From Simulation to Operation: Using Design
Time Artifacts to Ensure the Safety of Advanced
Driving Assistance Systems at Runtime

Malte Mauritz, Falk Howar, and Andreas Rausch

Institute for Applied Software Systems Engineering,
Technical University Clausthal.
D-38678 Clausthal-Zellerfeld, Germany
firstname.lastname@tu-clausthal.de

Abstract. Advanced driver assistance systems and (semi-)autonomous
mobility systems will arguably be the biggest disruption of our every-
day life in the next couple of years. The development of such systems
comes with legal and technical challenges: Product liability regulations
impose high standards on manufacturers regarding the safe operation of
advanced driver assistance systems (ADAS). In the Automotive domain,
sufficient safety has yet to be proven through extensive and expensive
testing. As a consequence, car manufacturers try to move testing effort
from the road to simulation. It is not clear, however, how results ob-
tained from simulations transfer to the road. In this paper, we present
an approach for leveraging simulation results during road tests. Our ap-
proach utilizes runtime monitors that are generated from specifications,
test scenarios, and simulated components. These monitors can be used
during road tests and during operation for identifying untested situations
and for checking functional correctness of an ADAS.

1 Introduction

Driver assistance systems and (semi-)autonomous mobility systems are gaining
more importance in mobility carriers, such as vehicles, aircraft or rail- transport
systems. Guided by the vision of “zero accidents” (cf. [3]) regulatory authorities
require such systems to meet highest standards for ensuring road safety. The
product and producer liability (e.g., in Germany: ProdHaftG §1, BGB §823 I,
BGB §433) oblige manufacturers of ADAS to ensure that ADAS safely operate
in their highly dynamic environments and to eliminate harm for drivers, vehicles,
and any persons or objects in their environments.

However, today’s conventional engineering methods are not adequate for pro-
viding such guarantees: Common vehicle field tests are too expensive and cannot
proof the system’s dependability. They require too many miles to be driven in
order to show that a system is sufficiently safe. One way of reducing the cost of
quality assurance is the application of structured testing as well as transferring
a significant portion of the testing effort to simulations. It is not clear, however,

Test Scenario Monitored

Extraction

Behavior

Observed Situations

System under

Operation and Monitoring
Test

System under
Operation

~ DesignandTest *

Tested Situations

Tested
Behavior

Monitor
Tested

Behavior Generation

Monitor

Fig. 1: Overview of the DADAS approach.

how results obtained from simulations transfer to the road. Therefore, methods
have to be developed that enable transferring results from simulations to the
real world.

The DADAS! project [9] aims at developing a sound combination of design
time testing and runtime monitoring that will enable the transfer of safety guar-
antees obtained in simulations to the road. Figure 1 shows an overview of the
envisioned approach: In a first step, the ADAS is tested for a set of scenarios in a
simulation environment (cf. left side of Fig. 1). Results from the simulation, i.e.,
the tested behavior and situations, as well as simulation components are used
for the generation of runtime monitors. The generated monitors are then used
to verify that the system operates within the tested limits during (limited) road
tests (cf. right side of Fig. 1). Any untested behavior of the system is recorded
in order to extract new test scenarios for further simulation-based testing. This
establishes a feedback loop for the iterative enhancement of ADAS.

In this paper, we focus on the generation of monitors from design time ar-
tifacts. We present a novel method for generating runtime monitors from speci-
fications, test scenarios, and simulation components. The monitors can be used
during development or operation to collect information about untested situa-
tions and unsafe behavior of an ADAS. Our main contribution is a conceptual
component-based architecture for these monitors along with methods for gener-
ating the individual monitoring components from design time artifacts.

Related Work. In the automotive domain, runtime monitoring is primarily
used for the correctness and reliability of controllers for physical components.
The field of diagnostics mainly uses supervision, fault detection and fault man-
agement techniques based on physical parameters and mathematical models of

! DADAS is an acronym for Dependable Advanced Driver Assistance Systems

the system’s physical behavior to detect and resolve deviations and failures in the
component’s behavior (cf. [7], [10], [8]). The monitoring of software components
in general and the monitoring of the requirements for functional correctness
only starts to gain traction in the automotive domain, one example being the
standardized “E-Gas” Monitoring Concept.

