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Abstract

SkyServer, the portal for the Sloan Digi-
tal Sky Survey (SDSS) catalog, provides
data access tools for astronomers and sci-
entific education. One of the interfaces al-
lows users to enter ad hoc SQL statements
to query the catalog, and has logged over
280 million queries since 2001. This pa-
per describes text mining techniques and
preliminary results on mining the logs of
the SQL queries submitted to SkyServer,
along with what other applications we
foresee for such procedure.

1 Introduction

With the increase in data collection and genera-
tion, datasets are growing at an exponential pace,
making a real challenge to make available all
the data being produced. As a solution, some
large scientific datasets have been made available
through publicly accessible RDBMSes (Relational
Database Management Systems). In which scien-
tists and interested users can query and analyze
only the most relevant and up-to-date data for their
needs.

The Sloan Digital Survey is one such case. It
makes available the largest astronomy survey to
date through SkyServer1, its Internet portal that al-
lows users and astronomers to query the database
and even perform data mining tasks using SQL
(Standard Query Language), the de facto standard
to query relational databases. The portal, in opera-
tion since 2001, has proven to be extremely popu-
lar, with over 1.5 billion page hits and almost 280
million SQL queries submitted.

Since 2003, SkyServer has been logging every
query submitted to the portal. It collects access
information, such as timestamp, user ip address,
the tool used to submit the query, and the target

1http://skyserver.sdss3.org

data release (DR1, DR2, etc); and query infor-
mation, e.g. the SQL statement, query success
or failure and error message, number of rows re-
turned, elapsed time. This data can be used to gen-
erate summarized access statistics, like queries per
month or data release query distribution over time,
as presented by Raddick et al. (2014). But for a
more in depth usage analysis, data has to be pro-
cessed and transformed, like Zhang et al. (2012),
which color codes SQL queries for visual analy-
sis and also presents a visual sky map of popular
searched areas.

To further analyze such queries, this paper aims
to apply text mining techniques with the goal to
define a procedure to parse, clean and tokenize
statements into a weighted numerical representa-
tion, which can then be fed into regular machine
learning algorithms for data mining.

We proceed with an exploratory analysis, where
we project part of the historical queries into a low
dimensional representation and correlate the re-
sults with sample templates defined in the Sky-
Server help pages, a list of predefined queries
ranging from Basic SQL, showing simple SQL
structures; to specific examples on how to find
Stars, Galaxies or Quasars.

2 Text Mining and SQL Queries

Text mining, or Knowledge Discovery in Texts
(KDT), is an extension to the traditional Knowl-
edge Discovery in Databases (KDD), the nontriv-
ial process of identifying valid, novel, potentially
useful, and ultimately understandable patterns in
data (Fayyad et al., 1996), but targeting unstruc-
tured or semi-structured data instead of regular
databases, such as emails, full-text documents and
markup files (e.g., HTML and XML). It is a mul-
tidisciplinary field involving, among others, infor-
mation retrieval and extraction, machine learning,
natural language processing, database technology
and visualization (Tan, 1999).
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SQL queries in this context can be seen as mini-
documents. As a well defined language, we can
leverage the structure provided by the language in
order to fine-tune and optimize the preprocessing
step of queries to suit the specific cases found. For
instance, there is no need for stop words removal,
and by analyzing the token type (table name, col-
umn, variable, expression, constant, etc) we can
perform a different normalization or substitution.

3 Methodology

The methodology followed is the traditional KDD
process, comprising the following phases: se-
lection, preprocessing, transformation, data min-
ing, and interpretation/evaluation, with each phase
briefly discussed below.

3.1 Selection
For this paper, we used a normalized version of
the raw data made available by Raddick et al.
(2014) which analyzed a 10-year span of log data
(12/2002 to 09/2012), amounting to almost 195
million records and 68 million unique queries.

As a proof-of-concept, we filtered the queries
to those coming from the last version of the online
SQL search tool (skyserver.sdss3.org), which only
allows SELECT statements and has a timeout of
10 minutes. The assumption was to have a dataset
with less variance and complexity. This filter also
restricted queries with errors and no rows returned,
resulting in a final dataset of 1.3 million queries.

