RDF>

Fig. 5. Snapshot of the user’s context. Only the informational and the organizational
aspect have been extracted.

49

References

1. Homepage of FRODO TaskMan: http://www.dfki.de/frodo/taskman/.
2. Homepage of rdf2java: http://rdf2java.opendfki.de/.
3. Jay Budzik and Kristian J. Hammond. Watson: An infrastructure for providing

task-relevant, just-in-time information.
4. Andreas Dengel, Andreas Abecker, Jan-Thies Bähr, Ansgar Bernardi, Peter Dan-

nenmann, Ludger van Elst, Stefan Klink, Heiko Maus, Sven Schwarz, and Michael
Sintek. Evolving Personal to Organizational Knowledge Spaces. Project Proposal,
DFKI GmbH Kaiserslautern, 2002.

5. Ludger van Elst and Andreas Abecker. Integrating Task, Role, and User Modeling
in Organizational Memories. In 14 Int. FLAIRS Conference, Special Track on
Knowledge Management, Key West, Florida, USA, May 2001.

6. Ludger van Elst, Felix-Robinson Aschoff, Ansgar Bernardi, Heiko Maus, and Sven
Schwarz. Weakly-structured workflows for knowledge-intensive tasks: An experi-
mental evaluation. In IEEE WETICE Workshop on Knowledge Management for
Distributed Agile Processes: Models, Techniques, and Infrastructure (KMDAP03).
IEEE Computer Press, 2003.

7. Kurt D. Fenstermacher. Revealed Processes in Knowledge Management. In Klaus-
Dieter Althoff, Andreas Dengel, Ralph Bergmann, Markus Nick, and Thomas Roth-
Berghofer, editors, 3rd Conference on Professional Knowledge Management – WM
2005, pages 397–400. DFKI GmbH, 2005.

8. Harald Holz and Frank Maurer. Knowledge management support for distributed
agile software processes. In Advances in Learning Software Organizations, 4th
International Workshop, LSO 2002, Chicago, IL, USA, August 6, 2002, Revised
Papers., volume 2640. Springer, 2002.

9. E. Horvitz, J. Breese, D. Heckerman, D. Hovel, and K. Rommelse. The lumiere
project: Bayesian user modeling for inferring the goals and needs of software users.
In In Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intel-
ligence, pages 256–265, Madison, WI, July 1998.

10. Leo Sauermann. The gnowsis-using semantic web technologies to build a semantic
desktop. Diploma thesis, Technical University of Vienna, 2003.

11. Leo Sauermann and Sven Schwarz. Introducing the gnowsis semantic desktop. In
Proceedings of the International Semantic Web Conference 2004, 2004.

12. Sven Schwarz and Thomas Roth-Berghofer. Towards goal elicitation by user obser-
vation. In Proceedings of the FGWM 2003 Workshop on Knowledge and Experience
Management, Karlsruhe, 2003.

13. Marielba Zacarias, Artur Caetano, H. Sofia Pinto, and Jose Tribolet. Modeling
contexts for business process oriented knowledge support. In Proceedings of the
WM 2005 Workshop on Knowledge Management for Distributed Agile Processes
(KMDAP 2005), Kaiserslautern, 2005.

50