In academia, a wide range of runtime monitoring approaches for the evalua-
tion system properties exist. They can be categorized in different fields, based on
the objectives and property formalization. In the field of requirements monitor-
ing aims to observe a system’s runtime behavior in order to detect its deviations
from its requirements specification. The assumptions about requirements are
formalized in special languages, e.g. FLEA (cf. [5]), or as goal driven specifica-
tions (cf. [4], [13]). For timed properties, variations of linear time logic are often
used. Events of the system are monitored to evaluate the properties based on
the current values of the considered system parameters (cf. [1]). The authors of
[6] use the functional safety standard ISO 26262 for the definition of monitored
properties for automotive embedded systems.

In general, testing and test coverage is not considered within runtime moni-
toring fields, but some published works address the combination of testing and
runtime monitoring. In [12], the author propose to continuously monitor the
achievement of test obligations. After eliminating covered probes for several test
runs, leaving only untested program code monitored, the changes of the test cov-
erage can be observed at runtime. The authors of [11] use a technology named
software tomography in order to enable the continuous, minimally intrusive anal-
ysis and test of software in the field by remotely monitoring and maintaining
multiple distributed instances. In [2], the authors use runtime monitors as test
oracles in order to identify compromising test cases of system safety properties
of a air-traffic control system. None of theses approach addresses the extraction
of new test cases for the system and its environmental situations from previously
untested system behavior and situations.

Outline. The remainder of this paper is organized as follows. In Section 2,
we describe the conceptual architecture and elements of our envisaged runtime
monitoring solution. Section 3 provides a case study based on the simulation
of an lane change autopilot. We summarize our approach and point out future
work in Sec. 4.

2 Generating Safety Monitors for ADAS

We are interested in discovering if an ADAS is operated within conditions that
were tested to be safe in simulations. Untested operation conditions can be used
as a basis for deriving further test scenarios. We are interested in identifying
these conditions and in creating test scenarios from them. Our approach to
this challenge is a combination of simulation at design time and monitoring at
runtime.

In this section we present a novel conceptual architecture for monitors and
a method for generating these monitors. In particular, we establish an interface

System

. . World
Sensor Preprocessing Postprocessing Actuator

Fig. 2: The input-processing-output architecture of ADAS.

between design time simulation and runtime monitoring that can be used to
generate monitors from tested driving scenarios and help to identify new driving
scenarios in data recorded from monitors.

Monitoring a complex ADAS. The general architecture of an ADAS can be
described by the Input-Processing-Output (IPO) pattern and is shown in Fig. 2.
The sensors of the vehicle acquire data from the environment. The data is then
preprocessed in order to generate a single consistent interpretation of the cur-
rent environmental situation (e.g., the identified objects on surrounding lanes).
The main function of the ADAS analyzes this situation and determines neces-
sary measures (e.g., changing lanes or adjusting speed) and sends corresponding
commands to the output components. The commands are post-processed into set
values for actuators (e.g., brakes, gearbox, or engine).

We are mainly interested in monitoring the main function of the ADAS to
ensure that it operates within tested limits, i.e., for inputs known to be safe from
tests. In order to transfer results obtained in simulations to the road, we have
to monitor the preprocessing as well: We have to ensure that sensor inputs are
preprocessed equivalently by components in the simulation and at runtime. We
thus use a combination of two monitors: one for the preprocessing components
and one for the main function.

The purpose of our monitors is to gradually ensure that an ADAS is tested to
be safe in all relevant conditions. In case of untested conditions, we report these
conditions for further testing. In this work we do not consider the application
of appropriate measures during operation, e.g., disabling the ADAS, which is a
highly complex issue in its own right. Moreover, we do not address the problem
of guaranteeing functional safety of the complete system. This would require
monitoring of all components and also a strategy for reaching a safe state in
case of failure.

Generating monitors from design time artifacts. One of the main chal-
lenges in the DADAS scenario is finding a strategy for exchanging information
between simulations and operation of an ADAS. In order for the proposed ap-
proach to become feasible in practice, we need to generalize from the data that
is passed over the interfaces of the ADAS’ components. If all our monitors would
work at the level of physical signals, the monitors would almost never be able
to identify a situation as tested. At the same time, we have to be very careful
when generalizing. Otherwise we may identify conditions as safe wrongfully.

