
Insuk Park, Kyungmin Lee, Dongman Lee, Soon J. Hyun, and Hee Yong Yoon 42

A Dynamic Context Conflict Resolution Scheme
for Group-aware Ubiquitous Computing

Environments
Insuk Park, Kyungmin Lee, Dongman Lee, Soon J. Hyun, and Hee Yong Yoon

Abstract—In this paper, we propose a dynamic conflict resolu-

tion scheme for group-aware ubiquitous computing environments.
The proposed scheme incorporates users’ intention as well as user
preferences into conflict resolution. Conflicts are resolved dif-
ferently according to the situations of involved users even in the
same conflicting situation. For multi-user environments, the
proposed scheme dynamically resolves the conflicts occurring
between different types of context-aware applications. It allows
context-conflict management to become more transparent to
application programmers.

Index Terms—conflict resolution, group context, context aware-
ness, ubiquitous computing middleware.

I. INTRODUCTION
Conflict management in context-aware computing is getting

more significant attention from researchers as ubiquitous
computing environments take into account multiple users [4].
For multi-user ubiquitous computing environments, conflicts
among users’ contexts need to be detected and resolved dy-
namically [1, 3]. For this, application developers or end-users
specify conflicts situations, and the underlying ubiquitous
computing middleware detects and resolve conflicts between
applications when one of the conflict situations arises.

In dynamic conflict resolution, it is important that conflicts
are resolved such that the satisfaction of the involved users with
the result of the resolution is maximized as much as possible.
To support this, conflicts should be resolved differently de-
pending on the intentions of the involved users. For example,
suppose that a user expects the light to be turned off when she
falls asleep and the light turned on when she enters the bedroom.

If a conflict arises when a user is asleep, the user will be satis-
fied with the result such that the light is turned on as dimly as
possible. On the other hand, when a user enters the bedroom,
the user will be satisfied as the light is turned on as brightly as
possible.

This research is partially supported by the Ubiquitous Autonomic Comput-

ting and Network Project, the Ministry of Information and Communication
(MIC) 21st Century Frontier R&D Program and the Digital Media Lab in
Korea.

I. Park is a Ph.D. candidate in School of Engineering at Information and
Communications University, Daejeon, Korea (e-mail: ispark@icu.ac.kr).

K. Lee is a Ph.D. candidate in School of Engineering at Information and
Communications University, Daejeon, Korea (e-mail: kmlee@icu.ac.kr).

D. Lee is a Professor in School of Engineering at Information and Com-
munications University, Daejeon, Korea (e-mail: dlee@icu.ac.kr).

S. J. Hyun is an Associate Professor in School of Engineering at Information
and Communications University, Daejeon, Korea (e-mail: shyun@icu.ac.kr).

H. Y. Youn is a Endowed Proferssor in School of Electrical and Computer
Engineering, Sungkyunkan University, Suwon, Korea (e-mail:
youn@ece.skku.ac.kr).

To our knowledge, CARISMA [1] is the only approach that
supports dynamic conflict resolution. It selects one of resolu-
tion choices that maximize users’ satisfaction based on user
preferences. Users specify how much they prefer each resolu-
tion choice in terms of QoS parameter settings for conflict
resolution. However, CARISMA is designed to handle con-
flicts among the users of cooperative applications where the
intention of all the users is assumed to be the same. Thus, it
cannot effectively resolve the conflicts where the satisfaction of
users with resolution results varies depending on the intention
of users. In the example above, if the satisfaction of the in-
volved users is maximized by the brightness level 1 of the light,
that is, minimum brightness, then the brightness of the light is
always set to 1 regardless that the user is asleep or enters the
bedroom. The user is satisfied with the result when sleeping,
but he/she is not when entering the bedroom.

In this paper, we propose a new conflict-resolution scheme
which dynamically resolves conflicts by incorporating the
intentions of the involved users as well as their preferences.
Our scheme determines a resolution choice such that the in-
tentions of the involved users are preserved as much as possible.
User intentions are modeled as the value assigned to a context
by the actions requested from applications on behalf of users.
The differences between a resolution choice and user intentions
are represented by a set of distance functions. User preferences
are expressed as cost functions to reflect the level of users’
reluctance to the differences between their intentions and
resolution choices. Based on cost functions, a resolution is
determined to minimize the reluctance of all users involved in
conflicts. The conflicting applications then adapt themselves to
the resolution result. We implement the proposed conflict
resolution scheme as part of Active Surroundings [4], our
group-aware ubiquitous computing middleware.