3.2 Preprocessing and Transformation
The main objective of the preprocessing phase is
to parse the text queries into a bag-of-words like
representation, but instead of just the set of tokens
present in each document, we also keep the count
of each token in that statement.

As noted before, we can leverage the fact that
SQL is a structured language, by using a proper
parser and add a layer of metadata on top of each
token. Knowing what kind of token we are pro-
cessing, we can add specific actions for each token
type.

Since SkyServer uses Microsoft SQL Server as
its RDBMS, we extended the readily available
.NET T-SQL parser library to build a custom one.
Other than normalizing case sensitivity, the cus-
tom parser also removes constants (strings and
numbers), database namespaces, and aliases; sub-
stitutes temporary table names, logical and condi-

tional operators for keywords; and qualified each
token with the SQL group, e.g. select, from,
where, groupby, orderby. Substitutions and filters
were performed with the intention to remove to-
kens that are trivial (such as database namespaces)
or too specific (such as constants, table aliases, or
arithmetic operations), and thus, would be of lit-
tle contribution in discriminating or grouping each
query within the dataset.

An example of the original statement and its
normalized version is shown in Figure 1. Figure
2 shows the final feature vector.

SELECT p.objid, p.ra, p.dec,
p.u, p.g, p.r, p.i, p.z,
platex.plate, s.fiberid,
s.elodiefeh

FROM photoobj p,
dbo.fgetnearbyobjeq(1.62917,
27.6417, 30) n,

specobj s, platex
WHERE p.objid = n.objid

AND p.objid = s.bestobjid
AND s.plateid =
platex.plateid

AND class = ‘star’
AND p.r >= 14
AND p.r <= 22.5
AND p.g >= 15
AND p.g <= 23
AND platex.plate = 2803

(a) Raw SQL query.

select objid ra dec u g r i z
plate fiberid elodiefeh

from photoobj fgetnearbyobjeq
specobj platex

where objid objid logic objid
bestobjid logic plateid
plateid logic class logic
r logic r logic g logic g
logic plate

(b) Tokenized SQL.

Figure 1: Example of a SQL query and its normal-
ized version. Whitespace is included for readabil-
ity.

It is important to note that, since the parser is
strict, it can only process syntax valid statements.

Lastly, we weight tokens according to its fre-
quency, so the most common or unusual rare
tokens are balanced to have more or less con-
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select objid 1
select ra 1
select dec 1
select u 1
select g 1
select r 1
select i 1
select z 1
select plate 1
select fiberid 1
select elodiefeh 1
from photoobj 1
from fgetnearbyobjeq 1
from specobj 1
from platex 1
where objid 3
where logic 8
where bestobjid 1
where plateid 2
where class 1
where r 1
where g 2
where plate 1

Figure 2: Feature vector.

tribution in its power of discrimination. One
of the most popular weighting scheme is the
TF*IDF (term frequency times inverse document
frequency), which assigns the largest weight to
terms that arise with high frequency in individual
documents, but are at the same time, relatively rare
in the collection as a whole (Salton et al., 1975).

3.3 Data Mining
On a general perspective from data analysis, clus-
tering is the exploratory procedure that organizes a
collection of patterns into natural groupings based
on a given association measure (Jain et al., 1999).
Intuitively, patterns within a cluster are much more
alike between each other, while being as differ-
ent as possible to patterns belonging to a different
cluster.

In text mining, clustering can be used to sum-
marize contents of a document collection (Larsen
and Aone, 1999). So, with this idea in mind, what
kind of summarization could be done over the
historic SQL logs and how such summary would
compare to the predefined templates? For that,
we apply in this paper the Self-Organizing Map
(SOM) algorithm.

3.3.1 Self-Organizing Maps

Kohonen’s SOM (Kohonen, 2001) is a neural net-
work algorithm that performs unsupervised learn-
ing. It implements an orderly mapping of high-
dimensional data into a regular low-dimensional
grid or matrix, reducing the original data dimen-
sion while preserving topological and metric rela-
tionships of the data (Kohonen, 1998).