Design and Test

System under Operation

Preprocessing Function

Specification)
Abstraction

I

Abstract
Function

IRON d g Situation
8 i 8 : / Monitor
_¢ & Test Scenarios J

d

Simulation Environment

| Preprocessing Function

\ Monitoring < Monitoring
Function

System under
Test

Operation and Monitoring

Fig.3: Generating monitoring components from specifications, test scenarios,
and components of a simulation environment.

A sensible level of abstraction can usually be found in the specification of an
ADAS (e.g., ...on the lane to the right of the ego vehicle...). We can use this
level of abstraction as a basis for passing information from design time testing
to operation and vice versa for two reasons.

— The main function of the ADAS is developed against this specification. It
should thus implement the specification and we can assume that it is safe
to abstract from concrete data values to the level of the specification. In
order to not solely rely on this assumption, we can additionally generate an
abstract function from the specification and monitor the conformance of the
main function of the ADAS to the specification at runtime.

— The specification will often be the source for generating test scenarios and for
measuring test coverage (of the specification). If we record situations at this
level of abstraction during operation, we can directly feed those situations
back into testing.

We have established that we generate two different monitors: one for the
preprocessing and one for the main function. We have also discussed how these
monitors are generated from design time artifacts. Figure 3 shows an overview of
how monitoring components are generated from design time artifacts, in partic-
ular specifications, test scenarios, and simulation components. We describe the
architecture of the resulting monitors in the remainder of the section.

Unconform

—

Fig. 4: Monitoring the preprocessing of environmental data.

Preprocessing

Monitoring the preprocessing components. We use components from the
simulation to validate the preprocessing of the ADAS. We check the equivalence
of the two sets of preprocessing components in order to ensure that tested sce-
narios transfer from simulation to the road. Please note that this is not a general
verification of the data fusion performed by these components.

Figure 4 shows the architecture of the monitor for the preprocessing of an
ADAS. The bottom line of components are part of the original ADAS’ processing
chain. In this setup, the real sensor data of the ADAS is mapped to the format of
the input expected by preprocessing components in the simulation environment.
We expect the two sets of preprocessing components to be almost identical,
i.e., we assume that the simulation includes realistic preprocessing code and
(simulated) sensor data. The results of the preprocessing of the ADAS is then
compared to the results of the preprocessing from the simulation environment.
In case the results differ, we cannot assume to be in a tested situation.

Monitoring the main function of the ADAS. Figure 5 shows the compo-
nents we use for monitoring the main function of the ADAS. The bottom line
of components are part of the original ADAS’ processing chain. We use com-
ponents that abstract the input and output of the main function to the level
of the specification. These abstract inputs and outputs are then used as a ba-
sis for monitoring functional correctness and for logging encountered unverified
situations.

The monitors verify correctness by comparing the main function of the ADAS
to the abstract function that is derived from the specification. The function is
safe if the (abstracted) output of the main function is covered by the output of
the abstract function, i.e., if the concrete output is allowed by the specification.

During development, the situation monitor logs the abstracted inputs of the
main function, e.g. the situations, for which we are interested in generating more
or better test scenarios during development. During operation, the monitor is
equipped with a database of situations that were tested to be safe in simulations.
In case the monitor observes an untested situation, no guarantees about the
ADAS’ safety can be made.

We have evaluated this concept for an architecture in a small case study
successfully. The results from the evaluation are presented in the next section.

Safe /

Situation Unsafe
. Oracle
Monitor =
Logging

Abstract
Function

Oracle
Conform /

Unconform

Abstraction Abstraction

Preprocessing Function

Fig.5: Monitoring the main function of an ADAS.

3 Preliminary Evaluation: The Lane Change Autopilot

In order to evaluate our monitoring concept for the main functionality of ADAS
(cf. Section 2), we implemented a basic simulation environment and a simplified
lane change autopilot according to a given specification. From the specification
we also derived the components for the abstractions and the abstract function
(cf. Fig. 5). We then used these components to test the feedback loop envisioned
by the DADAS project: First, we simulated test scenarios and recorded safe
situations. For this initial evaluation, we did not use a prototype vehicle (This
will be done in a later step). Instead, we simulated random driving scenarios in
order to find untested situations and functional errors. The remainder of this
Section covers the setup and results of this preliminary evaluation.