This paper is organized as follows. The design of the pro-
posed conflict resolution scheme is given in Section 2. Im-
plementation details and system architecture are described in
Section 3. Section 4 discusses the advantages and the remaining
issues of our approach and evaluation results. Conclusion fol-

ubiPCMM 2005 43

lows in Section 5.

II. RELATED WORK
The definition of conflict varies from context-aware appli-

cation to application as shown Table 1.
Gaia deals with conflicts that occur among simultaneously

triggered rules in the same application [2]. It uses priority to
resolve a conflict, that is, if there are conflicting rules, the rule
with the highest priority wins. A priority-based static resolution
approach is simple and powerful but its limitation has already
been mentioned in other works like [5]. That is, conflicts are
resolved in the same manner regardless of other contexts. The
priority of each rule introduces a conflict to the application
programmer at the time of designing a context-aware applica-
tion. This makes the development of applications difficult since
it is almost impossible for application programmers to consider
all rules defined in other applications in their design. Fur-
thermore, the conflict resolution policy in Gaia, that is, select-
ing the rule with the highest priority may not satisfy all users at
the same time.

CARISMA proposes a runtime conflict-detecting and re-
solving mechanism [1]. It also defines a conflict as two or more
enabled policies that occur at the same time. CARISMA pro-
vides a technique for two kinds of conflicts, i.e., a conflict
within an application for a single user (intra-profile); and a
conflict by cooperating applications for multiple users (in-
ter-profile). It employs a particular type of sealed-bid auction
to get a resolution policy which maximizes “social welfare”
based on the QoS parameters of a service and user preferences.

However, Gaia and CARISMA cannot properly handle con-
flicts when multiple users are served by different applications.
The proposed scheme aims to resolve a conflict in such a
situation without an explicit description of the conflict. For the
conflict of a single user in the same application, we just adopted
the existing approach [1].

III. THE PROPOSED SCHEME
In this section, we present the proposed conflict resolution

scheme. We first discuss some design issues on conflict reso-
lution between context-aware applications. We then provide a
brief overview of our context-conflict management scheme:
modeling, detecting, and resolving context-conflicts between
context-aware applications. Finally, we describe our conflict
resolution scheme: how to model and express user preferences;
how to resolve a conflict with user preferences.

A. Design Consideration
Conflicts in context-aware applications can be regarded as

logical inconsistencies between users’ intentions. For instance,
suppose that a light in a bedroom is off since a user falls asleep.
Later, another user enters the bedroom and tries to turn the light
on. In this example, the latter user’s intention, ‘the light being
on’, is inconsistent with the former user’s intention, ‘the light
being off’. To detect and resolve such conflicts, we need a
model that represents user intentions.

User intentions can be captured easily by what actions ap-
plications perform on behalf of users. Existing conflict man-
agement schemes [1, 2] detect and resolve conflicts at this level.
However, the approach based on application actions is difficult
to handle conflicts between different types of applications. This
is because the applications are likely to have different sets of
actions and may not share common actions. To address con-
flicts between independently developed different applications,
we need to model user intentions at higher level than actions
such as effects on context attributes and detect and resolve
conflicts [3].

In conflict resolution, user intentions should be reflected
such that all the users’ intentions are preserved as much as
possible. In other words, a conflict resolution result should not
be different from users’ intentions as much as possible. For that,
we need a model for measuring differences between user in-
tentions and resolution results.

The impact of the differences on users’ satisfaction may be
different from one user to another. Some users are more tol-
erant of the differences than others. For instance, a user is
insensitive to brightness when he/she is sleeping. Then the
user’s satisfaction decreases at a slower rate as increases
brightness. That is, the user is less reluctant to brightness’s
difference. On the other hand, if the user is very sensitive to
brightness, then the contrary is the case. Moreover, the degree
of a user’s reluctance varies with different context attributes.
For instance, a user is sensitive to loudness while he/she is not
sensitive to brightness. A conflict resolution scheme should
reflect these differences.

TABLE I
POSSIBLE CONFLICTING SITUATIONS IN CONTEXT-AWARE APPLICATIONS

Single User Multiple Users System
Same App. Diff. Apps. Same App. Diff. Apps.

