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Abstract

Automated recommendation systems have
been increasingly adopted by companies
that aim to draw people attention about
products and services on Internet. In
this sense, development of distributed
model abstractions such as MapReduce
and GraphLab has brought new possibil-
ities for recommendation research tasks
due to allow us to perform Big Data anal-
ysis. Thus, this paper investigates the suit-
ability of these two approaches for mas-
sive recommendation. In order to do
so, the Alternating Least Squares (ALS),
which is a Collaborative Filtering algo-
rithm, has been tested using recommen-
dation benchmark datasets. Results on
RMSE show a preliminary comparative
performance analysis.

1 Introduction

Data on the Internet is increasing, e-commerce
sites, blogs and social networks spread the word
about new products and services everyday. This
social media information overwhelms any user,
who has a given profile and therefore could not
be interested in most of these offers (Koren et al.,
2009).

In this sense, recommendation systems have
gained momentum, because they “filter” prod-
ucts and services for users according to behav-
ior patterns. Traditional approaches for automated
recommendation range from Content-Based, Col-
laborative Filtering and Deep Learning systems
(Adomavicius, 2005; Shi et al., 2014). However,
to handle the current amount of available data we
need to resort to frameworks for large-scale data
processing.

Recently, the machine learning community has
been increasingly interested in the task of manag-
ing Big Data with parallelism (Zhou et al., 2008;
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De Pessemier et al., 2011; Xianfeng Yang, 2014).
However, parallel algorithms are extremely chal-
lenging and traditional approaches, despite of be-
ing powerful like MPI, rely on low levels of ab-
straction. On the other hand, distributed models
such as GraphLab(Low et al., 2012) and MapRe-
duce(Xiao and Xiao, 2014; Dean and Ghemawat,
2008) foster high levels of abstraction and, there-
fore, they are more intuitive. The aim of this pa-
per is to investigate whether these distributed mod-
els are suitable for recommendation tasks. In or-
der to do so we evaluate the Alternating Least
Squares (ALS) algorithm, a parallel collabora-
tive filtering approach(Koren et al., 2009; Schel-
ter et al., 2013), in both GraphLab and MapRe-
duce frameworks. We evaluate the performance
on the MovieLens and Netflix datasets. Accord-
ing to preliminary results, GraphLab outperforms
MapReduce in RMSE, when Lambda, iterations
number and latent factor parameters are consid-
ered. Conversely, MapReduce gets a better exe-
cution time than GraphLab using the same param-
eters in MoveLens dataset. The paper is organized
as follows. In Section 2, related work is described.
Background is given in Section 3. Our proposal is
showed in Section 4. Preliminary results are de-
picted in section 5. Finally Section 5, concludes
the paper.

2 Related Work

Several distributed platforms have been used for
studying performance of machine learning al-
gorithms, for instance, a Matrix Factorization
based on collaborative filtering over MapReduce
model was proposed in (Xianfeng Yang, 2014;
De Pessemier et al., 2011). In Low et al.
(2012), some advantages and disadvantages of us-
ing GraphLab and MapReduce were described.
For instance, MapReduce fails when there are
computational dependencies on data, but it can be
used to extract features from a massive collection.



In addition, MapReduce is targeted for large data
centers, it is optimized for node-failure and disk-
centric parallelism. Conversely, In GraphLab it is
assumed that processors do not fail, and all data is
stored in shared memory.

In Low et al. (2012), the Alternating
Least Squares (ALS) algorithm was imple-
mented over several platforms:  GraphLab,
Hadoop/MapReduce and MPI. Comparison results
show that applications created using GraphLab
outperformed equivalent Hadoop/MapReduce
implementations by 20-60 times(Xianfeng Yang,
2014) .

Our work is most related to Low et al. (2012),
but we focus on the evaluation of different con-
figurations of ALS algorithm over GraphLab and
MapReduce. Thus, we aim at obtaining optimal
parameters that allow us to improve algorithm per-
formance. Moreover, comparisons were based on
RMSE and time execution values. The parameters
considered are:

e Lambda, which is the regularization parame-
ter in ALS

e The number of latent factors
e The number of iterations

3 Background

3.1 Recommendation Systems

A recommendation system aims at showing items
of interest to a user, considering the context of
where the items are being shown and to whom they
are being shown (Alag, 2008).

