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Abstract. The goal of this paper is to show a connection between FCA
generalisations and the Chu construction on the category ChuCors, the
category of formal contexts and Chu correspondences. All needed cat-
egorical properties like categorical product, tensor product and its bi-
functor properties are presented and proved. Finally, the second order
generalisation of FCA is represented by a category built up in terms of
the Chu construction.

Keywords: formal concept analysis, category theory, Chu construction

1 Introduction

The importance of category theory as a foundational tool was discovered soon
after its very introduction by Eilenberg and MacLane about seventy years ago.
On the other hand, Formal Concept Analysis (FCA) has largely shown both
its practical applications and its capability to be generalized to more abstract
frameworks, and this is why it has become a very active research topic in the
recent years; for instance, a framework for FCA has been recently introduced
in [19] in which the sets of objects and attributes are no longer unstructured
but have a hypergraph structure by means of certain ideas from mathematical
morphology. On the other hand, for an application of the FCA formalism to
other areas, in [11] the authors introduce a representation of algebraic domains
in terms of FCA.

The Chu construction [8] is a theoretical method that, from a symmetric
monoidal closed (autonomous) category and a dualizing object, generates a *-
autonomous category. This construction, or the closely related notion of Chu
space, has been applied to represent quantum physical systems and their sym-
metries [1, 2].

This paper continues with the study of the categorical foundations of formal
concept analysis. Some authors have noticed the property of being a cartesian
closed category of certain concept structures that can be approximated [10,20];
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others have provided a categorical construction of certain extensions of FCA [12];
morphisms have received a categorical treatment in [17] as a means for the
modelling of communication.

There already exist some approaches [9] which consider the Chu construction
in terms of FCA. In the current paper, we continue the previous study by the
authors on the categorical foundation of FCA [13,15,16]. Specifically, the goal of
this paper is to highlight the importance of the Chu construction in the research
area of categorical description of the theory of FCA and its generalisations. The
Chu construction plays here the role of some recipe for constructing a suitable
category that covers the second order generalisation of FCA.

The structure of this paper is the following: in Section 2 we recall the prelim-
inary notions required both from category theory and formal concept analysis.
Then, the various categorical properties of the input category which are required
(like the existence of categorical and tensor product) are developed in detail in
Sections 3 and 4. An application of the Chu construction is presented in Section 5
where it is also showed how to construct formal contexts of second order from
the category of classical formal contexts and Chu correspondences (ChuCors).

2 Preliminaries

In order to make the manuscript self-contained, the fundamental notions and its
required properties are recalled in this section.

Definition 1. A formal context is any triple C = 〈B,A,R〉 where B and A are
finite sets and R ⊆ B × A is a binary relation. It is customary to say that B is
a set of objects, A is a set of attributes and R represents a relation between
objects and attributes.

On a given formal context (B,A,R), the derivation (or concept-forming)
operators are a pair of mappings ↑ : 2B → 2A and ↓ : 2A → 2B such that if
X ⊆ B, then ↑X is the set of all attributes which are related to every object in
X and, similarly, if Y ⊆ A, then ↓Y is the set of all objects which are related to
every attribute in Y .

In order to simplify the description of subsequent computations, it is conve-
nient to describe the concept forming operators in terms of characteristic func-
tions, namely, considering the subsets as functions on the set of Boolean values.
Specifically, given X ⊆ B and Y ⊆ A, we can consider mappings ↑X : A→ {0, 1}
and ↓Y : B → {0, 1}

1. ↑X(a) =
∧

b∈B

(
(b ∈ X)⇒ ((b, a) ∈ R)

)
for any a ∈ A

2. ↓Y (b) =
∧

a∈A

(
(a ∈ Y )⇒ ((b, a) ∈ R)

)
for any b ∈ B

where the infimum is considered in the set of Boolean values and⇒ is the truth-
function of the implication of classical logic.
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Definition 2. A formal concept is a pair of sets 〈X,Y 〉 ∈ 2B × 2A which is a
fixpoint of the pair of concept-forming operators, namely, ↑X = Y and ↓Y = X.
The object part X is called the extent and the attribute part Y is called the intent.