Gaia O X O X

CARISMA O X O X

Active Sur-
rouundings – O O O

B. Context-Conflict Management
Context-aware applications behave differently based on the

current context. We assume that a context-aware application
specifies what context conditions it is interested in. When one
of the context conditions is met, the application is notified of
that by the underlying context manager [3]. Then the applica-
tion performs a corresponding task. For example, a con-
text-aware light application turns a bedroom’s light on when
someone enters the bedroom or turns the light off when
someone falls asleep.

An application’s task is implemented through a series of ac-
tions (i.e., methods) provided by available services in the en-
vironment. Each action of a service requested by applications is
interpreted as an effect on some context attributes, which is
encoded in the action semantic ontology [3]. In the example
above, the application requests the ‘turn on’ action of a light
service in the bedroom when someone enters the bedroom. The

Insuk Park, Kyungmin Lee, Dongman Lee, Soon J. Hyun, and Hee Yong Yoon 44

‘turn on’ action is then interpreted as ‘increase brightness’ or
‘set brightness as the maximum level’ in the bedroom.

Actions are monitored and conflicts among them are de-
tected at runtime by the context manager. The manager inter-
cepts an action request from an application and checks if that
action conflicts with other actions executed by another appli-
cations. Two actions are defined in conflict if their effects on a
context attribute are contradictory. The action semantic on-
tology has the information required to infer the contradictory
effects. For example, the effects of the ‘turn on’ and ‘turn off’
actions of a light service are contradictory in that the former
increases brightness while the latter decreases it.

When a conflict is detected, the context manager resolves it
by determining a compromised value on the conflicting context
attribute. Our scheme determines the compromised value such
that the intentions of the involved users are preserved as much
as possible. User intentions are modeled as the value assigned
to a context attribute by the actions requested by applications
on behalf of users. The differences between a compromised
value and user intentions are encoded as distance functions,
which represent how much one value on a context attribute is
different from another. User preferences, expressed as cost
functions, reflect how much users are reluctant to the differ-
ences between their intentions and compromised resolution
results. Based on user preferences, our scheme minimizes the
amount of reluctance of all users involved in conflicts. The
involved applications behave according to the resolution result.

C. Modeling User Intentions
In modeling user intentions, we assume that user intentions

are explicitly represented by actions requested by applications
on behalf of users. This simplifying assumption may not be
valid since an action of a service can be requested by applica-
tions with different user intentions. For example, a user would
want to turn a light off when he/she either watches movie or
falls asleep. With this ‘turn off’ action of the light service, users
have different intentions. However, such fine-grained user
intentions are difficult to be modeled explicitly or formally.
Although we model only coarse-grained user intentions in this
work, our resolution scheme can be easily applicable to
fine-grained user intentions.

We define user intentions as follows:

Definition 1: (User intention). Let A be the set of actions
either executed or requested by applications on behalf of a user.
Then, a set of pairs, I = {<c1, v1>, <c2, v2>, …, <ck, vk>} is the
user intention iff:

 {c1, c2, …, ck} is a set of context attributes that an
action a∈A may affect. In other words, the action a
can change one of their values.

 For each pair <ci, vi> in I, context attribute ci is al-
tered to vi by the execution of an action a∈A.

For example, suppose that a user entered a bedroom. The

context-aware light application then turns on the bedroom’s

main light. This action makes the brightness of the bedroom
level 10. He also wants to listen to music and requests a MP3
player to play music. This action will change the loudness of
the bedroom to level 20. At this moment, the user’s intention is
represented as {<bedroom’s brightness, 10>, <bedroom’s
loudness, 20>}.

D. Modeling Differences between User Intentions and
Resolution Results
A user’s satisfaction or dissatisfaction with a conflict reso-

lution result may depend on the difference between the result
and his/her intention. For instance, the intention of a user is
{<bedroom’s brightness, 10>}, but the brightness of the bed-
room is set to 5 by the resolution of a conflict. The user may be
dissatisfied with the current brightness of the bedroom (5) in
proportion to the difference (|10-5|=5) between the current
brightness of the bedroom and his/her intention (10).