Figure 1, depicts inputs and outputs of a com-
mon recommendation system.

| Context |

Recommendation
System

Item Information

—

Recommended
Items

User Profile

User Interaction

Figure 1: Inputs and Outputs of a Recommenda-
tion Engine
(Alag, 2008)

In Adomavicius (2005) three approaches for
building a recommendation system are presented:
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e Content-based Recommendation: Items sim-
ilar to the ones he/she has preferred in the
past, are recommended to the user.

e Collaborative Recommendation: Items that
people with similar tastes and preferences
liked in the past, are recommended to the
user.

— Collaborative Deep Learning: It is a re-
cent kind of collaborative filtering us-
ing deep learning models Wang et al.
(2014).

e Hybrid Approach: Recommendations are
made using a combination of Content-based
and Collaborative Recommendation meth-
ods.

3.2 Alternating Least Squares (ALS)

Alternating Least Squares (Low et al., 2012; Zhou
et al., 2008; Koren et al., 2009) is an algorithm
within the collaborative filtering paradigm. Input
of ALS (in Figure 2) is a sparse user by items ma-
trix R containing the rating of each user. The algo-
rithm iteratively computes a low-rank matrix fac-
torization R = U x V where U and V are d di-
mensional matrices. The loss function is defined
as the squared error(Zhou et al., 2008), where the
learning objective is to minimize the sum of the
squared errors 1 between values predicted and real
values of rantings.

(U, V) = arig}r‘r/ﬁnZi,j S R(Tij — ’UiTuj')Q (1)

Complexity and cost depend on the magnitude of
the hidden variables d.

U=Users

C=Courses

Figure 2: Matrix factorization of ALS

The ALS algorithm is computationally expen-
sive, every iteration runs on O(d~'[Nr + (m +



n)r?] 4+ r3), where m is length of items, and n is
length of users (Schelter et al., 2013; Gemulla et
al., 2011).

3.3 Alternating Least Squares on GraphLab

According to (Low et al., 2012; Gonzalez et al.,
2012) ALS in GraphLab is implemented by us-
ing a bipartite two colorable graph and a chro-
matic synchronous engine with an edge consis-
tency model for serializability.

Each vertex of the graph has a latent factor at-
tached, that denotes a user or an item. Thus, they
are linked to a column or a row in the matrix of
ratings R. Each edge of the graph contains en-
try data (rating values), and the most recent error
estimated by the algorithm. The goal of ALS al-
gorithm is to discover values of latent parameters,
such that non-zero entries in R can be predicted by
the dot product of the row and column latent fac-
tor. ALS algorithm for GraphLab is implemented
in the Gather-Apply-Scatter abstraction. ALS up-
date considers adjacent vertices as X values and
edges as observed y values, and then updates the
current vertex value as a weight w:

y = X xw + noise )
that is accomplished using the following equation:
w=inv(X'* X)* (X' *y) 3)

In the Gather-Apply-Scatter model, the update is
done as follows:

e Gather: it returns the tuple (X’ * X, X’ x y)
e Apply: it solves inv(X’ * X) * (X' *y)

e Scatter: it schedules the update of adjacent
vertices if this vertex has changed and the
edge is not well predicted.

3.4 Alternating Least Squares on
MapReduce

In Xianfeng Yang (2014; Zhou et al. (2008)
MapReduce implementation is comprised by four
tasks as shown in Figure 3. Each item in dataset
is denoted as a triple (u, j, 7). u denotes user, j is
the label of item and r denotes corresponding rat-
ing. In the U-Update step, item matrix V' is used
as input and is sent to cluster nodes. Then, train-
ing rating R is used to compute user matrix U, in-
cluding inputs as lambda parameter A to regular-
ization, number of latent factors. V-Update does

124

the same as U-Update step, but its input is not an
item matrix. On the contrary, it is a user matrix
computed in U-Update step. Once U and V are
learned, we can compute RMSE values using test
dataset and estimated rating 7. So the Parallel ALS
algorithm with Weighted--Regularization is as fol-
lows (Zhou et al., 2008): The objective function in

Algorithm 1 Alternating Least Square(ALS) with
algorithm

1: Initialize V' with random values between 0
and 1

2: Hold V constants, and solve U by minimizing
the objective function.