There are two main constructions relating two formal contexts: the bonds
and the Chu correspondences. Their formal definitions are recalled below:

Definition 3. Consider C1 = 〈B1, A1, R1〉 and C2 = 〈B2, A2, R2〉 two formal
contexts. A bond between C1 and C2 is any relation β ∈ 2B1×A2 such that its
columns are extents of C1 and its rows are intents of C2. All bonds between such
contexts will be denoted by Bonds(C1, C2).

The Chu correspondence between contexts can be seen as an alternative
inter-contextual structure which, instead, links intents of C1 and extents of C2.
Namely,

Definition 4. Consider C1 = 〈B1, A1, R1〉 and C2 = 〈B2, A2, R2〉 two formal
contexts. A Chu correspondence between C1 and C2 is any pair of multimappings
ϕ = 〈ϕL, ϕR〉 such that

– ϕL : B1 → Ext(C2)
– ϕR : A2 → Int(C1)
– ↑2(ϕL(b1))(a2) = ↓1(ϕR(a2))(b1) for any (b1, a2) ∈ B1 ×A2

All Chu correspondences between such contexts will be denoted by Chu(C1, C2).

The notions of bond and Chu correspondence are interchangeable; specifi-
cally, we will use the bond βϕ associated to a Chu correspondence ϕ from C1
to C2 defined for b1 ∈ B1, a2 ∈ A2 as follows:

βϕ(b1, a2) = ↑2 (ϕL(b1))(a2) = ↓1 (ϕR(a2))(b1)

The set of all bonds (resp. Chu correspondences) between any two formal
contexts endowed with set inclusion as ordering have a complete lattice structure.
Moreover, both complete lattices are dually isomorphic.

In order to formally define the composition of two Chu correspondences, we
need to introduce the extension principle below:

Definition 5. Given a mapping ϕ : X → 2Y we define its extended mapping
ϕ+ : 2X → 2Y defined by ϕ+(M) =

⋃
x∈M ϕ(x), for all M ∈ 2X .

The set of formal contexts together with Chu correspondences as morphisms
forms a category denoted by ChuCors. Specifically:

– objects formal contexts
– arrows Chu correspondences
– identity arrow ι : C → C of context C = 〈B,A,R〉
• ιL(o) = ↓↑({b}), for all b ∈ B
• ιR(a) = ↑↓({a}), for all a ∈ A
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– composition ϕ2 ◦ ϕ1 : C1 → C3 of arrows ϕ1 : C1 → C2, ϕ2 : C2 → C3 (where
Ci = 〈Bi, Ai, Ri〉, i ∈ {1, 2, 3})
• (ϕ2 ◦ ϕ1)L : B1 → 2B3 and (ϕ2 ◦ ϕ1)R : A3 → 2A1

• (ϕ2 ◦ ϕ1)L(b1) = ↓3↑3 (ϕ2L+(ϕ1L(b1)))
• (ϕ2 ◦ ϕ1)R(a3) = ↑1↓1 (ϕ1R+(ϕ2R(a3)))

The category ChuCors is *-autonomous and equivalent to the category of
complete lattices and isotone Galois connection, more results on this category
and its L-fuzzy extensions can be found in [13,15,16,18].

3 Categorical product on ChuCors

In this section, the category ChuCors is proved to contain all finite categorical
products, that is, it is a Cartesian category. To begin with, it is convenient to
recall the notion of categorical product.

Definition 6. Let C1 and C2 be two objects in a category. By a product of C1
and C2 we mean an object P with arrows πi : P → Ci for i ∈ {1, 2} satisfying
the following condition: For any object D and arrows δi : D → Ci for i ∈ {1, 2},
there exists a unique arrow γ : D → P such that γ ◦ πi = δi for all i ∈ {1, 2}.

The construction will use the notion of disjoint union of two sets S1 ] S2

which can be formally described as ({1} × S1)∪ ({2} × S2) and, therefore, their
elements will be denoted as ordered pairs (i, s) where i ∈ {1, 2} and s ∈ Si. Now,
we can proceed with the construction:

Definition 7. Consider C1 = 〈B1, A1, R1〉 and C2 = 〈B2, A2, R2〉 two formal
contexts. The product of such contexts is a new formal context

C1 × C2 = 〈B1 ]B2, A1 ]A2, R1×2〉

where the relation R1×2 is given by

((i, b), (j, a)) ∈ R1×2 if and only if
(
(i = j)⇒ (b, a) ∈ Ri

)

for any (b, a) ∈ Bi ×Aj and (i, j) ∈ {1, 2} × {1, 2}.