To simplify modeling differences between user intentions
and resolution results, we assume that context attributes are
modeled independently for each context attribute. With this
assumption, our scheme can deal with each context attribute in
a user’s intention one by one. Difference on each context at-
tribute contributes independently to the overall difference be-
tween user intentions and resolution results.

Each context attribute has a distance function that gives the
difference between two values on it.

Definition 2: (Distance function). Let C denote a set of con-
text attributes c∈C, let D be the domain (that is, value space)
of c. Let R be the set of nonnegative real values. For each c, a
function d : D × D → R is the distance function of the
context attribute c if:

c
+

c c c
+

 d (x, y) ≥ 0. c

 d (x, y) = 0 iff x = y. c

 d (x, y) = d (y, x). c i

 d (x, z) ≤ d (x, y) + d (y, z). c i i

We assume that context attributes fall into two categories:

those characterized by enumeration, and those characterized by
numeric values. For each category, distance functions are dif-
ferently defined.

For context attributes with an enumerated domain (for in-
stance, a monitor’s display resolution), a distance function is a
matrix called distance matrix. A distance matrix has as its rows
and columns possible (finite and discrete) values of a context
attribute. Its element represents each distance between values.
Diagonal = 0, symmetry,

On the other hand, for context attributes with a numeric
domain (for instance, brightness or loudness), a distance func-
tion is any mathematical function satisfying conditions in
Definition 2. For instance, brightness is a real value from 0 to
10. The distance function of brightness can be d(x, y) = |x−y|,
d(x, y) = (x−y)2, or d(x, y) = e|x−y|.

ubiPCMM 2005 45

E. Modeling User Preferences
User preferences are expressed formally as cost functions2.

The possible values of a cost function, called cost space, pro-
vide a formal representation of how much users are reluctant to
the difference on a context attribute. Now the problem of con-
flict resolution is converted into a cost minimization problem.

Formally, cost functions are defined as follows.

Definition 3: (Cost function). Let U be the set of users and C
be the set of context attributes. The cost function of a user u∈U
with respect to a context attribute c∈C is a function Fu,c : D →
[0,1] where D is the domain of distances of the context attrib-
ute.

Note that the cost is a real value from 0 to 1. The cost value

of one corresponds to users who would not tolerate the dif-
ference between their intentions and the compromised result.
On the other hand, the cost value of zero means that the com-
promised result would not be different from their intentions.

F. Resolving Conflicts
We have defined user intentions, distance functions, and cost

functions. Based on those models, conflict resolution in our
scheme is defined as follows:
Definition 4: (Conflict resolution). Let U be the set of users
involved in a conflict. Let C be the set of context attributes
relevant to the conflict. Then, the conflict resolution result is a
set of compromised values, R = {rc | c∈C}, such that for each
c∈ C.

, ,arg min ((,))c u c c
u U

r F d v
∈

= ∑ u c cr

where vu,c is the intention value of u on c and dc is the dis-
tance function of c.

As mentioned above, the problem of conflict resolution is
deduced to a minimization problem. Note that each compro-
mised value is computed independently.

G. Adapting Application
Definition 5: (Application adaptation). Let ac be an action
that changes the context c. Let A is an application which con-
sists of a set of actions {ac,1, ac,2, …, ac,n}. Then the application
adaptation, T is an ordered sequence of actions of A which

changes the value of context c, v

2 User preferences are usually represented as utility functions, which indi-
cate how much users are satisfied with something. Cost functions also can
capture user preferences in terms of how much users are reluctant to something.
They represent user preferences with the opposite semantics.

c to the resolution result rc.
TABLE II

EXAMPEL OF USER PREFERENCE ON CONTEXTS

 Brightness Loundness Display Size

User A Very High Neutral Low

User B Low Neutral High

T = {ac,1, ac,2,…, ac,k} (k n≤)

IV. IMPLEMENTATION

A. Case Study
In this section, we apply algebraic functions to each formal

definition in the previous section to show an example. In this
case study, we assume that the intention of a user u, Iu is rep-
resented by a single pair of a context and its value, Iu =<c, vc>.
We define the distance function over the intention of a user, c
and the resolution choices, r as dc(vc, r)=(vc - r)2. The cost
function of the user u is given as Fu,c = Pru,c×dc (Pru,c: prefer-
ence of user u on a context c). To help users to specify their
preferences, five choices are given to users which are “very
high”, “high”, “neutral”, “low”, and “very low”. We assign
natural numbers on them from 5 to 1, respectively. Table 2
shows an example of the preference of User A and B.