The SOM consist of M units located on a
regular grid. The grid is usually one- or two-
dimensional, particularly when the objective is to
use the SOM for data visualization. Each unit j
has a prototype vector m

j

= [m
j1, ...,m

jd

] in a
location r

j

, where d represent the dimension of a
data item. The map adjusts to the data by adapt-
ing the values of its prototype vectors during the
training phase. At each training step t a sample
data vector x

i

= [x
i1, ..., x

id

] is chosen and the
distances between x

i

and all the prototype vec-
tors are calculated to obtain the best-matching unit
(BMU). Units topologically close to the BMU are
then updated, moving their values towards x

i

.
Distance calculation between the data vectors

and prototypes on the SOM can be calculated us-
ing the Euclidean, Cosine or other metrics. The
neighborhood considered around the BMU can
be circular, square, hexagonal (to determine its
shape) and the distance between an unit and the
BMU can be weighted by a gaussian or difference-
of-gaussians function so units closest to the BMU
will be updated with different weights used by
units further from it. During training the weights
used for updating the units and the size of the
neighborhood can change according to several dif-
ferent possible rules.

The algorithm has two interesting character-
istics that suggest its use for data visualization:
quantization and projection. Quantization refers
to the creation of a set of prototype vectors which
reproduce the original data set as well as possible,
while projection try to find low dimensional coor-
dinates that tries to preserve the distribution from
the original high-dimensional data. The SOM al-
gorithm has proved to be especially good at main-
tain the topology of the original dataset, meaning
that if two data samples are close to each other in
the grid, they are likely to be close in the original
high-dimensional space data (Vesanto, 2002).

These features and the possible variations and
parameters of the Self-Organizing Map makes it
an interesting tool for exploratory data analysis,
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particularly for visualization (Morais et al., 2014;
Vesanto, 2002). There are three main categories of
SOM applications for data visualization: 1) meth-
ods that get an idea of the overall data shape and
detect possible cluster structures; 2) methods that
analyze the prototype vectors (as representatives
of the whole dataset) and 3) methods for analysis
of new data samples for classification and novelty
detection purposes.

In this paper we use visualization methods re-
lated to the second and third categories: the U-
Matrix and plotting of existing data samples (in
our case, query prototypes or templates) over
the U-Matrix. The Unified Distance Matrix (U-
Matrix) is one of the most used representations of
the trained SOM (Gorricha and Lobo, 2012). It is
a visual representation of the SOM to reveal clus-
ter structure of the data set. The approach colors
a grid according to the distance from each vec-
tor prototype and its neighbors: dark colors are
chosen to represent large distances while light col-
ors correspond to proximity in the input space and
thus represent clusters.

3.4 Data and Implementation
After preprocessing, the initial 1.3 million selected
queries were compressed to 8,477 token sets with
2,103 features. As usual in a text mining context,
this dataset is extremely sparse, with only 0.008%
non-zero values.

Templates were preprocessed in the same man-
ner as the token sets, also using the same idf
weights and scaling factors. Since some templates
have more than one version, the 45 selected en-
tries expanded to 51, denoted with a suffix letter
to indicate when it is a second or third alternative.

Huang (2008) shows that the Euclidean distance
performs poorer than other distances in a text clus-
tering context. Hence, for this paper, we chose the
Cosine distance as the metric to find BMUs during
the SOM training.

For this paper, we used a 30x30 SOM trained
for 45 epochs.

3.5 Analysis
We used two plots for an initial visual analysis,
the u-matrix, presented in Figure 3, in which num-
bers indicate the template id over their respective
BMU, and a hitmap scatter plot, presented in Fig-
ure 4, in which the size of the circles indicates the
number of token sets that elected that prototype its
BMU.

Figure 3: U-Matrix

Figure 4: Hitmap

From the figures above, we can see that the
trained SOM is able to well distribute the dataset
over prototypes and some areas can be visually de-
fined as clusters (regions of light colors circled by
dark points).