Lemma 1. The above defined contextual product fulfills the property of the cat-
egorical product on the category ChuCors.

Proof. We define the projection arrows 〈πiL, πiR〉 ∈ Chu(C1×C2, Ci) for i ∈ {1, 2}
as follows

– πiL : B1 ]B2 → Ext(Ci) ⊆ 2Bi

– πiR : Ai → Int(C1 × C2) ⊆ 2A1∪A2

– such that for any (k, x) ∈ B1 ]B2 and ai ∈ Ai the following equality holds

↑i (πiL(k, x))(ai) = ↓1×2 (πiR(ai))(k, x)
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The definition of the projections is given below

πiL(k, x)(bi) =

{
↓i↑i (χx)(bi) for k = i

↓i↑i
(
0
)

(bi) for k 6= i
for any (k, x) ∈ B1 ]B2 and bi ∈ Bi

πiR(ai)(k, y) =

{
↑i↓i (χai)(y) for k = i

↑k↓k
(
0
)

(y) for k 6= i
for any (k, y) ∈ A1]A2 and ai ∈ Ai.

The proof that the definitions above actually provide a Chu correspondence
is just a long, although straightforward, computation and it is omitted.

Now, one has to show that to any formal context D = 〈E,F,G〉, where
G ⊆ E × F and any pair of arrows (δ1, δ2) with δi : D → Ci for all i ∈ {1, 2},
there exists a unique morphism γ : D → C1×C2 such that the following diagram
commutes:

C1 <
π1 C1 × C2

π2
> C2

D

γ
∧......... δ2

>

δ1

<

We give just the definition of γ as a pair of mappings γL : E → 2B1]B2 and
γR : A1 ]A2 → 2F

– γL(e)(k, x) = δkL(e)(x) for any e ∈ E and (k, x) ∈ B1 ]B2.
– γR(k, y)(f) = δkR(y)(f) for any f ∈ F and (k, y) ∈ A1 ]A2.

Checking the condition of categorical product is again straightforward but
long and tedious and, hence, it is omitted. ut

We have just proved that binary products exist, but a cartesian category
requires the existence of all finite products. If we recall the well-known categorical
theorem which states that if a category has a terminal object and binary product,
then it has all finite products, we have just to prove the existence of a terminal
object (namely, the nullary product) in order to prove ChuCors to be cartesian.

Any formal context of the form 〈B,A,B × A〉 where the incidence relation
is the full cartesian product of the sets of objects and attributes is (isomorphic
to) the terminal object of ChuCors. Such formal context has just one formal
concept 〈B,A〉; hence, from any other formal context there is just one Chu
correspondence to 〈B,A,B ×A〉.

4 Tensor product and its bifunctor property

Apart from the categorical product, another product-like construction can be
given in the category ChuCors, for which the notion of transposed context C∗ is
needed.

Given a formal context C = 〈B,A,R〉, its transposed context is C∗ = 〈A,B,Rt〉,
where Rt(a, b) holds iff R(b, a) holds. Now, if ϕ ∈ Chu(C1, C2), one can consider
ϕ∗ ∈ Chu(C∗2 , C

∗
1 ) defined by ϕ∗L = ϕR and ϕ∗R = ϕL.
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Definition 8. The tensor product of formal contexts Ci = 〈Bi, Ai, Ri〉 for i ∈
{1, 2} is defined as the formal context C1�C2 = 〈B1×B2,Chu(C1, C∗2 ), R�〉 where

R�((b1, b2), ϕ) = ↓2 (ϕL(b1))(b2).

Mori studied in [18] the properties of the tensor product above, and proved
that ChuCors with � is a symmetric and monoidal category. Those results were
later extended to the L-fuzzy case in [13]. In both papers, the structure of the
formal concepts of a product context was established as an ordered pair formed
by a bond and a set of Chu correspondences.