Suppose that a conflict occurs because two users, AU and

BU set the value of a certain context c to α and

β ()α β< respectively, at the same time. Then, the distance

functions of two users and are; ,AU cd ,BU cd
2(

AU c rd)α= − and 2(
BU cd r)β= − where rα β≤ ≤

The total cost of two users, weighted by user preferences,

and is;
TC

AU CPr
BU CPr

A A B BT U C U U C Uc cC Pr d Pr d= +
2 2() (

A BU C U CPr r Pr r)α β= − + −

Therefore, we can say that resolving the conflict is finding
which minimizes C . It is the same as the solution of the

below equation.
iC T

2 () 2 ()
A B

T
U C i U C

i

i
dC

Pr C Pr C
dC

α β β= 0− + =−

The conflict resolution is; cr

A B

A B

U C U C

U C U C

c

Pr Pr

Pr Pr
r

βα
=

+

+

For example, a conflict occurs on the context, Brightness
when User A turns off the light (set Brightness to 0) while User
B turns on the same light (set Brightness to 10). The resolution
choices are real values between 0 and 10. In this case, the
resolution of the conflict is determined as below by user pref-
erences as defined in Table 2.

5 10 2 0
7.14

5 2

× + ×
=

+

According to the result of conflict resolution, the light is dim
to the brightness level given by the result. We assume that
every application has enough functionality to adapt itself to the
conflict resolution.

Insuk Park, Kyungmin Lee, Dongman Lee, Soon J. Hyun, and Hee Yong Yoon 46

B. System Architecture
We implement the proposed scheme on top of the Service

Interaction Broker [4], which is a communication channel
between applications and services. It is a modified Java version
of the Apache Axis [9] to enable dynamic adaptation. We also
leverage the ContextToolkit [6], the OWLJessKB [7], and the
Jess [8] on the JDK 1.5 to build context management compo-
nents.

The left part of the block diagram in Figure 1 depicts the
middleware components of context-awareness inspired by the
ContextToolkit and the Solar [10]. Basically, we adopt the
producer-consumer model [11] for gathering, aggregating,
inferring, and disseminating contexts. On top of the compo-
nents for context-awareness, the proposed context-conflict
management scheme requires four additional components to
support dynamic detection and resolution of context-conflicts
between applications. As shown on the right-hand side of the
diagram in Figure 1, they are the conflict manager, the conflict
detector, the action semantic manager and the conflict resolver.

The conflict manager coordinates the whole process of
managing context-conflicts. It consists of three steps. The first
is to manage action semantics. The second is to detect con-
text-conflicts by monitoring the action semantics. The last is to
resolve them based on user preferences.

C. Context Conflict Management Procedure
Context-conflict management scheme requires four addi-

tional components to support conflict representation and dy-
namic detection in addition to the proposed resolution scheme.
The conflict manager intercepts action invocation for capturing
its information such as the name of the action, the list of ar-
guments, and the target service before action execution. It
activates the action semantics of the action through the action
semantics manager in the action semantic ontology. After that,
the conflict detector searches for a context-conflict caused by
the action semantics activated just before. If it finds a conflict,
the conflict resolver generates a new action invocation as its
resolution. The action semantics activated by the old action are
then invalidated and those derived by the new one are activated.

The process is repeated until there is no more conflict in the
action semantic ontology. Finally, the conflict-free action is
delivered to the target service and executed. Figure 2 shows the
sequence of the context-conflict management procedure for
each action invocation.

V. DISCUSSION
We assume that contexts are not correlated with each other.

It makes conflict resolution simple when more than one con-
texts are involved in the same conflict by applying resolution
scheme to them independently. Our approach needs to be ex-
tended to cover this issue.

In this paper, we show a conflict situation in which only two
users are involved as an example, but the proposed scheme can
be easily extended to the case of more than two users because
the cost of each user’s intention for conflict resolution is not
related with each other.

We simply assume that the result of conflict resolution can
be realized as a single application policy but, if it is not, the
result can be realized with a combination of application policies.
For example, if the conflict resolution says brightness has to be
7, but the light application only has dimUp and dimDown, then
the resolution can be shown as the several iteration of dimUp or
dimDown. It will be enhanced by the techniques of AI planning
or the Semantic Web service composition in the future.