3: Hold U constants, and solve M by minimiz-
ing the objective function.

4: repeat from step 2 and 3 until objective func-
tion converge.

1 is obtained from equation 4, which is just linear
regression with lambda regularization()), to avoid
overfits it penalize large parameters.

4 Proposal

In this paper we evaluate several parameter config-
urations (lambda, number of latent factor, number
of iterations) for ALS algorithm over GraphLab
and MapReduce. Our aim is to obtain the best per-
formance, over clusters of two and four machines,
for the Movielens Dataset, and NetFlix Dataset
(further details will be given in the next section).
We evaluate performance according to RMSE and
execution time values.

In order to implement ALS algorithm under the
MapReduce Paradigm, the Mahout ! API has been
used. ALS algorithm for MapReduce (Zhou et al.,
2008) is shown in 3. User and movie factors have
been computed using equation 4. where n,; and
n,; are the numbers of ratings of user ¢ and item
J respectively. When objective function showed in
equation 4 does not change after further iterations,
we attain the final step. Output is the predicted
rating for each user/item pair.

"http://mahout.apache.org/
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Figure 3: MapReduce ALS algorithms proposed
(Zhou et al., 2008; Xianfeng Yang, 2014)

In order to evaluate ALS algorithm under
GraphLab, the GraphLab API (Low et al., 2010)
has been used. ALS algorithm for GraphLab (Low
et al., 2012) is shown in Figure 4. User and movie
factors have been computed using equation 5.

f[i] = argmin Z

d
weR jENeighbors(i)

(rij —w' fl3]) (5)

f(3)

User factors (U)
(D) sJoj0e) BSIN0D

Figure 4: Matrix factorization of ALS using
GraphLab

4.1 Movielens Dataset

MovieLens is a Web collaborative site that man-
ages a recommender system for movies. This rec-
ommender system is based on a collaborative fil-
tering algorithm developed by the GroupLens re-
search group. The dataset is comprised by 6040
users, 3952 items and 100209 ratings for training.
The data structure is: user, item, rating.
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4.2 Netflix Dataset

We are using the Small Netflix Dataset. It is also a
data-set for movie recommendation, it has 95526
users, 3561 items and 3298163 ratings. The struc-
ture of the data-set is: user, item, rating.

4.3 GraphLab Configuration

Setup of the GraphLab cluster is as follows. Two
machines, one working as the master and the other
as the worker node. The master machine oper-
ating system is Ubuntu 14.04, and its processor
is Intel Core i3 CPU M 330@2.13GHzx4. The
worker machine operating system is Ubuntu 13.10
of 64-bit, and its processor is Intel Core 13-2350M
@2.30GHzx4. The cluster was configured using
MPI(Message Passing Interface).

4.4 MapReduce Configuration

The setup is as follows. Four machines, three
worker nodes and one master. The master machine
operating system is Ubuntu 13.10 of 64-bit, and its
processor is Intel Core i3-2350M @2.30GHzx4.
Table.1 shows the configuration of the worker ma-
chines.

The cluster was configured using Hadoop, and

Machine | Operating System | Processor

1 Ubuntu 14.04 Intel Core i3 CPU M 330@2.13GHzx4
2 Ubuntu 13.10 Intel Core i3-2350M @2.30GHzx4

3 Ubuntu 14.04 Intel Core i7-4700MQ @2.40GHzx8

Table 1: Worker Machines Configuration

the HDFS(Hadoop Distributed File System). The
ALS(Alternating Least Squares) algorithm imple-
mentation was taken from Mahout Library.