Lemma 2. Let Ci = 〈Bi, Ai, Ri〉 for i ∈ {1, 2} be two formal contexts, and let
〈β,X〉 ∈ Bonds(C1, C∗2 ) × 2Chu(C1,C∗2 ) be an arbitrary formal concept of C1 � C2.
Then β =

∧
ψ∈X βψ and X = {ψ ∈ Chu(C1, C∗2 ) | β ≤ βψ}.

Proof. Let X be an arbitrary subset of Chu(C1, C∗2 ). Then, for all (b1, b2) ∈
B1 ×B2, we have

↓C1�C2 (X)(b1, b2) =
∧

ψ∈Chu(C1,C∗2 )

(
(ψ ∈ X)⇒ ↓2 (ψL(b1))(b2)

)

=
∧

ψ∈X
↓2 (ψL(b1))(b2) =

∧

ψ∈X
βψ(b1, b2)

Let β be an arbitrary subset of B1 ×B2. Then, for all ψ ∈ Chu(C1, C∗2 )

↑C1�C2 (β)(ψ) =
∧

(b1,b2)∈B1×B2

(
β(b1, b2)⇒ ↓2 (ψL(b1))(b2)

)

=
∧

(b1,b2)∈B1×B2

(
β(b1, b2)⇒ βψ(b1, b2)

)

Hence ↑C1�C2 (β) = {ψ ∈ Chu(C1, C∗2 ) | β ≤ βψ} ut

We now introduce the notion of product of one context with a Chu corre-
spondence.

Definition 9. Let Ci = 〈Bi, Ai, Ri〉 for i ∈ {0, 1, 2} be formal contexts, and
consider ϕ ∈ Chu(C1, C2). Then, the pair of mappings

(C0 � ϕ)L : B0 ×B1 → 2B0×B2 (C0 � ϕ)R : Chu(C0, C2)→ 2Chu(C0,C1)

is defined as follows:

– (C0 � ϕ)L(b, b1)(o, b2) = ↓C0�C2↑C0�C2 (γb,b1ϕ )(o, b2) where

γb,b1ϕ (o, b2) =
(
(b = o)∧ϕL(b1)(b2)

)
for any b, o ∈ B0, bi ∈ Bi with i ∈ {1, 2}

– (C0 � ϕ)R(ψ2)(ψ1) =
(
ψ1 ≤ (ψ2 ◦ ϕ∗)

)
for any ψi ∈ Chu(C0, Ci)

As one could expect, the result is a Chu correspondence between the products
of the contexts. Specifically:
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Lemma 3. Let Ci = 〈Bi, Ai, Ri〉 be formal contexts for i ∈ {0, 1, 2}, and con-
sider ϕ ∈ Chu(C1, C2). Then C0 � ϕ ∈ Chu(C0 � C1, C0 � C2).

Proof. (C0 � ϕ)L(b, b1) ∈ Ext(C0 � C2) for any (b, b1) ∈ B0 ×B1 follows directly
from its definition. (C0 � ϕ)R(ψ) ∈ Int(C0 � C1) for any ψ ∈ Chu(C0, C1) follows
from Lemma 2.

Consider an arbitrary b ∈ B0, b1 ∈ B1 and ψ2 ∈ Chu(C0, C∗2 )

↑C0�C2
(
(C0 � ϕ)L(b, b1)

)
(ψ2)

= ↑C0�C2↓C0�C2↑C0�C2 (γb,b1ϕ )(ψ2)

= ↑C0�C2 (γb,b1ϕ )(ψ2)

=
∧

(o,b2)∈B0×B2

(
γb,b1ϕ (o, b2)⇒ ↓(ψ2R(b2))(o)

)

=
∧

(o,b2)∈B0×B2

((
(o = b) ∧ ϕL(b1)(b2)

)
⇒ ↓(ψ2R(b2))(o)

)

=
∧

o∈B0

∧

b2∈B2

(
(o = b)⇒

(
ϕL(b1)(b2)⇒ ↓(ψ2R(b2))(o)

))