VI. CONCLUSION
In this paper, we proposed a dynamic context-conflict reso-

lution scheme for resolving conflicts between different con-
text-aware applications. It considers the intentions of the in-
volved users as well as user preferences in the conflict resolu-

Context-Conflict Management Procedure

Add the action semantic of a user request in
action semantic ontology

There exist?

Remove two conflicting action semantic
patterns in the ontology

Generate a conflict resolution policy

Add the action semantic of the conflict
resolution policy

Execute a user request or a conflict
resolution policy

End

YES
NO

Search for a contradictory effect pattern on a
context attribute or a state variable

Fig. 2. Context-Conflict Management Procedure

Context
Reasoner

(Jess)

Context Widget (Context Toolkit)

Context
Abstraction

Service
Abstraction

App App App

Context-aware Application
Programming Interface

ServicesSensors

Context Interpreter

Context Aggregator

Conflict Manager

Conflict Detector

Conflict Resolver

Action Semantic
Manager

Fig. 1. The Overall Architecture for Context Awareness and Conflict Man-
agement

ubiPCMM 2005 47

tion model. User intentions are modeled as the value assigned
to a context attribute by the actions requested from applications
on behalf of users. User preferences are expressed as cost
functions over the distance between user intentions and the
resolved value. Based on user preferences, the resolved value is
determined to the one which minimizes the cost of all users
involved in conflicts. The involved applications behave ac-
cording to the resolution result. We plan to extend our scheme
such that it resolves conflicts appropriately depending on the
situation in which the involved users reside. Although we
model only coarse-grained user intentions in this work, our
resolution scheme can be easily applicable to fine-grained user
intentions. We will deal with the more fine-grained modeling of
user intentions in future work.

REFERENCES
[1] L. Capra, W. Emmerich, and C. Mascolo, “CARISMA: Con-

text-Aware Reflective mIddleware System for Mobile Applica-
tions,” IEEE Trans. on Software Engineering, Vol. 29, Issue 10,
Oct. 2003, pp. 929-945.

[2] A. Ranganathan, and R. H. Campbell, “An Infrastructure for
Context-Awareness based on First Order Logic,” Journal of
Personal and Ubiquitous Computing, Vol. 7, Issue 6, Dec. 2003,
pp. 353-364.

[3] I. Park, D. Lee, and S. Hyun, “A Dynamic Context-Conflict
Management Scheme for Group-aware Ubiquitous Computing
Environments,” To appear in 29th Annual Int’l Computer Soft-
ware and Applications Conference.

[4] D. Lee, et al.,“A Group-Aware Middleware for Ubiquitous
Computing Environments” The 14th Int’l Conf. on Artificial Re-
ality and Telexistence, 2004, pp. 291-298.

[5] J. Chomicki, J. Lobo, and S. Naqvi, “Conflict Resolution Using
Logic Programming,” IEEE Trans. on Knowledge and Data En-
gineering, Vol. 15, Issue 1, 2003, pp. 244-249.

[6] A. K. Dey, G. D. Abowd, and D. Salber, “A Conceptual
Framework and a Toolkit for Supporting the Rapid Prototyping
of Context-Aware Applications,” HCI Journal, Vol. 16, Issue 2-4,
2001, pp. 97-166.

[7] The OWLJessKB,
“http://edge.cs.drexel.edu/assemblies/software/owljesskb/,”
2004.

[8] E. Friedman-Hill, Jess in Action: Java Rule-Based Systems,
Manning Publications, Greenwich, 2003.

[9] The Apache <Web Services/> Project,
“http://ws.apache.org/axis,” 2003.

[10] G. Chen and D. Kotz “Solar: A pervasive-computing infrastruc-
ture for context-aware mobile applications,” Dartmouth College
Technical Report, TR2002-421, 2002.

[11] T. Zimmer, “Towards a Better Understanding of Context At-
tributes,” Proc. of 2nd IEEE Int’l Conf. on Pervasive Computing
and Communications, March 2004, pp. 23-28.

Insuk Park received the B.S. degree in computer engineering from Kyung-
pook National University (KNU), Korea, in 2000 and the M.S. degree in en-
gineering from Information and Communications University (ICU), Daejeon,
Korea, in 2002.