5 Experimental Results

This section shows experimental results con-
ducted on MovieLens data set aforementioned.
Experimental setting parameters are described in

Parameters Value
Lambda 0.01 - 0.09
# Latent factors | 10-50

# Iterations 2-30

Table 2: Parameters used for ALS algorithms



Table 2. Latent factors have been increased for
each test in 10 step size, Lambda has been in-
creased in 0.01 step size, and Number of iterations
in 1 step size. Results are showed in Figures 5,6,7.

In Figure 5a, RMSE values for MapReduce
do not change even if we increase the number
of latent factors thus, RMSE values on MapRe-
duce are independent on the number of latent fac-
tors. RMSE for MapReduce converges around
0.95. Conversely, RMSE values for GraphLab
decreases while the number of latent factors in-
creases. When the number of latent factors was
50, RMSE value reaches around 0.25. However,
GraphLab spends more time than MapReduce,
Figure 5b depicts MapReduce times almost as an
horizontal line for MovieLens dataset, the line of
execution time for Netflix dataset is much steeper.
Between Graphlab and MapReduce lines repre-
senting Movilens dataset execution, Graphlab line
is more pronounced.

Figure 6a depicts GraphLab and MapReduce
performance according the Lambda parameter.
While Lambda increases, RMSE decreases ac-
cordingly, i.e., if a greater value of Lambda is used
then algorithm accuracy tends to be better. We also
notice that Graphlab has lower values of RMSE
compared to MapReduce. GraphLab RMSE val-
ues are around 0.5, and MapReduce RMSE values
are around 1. Figure 6b illustrates a better exe-
cution time of MapReduce compare to GraphLab
over Movielens dataset. However, now the execu-
tion time for GraphLab decreases, while the value
of Lambda increases. Figure 6b also shows that It
takes longer to process the data from netflix than
Movielens.

In Figure 7a we notice that the value of RMSE
is almost invariant to the increase of iterations for
MapReduce execution, given that the number of
iterations are small,nevertheless we notice clearly
that RMSE value for GraphLab decreases as the
number of iterations increases. RMSE value for
Graphlab converges around 0.55. Figure 7b shows
that MapReduce execution time over Movielens
dataset is good, however it increases a lot for Net-
flix dataset. Graphlab execution time increases as
the number of iterations grows.
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Figure 5: Performance of MapReduce and
GraphLab when number of features in ALS algo-
rithms is increased.
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Figure 6: Performance of MapReduce and
GraphLab when Lambda values in ALS algo-
rithms are increased.
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Figure 7: Performance of MapReduce and
GraphLab when the number of iterations in ALS
algorithms is increased.

6 Conclusion

We evaluated the Alternating Least Squares
(ALS) algorithm, a parallel collaborative filtering
in both GraphLab and MapReduce frameworks.
Experiments were run over the MovieLens and
Netflix datasets. The RMSE between MapReduce
execution in NetFlix dataset and Movielens
dataset in all the experiments was similar, but the
execution time was longer in Netflix dataset.
Looking at the executions over Moviliens dataset,
we can say, that even though GraphLab only ran in
two machines and MapReduce in 4 machines, the
first one outperformed the second one in RMSE.
Considering lambda value variation, Figure.6a,the
number of iterations Figure.7a, and the number
of latent factors Figure.5a, GraphLab performed
better (RMSE) than MapReduce. In all previous
three cases MapReduce was faster than GraphLab,
obviously by the difference between the number
of machines in their configuration.

Thus, when scalability and distribution are eval-
uated, MapReduce performs better, because ALS
does not require data dependency for computing.
Moreover, it took less execution time when more
latent factors were added. In this work we only
used two nodes, however GraphLab demonstrated
best results with few nodes.
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In conclusion, GraphLab performed better
when RMSE was considered but, there are open
issues with shared-memory. GraphLab is also bet-
ter for computing recommendations in real time.
However, for more sophisticated computations
MapReduce performs better so far as to an offline
environment and all data is used.
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