=
∧

o∈B0

(
(o = b)⇒

∧

b2∈B2

(ϕL(b1)(b2)⇒ ↓(ψ2R(b2))(o))
)

=
∧

b2∈B2

(
ϕL(b1)(b2)⇒ ↓(ψ2R(b2))(b)

)

=
∧

b2∈B2

(
ϕL(b1)(b2)⇒

∧

a∈A
(ψ2R(b2)(a)⇒ R(b, a))

)

=
∧

a∈A

( ∨

b2∈B2

(ϕL(b1)(b2) ∧ ψ2R(b2)(a))⇒ R(b, a)
)

=
∧

a∈A

((
ψ2R+(ϕL(b1))(a)

)
⇒ R(b, a)

)

= ↓(ψ2R+(ϕL(b1))(b) = ↓↑↓(ψ2R+(ϕL(b1))(b) = ↓((ϕ ◦ ψ2)R(b1))(b)

Note the use above of the extended mapping as given in Definition 5 in relation
to the composition of Chu correspondences.

On the other hand, we have

↓C0�C1((C0 � ϕ)R(ψ2))(b, b1)

=
∧

ψ1∈Chu(C0,C1)
((C0 � ϕ)R(ψ2)(ψ1)⇒ ↓(ψ1R(b1))(b))

=
∧

ψ1∈Chu(C0,C1)
((ψ1 ≥ ϕ ◦ ψ2)⇒ ↓(ψ1R(b1))(b))
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=
∧

ψ1∈Chu(C0,C1)
ψ1≥ϕ◦ψ2

↓ (ψ1R(b1))(b) = ↓((ϕ ◦ ψ2)R(b1))(b)

Hence ↑C0�C2 ((C0 � ϕ)L(b, b1))(ψ2) = ↓C0�C1 ((C0 � ϕ)R(ψ2))(b, b1). So if
ϕ ∈ Chu(C1, C2) then C0 � ϕ ∈ Chu(C0 � C1, C0 � C2). ut

Given a fixed formal context C, the tensor product C � (−) forms a mapping
between objects of ChuCors assigning to any formal context D the formal context
C�D. Moreover to any arrow ϕ ∈ Chu(C1, C2) it assigns an arrow C�ϕ ∈ Chu(C�
C1, C � C2). We will show that this mapping preserves the unit arrows and the
composition of Chu correspondences. Hence the mapping forms an endofunctor
on ChuCors, that is, a covariant functor from the category ChuCors to itself.

To begin with, let us recall the definition of functor between two categories:

Definition 10 (See [6]). A covariant functor F : C→ D between categories C
and D is a mapping of objects to objects and arrows to arrows, in such a way
that:

– For any morphism f : A→ B, one has F (f) : F (A)→ F (B)
– F (g ◦ f) = F (g) ◦ F (f)
– F (1A) = 1F (A).

Lemma 4. Let C = 〈B,A,R〉 be a formal context. C � (−) is an endofunctor
on ChuCors.

Proof. Consider the unit morphism ιC1 of a formal context C1 = 〈B1, A1, R1〉,
and let us show that (C � ιC1) = ιC�C1 . In other words, C � (−) respects unit
arrows in ChuCors.

↑C�C1
(
(C � ιC1)(b, b1)

)
(ψ)

=
∧

(o,o1)∈B×B1

((
(o = b) ∧ ιC1L(b1)(o1)

)
⇒ ↓1 (ψL(o))(o1)

)

=
∧

o1∈B1

(
↓1↑1 (χb1)(o1)⇒ ↓1 (ψL(b))(o1)

)

=
∧

o1∈B1

(
↓1↑1 (χb1)(o1)⇒

∧

a1∈A1

(
ψL(b)(a1)⇒ R(o1, a1)

))

=
∧

o1∈B1

∧

a1∈A1

(
↓1↑1 (χb1)(o1)⇒

(
ψL(b)(a1)⇒ R(o1, a1)

))

=
∧

o1∈B1

∧

a1∈A1

(
ψL(b)(a1)⇒

(
↓1↑1 (χb1)(o1)⇒ R(o1, a1)

))

=
∧

a1∈A1

(
ψL(b)(a1)⇒

∧

o1∈B1

(
↓1↑1 (χb1)(o1)⇒ R(o1, a1)

