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Abstract: 
 
We present an algorithm for estimating the blood flow in angiographic image data. In corresponding projective digital 
subtraction X-ray angiography (2D-DSA) data sets we analyze the correlation between Concentration Time Curves 
(CTC) of pixels along the vessel centerline. The appropriate spatial information is recovered by applying a 2D-3D reg-
istration re-projecting the centerline pixels to the reconstructed 3D X-ray rotation angiography (3D-RA) data of the 
same object. Ambiguities caused by occluding vessels are resolved by a graph-based approach. Finally, we end up in a 
framework for the estimation of a real spatial blood flow. This measure is used as boundary condition for blood flow 
CFD simulations. The algorithm has been tested on phantom data. First plausibility tests of this re-projection method 
on patient data indicate its ability to also properly function on these data. 
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1 Problem 

For an accurate patient-specific blood flow simulation, the cerebral vascular system has to be modeled in its complex 
structure. This includes the topology of the vessels around the aneurysm as well as the blood flow velocity and propa-
gation. Most of these parameters are highly patient-specific, therefore, we wish to acquire the necessary information 
from image data of the patient. The 3D morphology of the vessel can be extracted from the CT-like reconstruction of 
the X-ray rotation angiography (3D-RA) scan, while boundary conditions for blood flow are measured in projective 
digital subtraction X-ray angiography (2D-DSA). Both image modalities are acquired routinely prior to treatment using 
one device, i.e. the interventional rotational angiography system. 
The measured velocity profiles of the vessel feeding the aneurysm can be used as an inlet boundary condition for CFD 
computation. Exact boundary conditions are crucial for a high quality numerical simulation. 
As digital subtraction X-ray angiography images are projection images, blood flow can only be measured in pixel units 
per time [px/s]. Hence, velocity information from 2D-DSA has to be fused with morphology from reconstructed 3D X-
ray rotation angiography for providing true distance information necessary for accurate CFD simulation. This can be 
performed by means of 2D-3D registration methods. With this knowledge, we are able to derive the spatial blood flow 
from the 2D-DSA images by incorporating the morphology of the vessels from 3D-RA. The blood flow propagation in 
terms of real spatial units [mm] is now available as a boundary condition for CFD simulation. 
A review of recovering blood flow velocity from series of projective images can be found in [1]. However, only few 
methods exist in the field of recovering true blood flow from projective images. A method similar to our approach was 
published by Schmitt [2]. The method relies also on re-projection of 2D images. However, the basis of the ambiguity 
solving approach is a symbolic vessel tree. That incorporates additional effort and an additional source of error. The ac-
curacy is unclear as quantitative results are not provided. Methods of 2D-3D registrations have been presented by Liu 
[3] and Rohlfing [4]. These approaches comprise just the registration of the projection image with a projection com-
puted from the volume data set while the recovery of depth is not included. Generally, 3D information is transformed to 
2D information. We need a reciprocal approach as we focus on recovering spatial information from projective pixels. 
 
 
 
 
 
                                  Fig. 1. Overview of the workflow 
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2 Methods 