In some cases, more than one template elected
the same prototype as their BMU, as we can check
from the legend. So after calculating a distance
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matrix, we sorted the top 5 closest templates using
the Cosine distance, to see how they compare with
the trained SOM.

Below, for each pair, we present their Cosine
distance using the Term Frequency representation,
and the Euclidean distance between their SOM
BMUs, along their name.

1. Pair: 15 and 15b
Distances: TF: 0.0 and SOM: 0.0
15: Splitting 64-bit values into two 32-bit
values
15b: Splitting 64-bit values into two 32-bit
values

2. Pair: 21b and 31
Distances: TF: 0.0 and SOM: 0.0
21b: Finding objects by their spectral lines
31: Using the sppLines table

3. Pair: 22 and 43
Distances: TF: 0.0205 and SOM: 0.0
22: Finding spectra by classification (object
type)
43: QSOs by spectroscopy

4. Pair: 39 and 39b
Distances: TF: 0.1610 and SOM: 0.0
39: Classifications from Galaxy Zoo
39b: Classifications from Galaxy Zoo

5. Pair: 05 and 15
Distances: TF: 0.1632 and SOM: 0.0
05: Rectangular position search
15: Splitting 64-bit values into two 32-bit
values

The SQL queries presented that generated the
templates listed here are in the Appendix A.

4 Conclusions and Future Work

As a work in progress, further analysis is definitely
due, but from this very early results with the SOM,
further work is justified by noticing that close pair
of queries are being correctly mapped close to one
another.

The Self-Organizing Map was selected as a vi-
sualization tool due to its quantization and projec-
tion properties. Other methods such as clustering
could be used, but preliminary tests showed that
the selection of algorithms and parameters is not
trivial, and the results were not as useful for ex-
ploratory data analysis as the SOM and its visual
representations.

Next steps include the evaluation of which
queries were similar (but not equal) to a specific
template, in order to identify queries that were
derived from a template; the analysis of clusters
of queries that do not have an associated tem-
plate, which could uncover possible good can-
didates for new templates: popular queries that
can be included in the list presented in the Sky-
Server as samples; and finally, the processing of
the whole log of queries to build a more compre-
hensive dataset of the historical logs.

This structured representation can also be cor-
related with other features in the logs, as elapsed
time or error results, allowing other applications
of KDD, such as the running time or failure pre-
diction.
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Appendix A. SkyServer SQL Templates

Sample SQL templates available from SkyServer’s
help pages that are mentioned in this paper. The
list below comprises of the identification number
used in the exploratory analysis process, name and
category, a brief explanation, and the SQL state-
ment.

05: Rectangular position search (Basic SQL)

Rectangular search using straight coordinate
constraints
s e l e c t o b j i d , ra , dec
from p h o t o o b j
where ( r a between 1 79 .5 and 1 8 2 . 3 )

and ( dec between �1.0 and 1 . 8 )

15: Splitting 64-bit values into two 32-bit values
(SQL Jujitsu)

The flag fields in the SpecObjAll table are 64-
bit but some analysis tools only accept 32-bit
integers. Here is a way to split them up using
bitmasks to extract the higher and lower 32
bits and dividing by a power of 2 to shift bits

to the right (since there is no bit shift operator
in SQL.)
s e l e c t t o p 10 o b j i d , ra , dec ,

f l a g s , �� o u t p u t t h e whole b i g i n t
as a check

f l a g s & 0 x 0 0 0 0 0 0 0 0 f f f f f f f f as
f l a g s l o , �� g e t t h e lower 32
b i t s w i t h a mask s h i f t t h e
b i g i n t t o t h e r i g h t 32 b i t s ,
t h e n use t h e same mask t o s g e t

upper 32 b i t s
( f l a g s / power ( c a s t (2 as b i g i n t ) ,

32) ) & 0 x 0 0 0 0 0 0 0 0 f f f f f f f f as
f l a g s h i

from p h o t o o b j

15B: Splitting 64-bit values into two 32-bit values
(SQL Jujitsu)