))

=
∧

a1∈A1

(
ψL(b)(a1)⇒ ↑1↓1↑1 (χb1)(a1)

)
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=
∧

a1∈A1

(
ψL(b)(a1)⇒ R1(b1, a1)

)
= ↓1 (ψL(b))(b1)

and, on the other hand, we have

↑C�C1(ιC�C1(b, b1))(ψ)

= ↑C�C1 (χ(b,b1))(ψ)

=
∧

(o,o1)∈B×B1

(
χ(b,b1)(o, o1)⇒ ↓1 (ψL(o))(o1)

)

= ↓1 (ψL(b))(b1)

As a result, we have obtained ↑C�C1 ((C�ιC1)(b, b1))(ψ) =↑C�C1 (ιC�C1(b, b1))(ψ)
for any (b, b1) ∈ B ×B1 and any ψ ∈ Chu(C, C1); hence, ιC�C1 = (C � ιC1).

We will show now that C � (−) preserves the composition of arrows. Specif-
ically, this means that for any two arrows ϕi ∈ Chu(Ci, Ci+1) for i ∈ {1, 2} it
holds that C � (ϕ1 ◦ ϕ2) = (C � ϕ1) ◦ (C � ϕ2).

↑C�C3
((
C � (ϕ1 ◦ ϕ2)

)
L

(b, b1)
)
(ψ3)

=
∧

(o,b3)∈B×B3

((
(o = b) ∧ (ϕ1 ◦ ϕ2)L(b1)(b3)

)
⇒ ↓(ψ3R(b3))(o)

)

=
∧

b3∈B3

(
(ϕ1 ◦ ϕ2)L(b1)(b3)⇒ ↓(ψ3R(b3))(b)

)

(by similar operations to those in the first part of the proof)

= ↓
((

(ϕ1 ◦ ϕ2

)
◦ ψ3)L(b1)

)
(b)

On the other hand, and writing F for C � − in order to simplify the resulting
expressions, we have

↑FC3((Fϕ1 ◦ Fϕ2)L(b, b1))(ψ3)

= ↑FC3↓FC3↑FC3
(
(Fϕ2)L+

(
(Fϕ1)L(b, b1)

))
(ψ3)

=
∧

(o,b3)∈B×B3

(

∨

(j,b2)∈B×B2

(
(Fϕ1)L(b, b1)(j, b2) ∧ (Fϕ2)L(j, b2)(o, b3)

)
⇒ ↓(ψ3R(b3))(o)

)

=
∧

b3∈B3

∧

b2∈B2

((
ϕ1L(b1)(b2) ∧ ϕ2L(b2)(b3)

)
⇒ ↓(ψ3R(b3))(b)

)

=
∧

b3∈B3

( ∨

b2∈B2

(
ϕ1L(b1)(b2) ∧ ϕ2L(b2)(b3)

)
⇒ ↓(ψ3R(b3))(b)

)

=
∧

b3∈B3

(
ϕ2L+(ϕ1L(b1))(b3)⇒ ↓(ψ3R(b3))(b)

)
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=
∧

b3∈B3

(
(ϕ1 ◦ ϕ2)L(b1)(b3)⇒ ↓(ψ3R(b3))(b)

)

From the previous equalities we see that C � (ϕ1 ◦ ϕ2) = (C � ϕ1) ◦ (C � ϕ2).
Hence, composition is preserved.

As a result, the mapping C� (−) forms a functor from ChuCors to itself. ut
All the previous computations can be applied to the first argument without

any problems, hence we can directly state the following proposition.

Proposition 1. The tensor product forms a bifunctor − � − from ChuCors ×
ChuCors to ChuCors.

5 The Chu construction on ChuCors and second order
formal concept analysis

A second order formal context [14] focuses on the external formal contexts and
it serves a bridge between the L-fuzzy [3, 7] and heterogeneous [4] frameworks.

Definition 11. Consider two non-empty index sets I and J and an L-fuzzy
formal context 〈⋃i∈I Bi,

⋃
j∈J Aj , r〉, whereby

– Bi1 ∩Bi2 = ∅ for any i1, i2 ∈ I,
– Aj1 ∩Aj2 = ∅ for any j1, j2 ∈ J ,
– r :

⋃
i∈I Bi ×

⋃
j∈J Aj −→ L.