He is currently a Ph.D. candidate at ICU. His research interests include
context manage ent and data management in ubiquitous computing. m
Kyungmin Lee received the B.Eng. degree in mechanical engineering from
Pohang University of Science and Technology (POSTECH), Korea, in 2000
and the M.S. degree in engineering from Information and Communications
University (ICU), Daejeon, Korea, in 2003.

He is currently a Ph.D. candidate at ICU. His research interests include
dynamic reconfiguration and seamless communications in ubiquitous com-
puting.
Dongman Lee received the BS degree in Computer Engineering from Seoul
National University, Korea in 1982, and the MS degree and Ph.D. degree in
Computer Science from KAIST, Korea in 1984 and 1987, respectively.

From 1988 to 1997, he worked as Technical Contributor at Hewlett-Packard.
He is currently Professor in School of Engineering at Information and Com-
munications University (ICU), Daejeon, Korea. He is also Associated Director
of Digital Media Laboratory, ICU. He has been actively participating in Korean
Internet address and name committee since 1998. He received a Prime Minister
Award as the recognition of the advancement of the Korean Internet in 2000.
His laboratory, Collaborative Distributed Systems and Networks Lab, has been
appointed as National Research Laboratory in 2001. He has published more
than 50 papers in international journals and conference proceedings. His re-
search interests include distributed systems, computer networks, mobile com-
puting and pervasive computing.

Dr. Lee is a member of IEEE Computer Society, IEEE Communication So-
ciety, and ACM.
Soon J. Hyun received the BS degree in electrical engineering from the
Kyungpook National University, Korea; the ME degree in electrical engineer-
ing from the Katholike Universitate Leuven, at Havelee, Belgium; and the PhD
degree in electrical and computer engineering from the University of Florida, in
1981, 1987, and 1995, respectively. His PhD dissertation was on parallel query
processing in objectoriented temporal database systems.

He is an Associate Professor of the School of Engineering, Information and
Communications University (ICU), Korea. From 1983 to 1997, he worked with
the Electronics and Telecommunications Research Institute (ETRI), Daejeon,
Korea, where he was leading a digital library development project in an effort to
build the Korea National Information Infrastructure. From 1984 to 1986, he was
a visiting member of the research staff at Bell Telephone/ITT (presently,
Bell/Alcatel), Antwerp, Belgium, where he worked on the development of
telecommunications network protocol systems. His recent research interests
include context management, ubiquitous computing, temporal database man-
agement, multimedia databases and knowledge-based information search over
information highway, and digital library systems, and applications develop-
ment.
Hee Yong Youn received the BS and MS degree in electrical engineering from
Seoul National University, Seoul, Korea, in 1977 and 1979, respectively, and
the PhD degree in computer engineering from the University of Massachusetts
at Amherst, in 1988.

From 1979 to 1984, he was on the research staff of Gold Star Precision
Central Research Laboratories, Korea. He had been Associate Professor of
Department of Computer Science and Engineering, The University of Texas at
Arlington until 1999. He was also a faculty of School of Engineering, Infor-
mation and Communications University, Daejeon, Korea from 1999 to 2000.
He is presently Chairperson (Endowed) of Computer Engineering Dept.,
School of Information and Communications Engineering, Sungkyunkan Uni-
versity, Suwon, Korea. His research interests include storage system, distrib-
uted computing and networking, Internet and mobile computing, and
fault-tolerant computing. He has published more than 150 papers in int'l jour-
nals and conference proceedings, and received Outstanding Paper Award from
the 1988 International Conference on Distributed Computing Systems, 1992
Supercomputing, and 2001 Korean Society Internet Information Spring Sym-
posium, respectively. He also served as a lecturer of the ACM Lectureship
Series from 1993 to 1997.

Dr. Youn is a senior member of the IEEE Computer Society.

	I. INTRODUCTION
	II. Related Work
	III. The Proposed Scheme
	A. Design Consideration
	B. Context-Conflict Management
	C. Modeling User Intentions
	D. Modeling Differences between User Intentions and Resolution Results
	E. Modeling User Preferences
	F. Resolving Conflicts
	Adapting Application
	IV. Implementation
	A. Case Study
	B. System Architecture
	C. Context Conflict Management Procedure

	V. Discussion
	VI. Conclusion