Specification. We wrote a simple specification for the autopilot as a basis for
the case study and restricted ourselves to overtaking on multi-lane roads. An
existing specification of the behavior of a dead spot warning system served as
guidance and example. As shown in Fig. 6, the specification assumes three road
lanes and defines one zone to be observed on each lane.

For the two neighboring lanes left and right of the ego vehicle, these zones
cover the space that would be needed for a safe change to these lanes. The zone
in front of the ego vehicle is used for triggering lane changes in our lane change
autopilot. Our specification just requires that the autopilot does not overtake
vehicles in its lane on their right side (this is illegal on German highways): If
an object is observed in the zone in front of the vehicle, the autopilot may not
initiate a lane change to its right lane.

Implementation. We have implemented two versions of the lane change func-
tion. One version is compliant with our specification while the other one is not.
Both versions take a list of objects around the ego vehicle as input and process
the target lane for the ego vehicle as output. We also implemented an abstract
function in order to check the functional correctness of both versions at runtime.

While the architecture of our implementation closely resembles the com-
ponents present in Fig. 2, we have abstracted from some of the details inside
the single components. Our sensors, e.g., work with world objects instead with

(1)]
()]

E ®

(a) (b) (c) (d)

Fig. 6: Scenarios for the Advanced Lane Changing Assistant

mileages of light waves and we have not implemented the execution of the lane
change itself. On the other hand, since we were primarily interested in eval-
uating the architectural pattern presented in Sec. 2, we have implemented all
monitoring components shown in Fig. 5.

Figure 7 shows the visualization of our simulation environment. The main
component overlays the current abstract situation with the objects around the
ego vehicle. Zones are colored red when they are occupied by a vehicle. The
target lanes of the concrete and the abstract function are shown as blue (yellow
respectively) points in front of the ego vehicle on the three lanes. While the
yellow points mark the possible target lanes of the abstract function, does the
blue point symbolize the concrete target lane of the ADAS.

Experiments. We have conducted a series of experiments during which we
first trained both versions of the lane change autopilot with a given test set of
test scenarios. In a second step, we used the trained situation monitors while
simulating random driving scenarios.

Figure 6 shows an excerpt of our initial set of test scenarios at design time
used to train the situation monitors. In all displayed test scenarios, a vehicle
enters the zone required for the lane change from behind or the front. In addition,
some test scenarios place a vehicle in front of the ego vehicle in order to initiate
a lane change. Figure 7b displays the set of situations that were recorded during
testing by the situation monitor. Situations are pairs of zones on lanes (occupied
or unoccupied) and possible target lanes.

Results. In our experiments, the functional correctness was checked correctly at
the level of the abstract function. We were also able to train the situation monitor
and then discover new (abstract) situations at runtime. These new situations
could then be used as the basis for the iterative improvement of the test coverage
by additional test scenarios. With increasing number of iterations, the most
common situations had been tested and the test coverage of the ADAS reached a

Error Situation

AbstrSitu[L-1:0ccup
ied,L0:0cc

Knowledg
Lane Occupation (LEFT |MID|RIGHT)| TargetPoints (LEFT | MID |RIGHT)
[Cccupation: L(-1):Free,L(0):Free,L(1):Free|L(-1),L(0),L(1)]
[Cccupation: L(-1):Blocked,L(0):Free,L(1):Free|L(0),L(1)]
[Cccupation: L(-1):Free,L(0):Free,L(1l):Blocked|L(-1),L(0)]
[Cccupation: L(-1):Free,L(0):Blocked,L(1):Free|L(-1),L(0)]
[Cccupation: L(-1):Blocked,L(0):Blocked,L(1l):Free|L(0)]
[Cccupation: L({-1):Free,L(0) :Blocked,L(1l):Blocked|L(-1),L(0)]

(a) Visualization (b) Tested Situations Database

Fig. 7: Implementation of the function’s runtime monitoring

stable level, when the monitor only recognized exceptional situations as untested
situations.