Moreover, consider two non-empty sets of L-fuzzy formal contexts (external for-
mal contexts) notated by

– {〈Bi, Ti, pi〉 : i ∈ I}, whereby Ci = 〈Bi, Ti, pi〉,
– {〈Oj , Aj , qj〉 : j ∈ J}, whereby Dj = 〈Oj , Aj , qj〉.

A second order formal context is a tuple
〈⋃

i∈I
Bi, {Ci; i ∈ I},

⋃

j∈J
Aj , {Dj ; j ∈ J},

⋃

(i,j)∈I×J
ri,j

〉
,

whereby ri,j : Bi ×Aj −→ L is defined as ri,j(o, a) = r(o, a) for any o ∈ Bi and
a ∈ Aj.

The Chu construction [8] is a theoretical process that, from a symmetric
monoidal closed (autonomous) category and a dualizing object, generates a *-
autonomous category. The basic theory of *-autonomous categories and their
properties are given in [5, 6].

In the following, the construction will be applied on ChuCors and the dual-
izing object ⊥ = 〈{�}, {�}, 6=〉 as inputs. In this section it is shown how second
order FCA [14] is connected to the output of such construction.

The category generated by the Chu construction and ChuCors and ⊥ will be
denoted by CHU(ChuCors,⊥):
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– Its objects are triplets of the form 〈C,D, ρ〉 where
• C and D are objects of the input category ChuCors (i.e. formal contexts)
• ρ is an arrow in Chu(C �D,⊥)

– Its morphisms are pairs of the form 〈ϕ,ψ〉 : 〈C1, C2, ρ1〉 → 〈D1,D2, ρ2〉 where
Ci and Di are formal contexts for i ∈ {1, 2} and
• ϕ and ψ are elements from Chu(C1,D1) and Chu(D2, C2), respectively,

such that the following diagram commutes

C1 �D2
C1 � ψ

> C1 � C2

D1 �D2

ϕ�D2∨
ρ2

> ⊥

ρ1∨

or, equivalently, the following equality holds

(C1 � ψ) ◦ ρ1 = (ϕ�D2) ◦ ρ2

There are some interesting facts in the previous construction with respect to
the second order FCA [14]:

1. To begin with, every object 〈C1, C2, ρ〉 in CHU(ChuCorsL,⊥), and recall that
ρ ∈ Chu(C1 � C2,⊥), can be represented as a second order formal context
(from Definition 11). Simply take into account that, from basic properties of
the tensor product, we can obtain Chu(C1 � C2,⊥) ∼= Chu(C1, C∗2 ).
Specifically, as ChuCors is a closed monoidal category, we have that for every
three formal contexts C1, C2, C3 the following isomorphism holds

ChuCors(C1 � C2, C3) ∼= ChuCors(C1, C2( C3),

whereby C2( C3 denotes the value at C3 of the right adjoint and recall that
C2( ⊥ ∼= C∗2 because ChuCors is *-autonomous. The other necessary details
about closed monoidal categories and the corresponding notations one can
find in [6].

2. Similarly, any second order formal context (from Definition 11) is repre-
sentable by an object of CHU(ChuCorsL,⊥).

6 Conclusions and future work

After introducing the basic definitions needed from category theory and formal
concept analysis, in this paper we have studied two different product construc-
tions in the category ChuCors, namely the categorical product and the tensor
product. The existence of products allows to represent tables and, hence, bi-
nary relations; the tensor product is proved to fulfill the required properties
of a bifunctor, which enables us to consider the Chu construction on the cat-
egory ChuCors. As a first application, we have sketched the representation of
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second order formal concept analysis [14] in terms of the Chu construction on
the category ChuCors.

The use of different subcategories of ChuCors as input to the Chu construc-
tion seems to be an interesting way of obtaining different existing generalizations
of FCA. For future work, we are planning to provide representations based on the
Chu construction for one-sided FCA, heterogeneous FCA, multi-adjoint FCA,
etcetera.
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