      2.1 Measuring projective blood flow 

We aim to determine the mean 2D pixel blood flow velocity from time-dependent 2D-DSA images. These images can 
be acquired from arbitrary plane positions by means of modern rotational angiography devices with a sufficiently frame 
rate of at least 30 frames per second (fps). Blood flow is measured by detection of contrast agent (CA) and its propaga-
tion through time. Since injection of the CA strongly disturbs the blood flow propagation, the estimation of the true 
blood flow velocity by bolus tracking requires a linear correction factor [1]  
A 2D-MAX image is produced by computing a maximum intensity projection along the time axis to ensure that vessel 
pixels are clearly distinguishable from background pixels. A ROI is chosen manually, which contains the feeding vessel 
to an aneurysm. The flow in the vessel is characterized by measuring the blood flow along its centerline. The centerline 
is extracted by threshold segmentation of the 2D-MAX image followed by a thinning step that produces a centerline 
with a width of 1 pixel and 8-cell neighborhood. The centerline extraction is semi-automatic and requires little user-
interaction. Distance information along a centerline is generated by tracking a path from the starting point to the end-
point. 
Once the vessel and its centerline are segmented, projected blood flow velocity can be estimated. There are two major 
approaches to compute blood flow propagation from angiographic images [1]. Concentration Time curves (CTC) track 
the bolus propagation by observing the change of pixel intensity while Concentration Distance Curves (CDC) track the 
front propagation of the bolus. We have chosen the first approach, because we are interested in a mean velocity along 
the vessel centerline. Due to pulsative behavior of the blood flow, this can be measured integrally more precisely by 
CTC. Furthermore, CTC take all time frames at all locations into account, while CDC relies on time frames where the 
bolus propagation is visible. 
Since blood flow is assumed to have constant velocity, it can be derived from observing the displacement of the intensi-
ty profile of contrast agent along the vessel centerline. Propagation of flow at a position pi with respect to a position p0 
on the vessel centerline is measured by the delay δt of the two corresponding CTC and the known distance Δs between 
p0 and pi. The velocity is then v = Δs/ δt. The delay is given by the maximum position of the cross correlation of the 
CTC at position p0 and the CTC at position pi. This is measured for all possible pairs of positions.  
As the CTC only provides discrete intensity information at each time an image has been acquired, the cross-correlation 
function is a discrete function as well. For a more accurate determination of the maximum position, we use a 4th order 
polynomial interpolation scheme around the discrete maximum position to estimate the maximum position in conti-
nuous space. This step is important in case of a short centerline, where the expected values of the position of the maxi-
mum are small.  
The continuous maximum positions for each centerline pixel provide information about δt and Δs. In order to find a 
mean blood flow velocity, we perform a linear interpolation of all values. The slope of the interpolation function yields 
the reciprocal pixel velocity. As indicated before, a linear correction factor c has to be included to estimate the correct 
blood flow velocity from measured bolus propagation. We estimate the factor experimentally by injecting different vo-
lume amounts into the cerebral phantom (Section 3). The undisturbed blood flow is computed by taking advantage of 
the linear relationship between contrast agent quantity and measured blood flow velocity. The measured blood flow ve-
locity is plotted against the quantity of the injected CA. A linear regression line extrapolates the true value of blood 
flow that is the value for a quantity of 0 ml/s. The phantom correction factor estimated for the phantom is then trans-
ferred to the patient data. As the amount of CA is known, the correction factor can be estimated. However, the correc-
tion factor is also dependent on the vessel diameter [1]. We assume that the diameter of the feeding vessels does only 
vary little. This is the case for vessels in the Circle of Willis, which we in this paper focus on.. 
 

      2.2 Recover spatial information from projective images 

Projective blood flow is measured based on a 2D-DSA image sequence at vessel centerline pixels. For recovering me-
tric information we need to assign 3D world coordinates to every pixel of the 2D centerline. Therefore, a re-projection 
of 2D-DSA data into 3D-RA volume is required. Spatial alignment of the two data sets is given, since a prior 2D-3D 
registration presented in [5] provides the transformation parameters. 
We employ a ray-shooting approach to backproject the projective information from 2D-DSA to registered 3D vessels 
extracted from 3D-RA. Ambiguous mappings occur if a ray intersects more than one vessel in the 3D scene. We solve 
the mapping problem by transforming it into a graph-based problem. An undirected graph is built to describe all possi-
ble 3D correspondences of the 2D centerline pixels. All vertices that share a common parent 2D centerline neighbor 
pixel are connected. Costs, associated to the edges of the graph, are defined by intensity, position and connectivity. An 
optimal path is computed by applying Dijkstra's algorithm.  

68 Proceedings curac2010@MEDICA



Finally, we are able to determine the length of the 3D centerline by measuring the Euclidian distance between the cen-
terline nodes. Hence, velocities in [px/s] as a result of the computation in the 2D-DSA data set can be transferred into 
flow in [mm/s] or [ml/s], respectively, by incorporating a segmented 3D-RA image.  
 

Fig. 2. (a) Sketch of the re-projection technique. (b) Illustration of the mapping problem: the centerline of the straight 
vessel (black dotted line) is disturbed by the bended vessel in the projective view. (c) A lateral view on the same scene. 
The bended vessel occludes the straight vessel. The re-projection rays (gray arrows) determine 2 candidates for 3D cor-
respondence to 2D vessels. 