These initial results indicate the feasibility of our approach for the runtime
monitoring of ADAS. We are currently working on a refined version of this case
study, using the prototype of an autopilot with automatic lane change. The
refined version will be implemented in ADTF? and simulated in VID? - two
common tools for the development of ADAS. In the refined case study, we are
also evaluating how one can generate monitors for the preprocessing components
of an ADAS using components from the simulation.

4 Conclusion

The DADAS approach addresses safety and correctness of advanced driver assis-
tance systems. It consists of two parts - the verification of the ADAS in simula-
tions for a finite set of defined test scenarios at design time and the monitoring of
the ADAS at runtime. The runtime monitoring ensures that the system and its
environment remain within the behavior and situations which have been verified
in simulations at design time. We have presented an conceptional framework for
the runtime monitoring based on (i) decomposing the monitoring problem and
on (ii) using and simulation components and artifacts for defining monitors: In
the presented approach the monitoring task is split into monitoring of the actual
main function and monitoring the preprocessing components. We have presented
a conceptual architecture for the necessary monitors and have discussed how the
necessary components can be derived from design time artifacts. We have per-
formed an initial evaluation of our approach using a small case study.

We are currently performing a second, larger case study on an automated
lane changing autopilot. In this bigger case study, we have derived abstractions

2 ADTF is an acronym for Automotive Data and Time-Triggered Framework
3 VTD is an acronym for Virtual Test Drive

and the abstract function successfully in a structured fashion. As a next step, we
will try to automate the generation of monitoring components by using model-
based methods and evaluate their performance. We are currently investigating
how to use components of the development and simulation environment (ADTF
and VTD) for the equivalence check of the preprocessing components. The main
goal of this second case study is to deploy our framework in a car eventually and
to test the transfer from simulation to operation in the field.

References

10.

11.

12.
13.

Andreas Bauer, Martin Leucker, and Christian Schallhart. Runtime verification
for LTL and TLTL. TOSEM, 2011.

Marko DimjaSevi¢ and Dimitra Giannakopoulou. Test-case generation for runtime
analysis and vice versa: verification of aircraft separation assurance. In ISSTA,
pages 282-292. ACM, 2015.

EC—European Commission. Roadmap to a single European transport area - To-
wards a competitive and resource efficient transport system. White Paper (COM
(2011) 144), 2011.

M.S. Feather, S. Fickas, a. Van Lamsweerde, and C. Ponsard. Reconciling system
requirements and runtime behavior. 9th Int. Workshop on Software Specification
and Design, 1998.

Stephen Fickas and Martin S Feather. Requirements monitoring in dynamic en-
vironments. In IEEE 2nd Int. Symposium on Requirements Engineering, pages
140-147. IEEE, 1995.

. Donal Heffernan, Ciaran MacNamee, and Padraig Fogarty. Runtime verification

monitoring for automotive embedded systems using the iso 26262 functional safety
standard as a guide for the definition of the monitored properties. Software, IET,
8(5):193-203, 2014.

Rolf Isermann. Fault-Diagnosis Applications. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2011.

R. Marino, S. Scalzi, P. Tomei, and C.M. Verrelli. Fault-tolerant cruise control of
electric vehicles with induction motors. Control Engineering Practice, 21(6):860—
869, 2013.

. Malte Mauritz, Andreas Rausch, and Ina Schaefer. Dependable ADAS by Combin-

ing Design Time Testing and Runtime Monitoring. In FORMS/FORMAT 201/,
10th Int. Symp. on Formal Methods, pages 28-37, 2014.

Javad Mohammadpour, Matthew Franchek, and Karolos Grigoriadis. A survey
on diagnostics methods for automotive engines. Int. Journal of Engine Research,
2011.

Alessandro Orso, Donglin Liang, Mary Jean Harrold, and Richard Lipton. Gamma
System: Continuous Evolution of Software after Deployment. ACM SIGSOFT
Software Engineering Notes, 27(4):65, 2002.

C. Pavlopoulou and M. Young. Residual test coverage monitoring. ICSFE, 1999.
Yigiao Wang, Sheila A Mcllraith, Yijun Yu, and John Mylopoulos. An automated
approach to monitoring and diagnosing requirements. In ASE, pages 293-302.
ACM, 2007.