The hexadecimal version of above query
which can be used for debugging
s e l e c t t o p 10 o b j i d , ra , dec ,

c a s t ( f l a g s as b i n a r y ( 8 ) ) as f l a g s ,
c a s t ( f l a g s & 0 x 0 0 0 0 0 0 0 0 f f f f f f f f as

b i n a r y ( 8 ) ) as f l a g s l o ,
c a s t ( ( f l a g s / power ( c a s t (2 as b i g i n t

) , 32) ) & 0 x 0 0 0 0 0 0 0 0 f f f f f f f f
as b i n a r y ( 8 ) ) as f l a g s h i

from p h o t o o b j

21B: Finding objects by their spectral lines (Gen-
eral Astronomy)

This query selects red stars (spectral type K)
with large CaII triplet eq widths with low er-
rors on the CaII triplet equivalent widths.
s e l e c t s l . p l a t e , s l . mjd , s l . f i b e r ,

s l . c a i i k s i d e , s l . c a i i k e r r ,
s l . c a i i kmask , sp . fehadop ,
sp . fehadopunc , sp . fehadopn ,
sp . loggadopn , sp . loggadopunc ,
sp . loggadopn

from s p p l i n e s as s l
j o i n sppparams as sp

on s l . s p e c o b j i d = sp . s p e c o b j i d
where f ehadop < �3.5

and f ehadopunc between 0 . 0 1 and
0 . 5

and f ehadopn > 3

22: Finding spectra by classification (object type)
(General Astronomy)

This sample query find all objects with spec-
tra classified as stars.
s e l e c t t o p 100 s p e c o b j i d
from s p e c o b j
where c l a s s = ’ s t a r ’

and zwarn ing = 0
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31: Using the sppLines table (Stars)

This sample query selects low metallicity
stars ([Fe/H] < �3.5) where more than three
different measures of feh are ok and are aver-
aged.
s e l e c t s l . p l a t e , s l . mjd , s l . f i b e r ,

s l . c a i i k s i d e , s l . c a i i k e r r ,
s l . c a i i kmask , sp . fehadop ,
sp . fehadopunc , sp . fehadopn ,
sp . loggadopn , sp . loggadopunc ,
sp . loggadopn

from s p p l i n e s as s l
j o i n sppparams as sp

on s l . s p e c o b j i d = sp . s p e c o b j i d
where f ehadop < �3.5

and f ehadopunc between 0 . 0 1 and
0 . 5

and f ehadopn > 3

39: Classifications from Galaxy Zoo (Galaxies)

Find the weighted probability that a given
galaxy has each of the six morphological
classifications.
s e l e c t o b j i d , nvote ,

p e l as e l l i p t i c a l ,
p cw as s p i r a l c l o c k ,
p acw as s p i r a l a n t i c l o c k ,
p edge as edgeon ,
p dk as dontknow ,
p mg as merger

from zoonospec
where o b j i d = 1237656495650570395

39B: Classifications from Galaxy Zoo (Galaxies)

Find 100 galaxies that have clean photometry
at least 10 Galaxy Zoo volunteer votes and at
least an 80% probability of being clockwise
spirals.
s e l e c t t o p 100 g . o b j i d , zns . nvote ,

zns . p e l as e l l i p t i c a l ,
zns . p cw as s p i r a l c l o c k ,
zns . p acw as s p i r a l a n t i c l o c k ,
zns . p edge as edgeon ,
zns . p dk as dontknow ,
zns . p mg as merger

from g a l a x y as g
j o i n zoonospec as zns

on g . o b j i d = zns . o b j i d
where g . c l e a n =1

and zns . n v o t e >= 10
and zns . p cw > 0 . 8

43: QSOs by spectroscopy (Quasars)

The easiest way to find quasars is by find-
ing objects whose spectra have been classi-
fied as quasars. This sample query searches

the SpecObj table for the IDs and redshifts of
objects with the class column equal to ’QSO’
s e l e c t t o p 100 s p e c o b j i d , z
from s p e c o b j
where c l a s s = ’ qso ’

and zwarn ing = 0
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