3 Results 

We evaluated our method on phantom as well as on patient data. Two different information provided ground truth to 
validate our measurements on the phantom: Laser Doppler Velocimetry (LDV) and the total delivery rate of the used 
pump. In the case of patient data, only plausibility tests could be performed as ground truth information was not availa-
ble. However, the main focus of this paper is to prove the general functionality of the presented framework.  
We used a cerebral vessel silicone phantom that includes three aneurysms (Elastrat H+N-R-A-EV-003). The fluid was 
pulsatively pumped through the artificial vessels by means of a pump. For the experimental setup and further informa-
tion about LDV, we refer to [6].  
LDV measurements led to a mean flow velocity of 226 mm/s, measured in the investigated. The known delivery rate of 
the pump was 5.25 ml/s and the mean diameter of the feeding vessel was 5.3 mm. It results in a mean volume flow 
within the vessel of 229 mm/s. Hence, due to the uncertainties of the given parameters the ground truth differ by ap-
proximately 1.3 %. 
We measured the mean projective blood flow velocity with 2D-DSA images acquired from 2 different angles. By our 
method, we measured a blood flow of 1075 px/s for angle 1 and 1092 px/s for angle 2. The centerline had a projective 
length of 434.8 px and 526.6 px, respectively. The spatial length was 107.6 mm and 98.4 mm. Division of the spatial 
length by the pixel length yields a total pixel spacing. Multiplying this value by the projective pixel flow, it results in a 
volume flow of 266 mm/s for the projective data set for angle 1 and 204 mm/s for the projective data set for angle 2. 
Hence, the deviation was 17.7 % against the LDV measurements and 16.2 % compared with the the pump delivery rate 
for the first data set. The precision of the flow results for the second data set was 9.7 % and 10.9 %, respectively. For a 
patient data set, we determined a blood volume flow of 2.21 ml/s in a cerebral vessel with a diameter of 4.6 mm.  
As our algorithm is designed for the usage of real patient data, we also performed experiments on five patient data sets. 
Due to the lack of ground truth, we carried out plausibility tests of our spatial recovery approach (section 2.2). In two 
bi-plane 2D-DSA data sets (difference of the plane angles is approximately 90°), the projection of a 3D centerline has a 
different path and length. We used this fact to re-project the manually chosen 2D centerlines that share a common 3D 
centerline. Hence, the re-projected length of the centerline is ideally the same for both 2D-DSA data sets. We have ma-
nually chosen feeding vessels that are defined by a start and end point. Both points are defined by salient images fea-
tures like bifurcations and aneurysms. Usually, feeding vessels are larger vessels as the probability of aneurysms forma-
tion is higher. As measure, we used the deviation on a percentage basis from the length of the spatial recovered 3D cen-
terlines. We measured a deviation between 0.3 % and 6.9 % with a mean deviation of 3.9 %. This is accurate under our 
assumptions as the 2D centerlines differ quite strong in terms of path length. Additionally, the re-projection is disturbed 
by close-by vessels and vessels occluding the vessel of interest. 
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4 Discussion 

In order to support physicians in the treatment of intracranial aneurysms the qualitative information on blood flow in 
the feeding vessels is of high importance. 
We presented a method to measure the blood flow velocity in angiographic image data. Projective pixel blood flow ve-
locity was extracted from 2D-DSA by measuring the blood flow at vessel centerline positions. Spatial information was 
included by incorporating 3D-RA data. A 2D-3D registration and a consecutive re-projection provide the transforma-
tion of pixel data to 3D coordinates. A graph-based scheme was introduced to resolve ambiguities caused by occluding 
vessels. 
We tested our algorithm on a cerebral vessel phantom and proved the quality and the functionality of our approach. 
With respect to our assumptions, we are able to compute the blood flow velocity with good accuracy. Compared to lite-
rature, we presented several improvements in different scopes. The projective blood flow propagation is computed by 
comparing Concentration Time Curves of all vessel centerline pixels rather than taking just a subset of pixels into ac-
count. To recover spatial information from projective images, we use a re-projection approach that solves projection 
ambiguities by estimating an optimal cost based path through a graph that is built by registration knowledge. This is a 
rather straightforward, but easily extendible method to map positions from a 2D-DSA image to a 3D-RA volume. 
The results lead to an improvement in CFD simulations as the inflow blood velocity is not estimated from patient data, 
but usually given by a uniform distribution according to literature. With our approach, for each phantom or patient a 
specific boundary condition for the CFD simulation can be applied. This is especially interesting in the case of patient 
data. However, the evaluation of our results and comparison with other methods is difficult since accurate quantitative 
measurements are typically not given or, if available, not directly comparable as the experiments and ground truth data 
differ. As an example, the reported accuracy in [7] is similar to our precision. With respect to our measurements, we ex-
pect that a better utilization of the relationship of bi-plane projection images into the process will lead to a more precise 
estimation of the blood flow velocity.  
For the future, we plan to test our algorithm with further patient data. In this context, the transfer of the correction fac-
tor to recover true blood flow from measured bolus propagation is subject to further investigation. Additionally, we plan 
to test the influence of parameters like position and length of the chosen vessel centerline on our algorithm. 
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