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Abstract. In this paper we propose the FPGA and softcore CPU based device

for large datasets core calculation using rough set methods. Presented architec-

ture has been tested on two real datasets by downloading and running presented

solution inside FPGA. Tested datasets had 1 000 to 10 000 000 objects. The same

operations were performed in software implementation. Obtained results show

the big acceleration in computation time using hardware supporting core genera-

tion in comparison to pure software implementation.
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1 Introduction

The rough sets theory developed in the eighties of the twentieth century by Prof. Z.

Pawlak is an useful tool for data analysis. Therefore a lot of rough sets algorithms were

implemented in scientific and commercial tools for data processing. But data processing

efficiency problem is arising with the increase of the amount of data. Software limita-

tions led to searching new possibilities.

Field Programmable Gate Arrays (FPGAs) are the digital integrated circuits which

functions can be programmed by engineer at any time. It gives the possibility of eval-

uating any boolean functions. That’s why they can be used for supporting rough sets

calculations.

At the moment there are some hardware implementations of specific rough set meth-

ods. The idea of sample processor generating decision rules from decision tables was

described in [8]. In [5] the authors presented architecture of rough set processor based

on cellular networks described in [7]. In [1] a concept of hardware device capable of

minimizing the large logic functions created on the basis of discernibility matrix was

developed. More detailed summary of the existing ideas and hardware implementations

of rough set methods can be found in [2] and in [13]. Previous authors’ research results

focused on this subject can be found in [3, 4, 12].

The paper is organized as follows. In Section 2 some information about the no-

tion of core and datasets used during research are provided. The Section 3 focuses on

description of hardware solution, while Section 4 is devoted to the experimental results.
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2 Introductory Information

2.1 The Notion of Core in the Rough Set Theory

In decision table some of the condition attributes may be superfluous (redundant in

other words). This means that their removal cannot worsen the classification. The set

of all indispensable condition attributes is called the core. None of its elements can be

removed without affecting the classification power of all condition attributes. In order

to compute the core we can use discernibility matrix. The core is the set of all single

element entries of the discernibility matrix.

A much more detailed description of the concept of the core can be found, for

example, in the article [9] or in the book [11].

2.2 Algorithm CORE-DDM for Generating Core Using Discernibility Matrix

Below one can find pseudocode for simple algorithm CORE-DDM (CORE Direct

Discernibility Matrix) for calculating core using discernibility matrix. More detailed

description of this approach can be found in [9, 11].

INPUT: discernibility matrix DM

OUTPUT: core C ⊆ A

1: C ← ∅
2: for x ∈ U do

3: for y ∈ U do

4: if |DM(x, y)| = 1 and DM(x, y) 6⊂ C then

5: C ← C ∪DM(x, y)
6: end if

7: end for

8: end for

The main concept of algorithm CORE-DDM is based on a property of singleton ie.

cell from discernibility matrix consisted of the only one attribute. This property tells

that any singleton cannot be removed without affecting the classification power.

Input for the algorithm is the discernibility matrix DM . Output is core C as a subset

of condition attributes set denoted as A. Core is initialized as empty set in line 1. Two

loops in lines 2 and 3 iterates over all objects (denoted as U ) in discernibility matrix.

Condition instruction in line 4 checks if matrix cell contains only one attribute. If so,

then this attribute is added to the core C.

2.3 Algorithm CORE-IDM for Generating Core with No Discernibility Matrix

The main disadvantage of using discernibility matrix for big datasets is its size. Memory

complexity of creating this type of matrix is |U |2|A|, where A is the condition attributes

set. This makes a simple solution showed in previous subsection unusable for big data.

For example the table of 1,000,000 objects and 8 condition attributes encoded as single

bits requires 1TB of memory.

We have proposed our algorithm CORE-IDM (CORE Indirect Discernibility

Matrix) which uses discernibility table indirectly to perform comparison between each
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row of given decision table. This approach, basing on CORE-DDM algorithm in prin-

ciples, has been designed by authors of this paper. Below is the pseudocode for this

algorithm:

INPUT: decision table DT = (U,A ∪ {d})
OUTPUT: core C ⊆ A

1: C ← ∅
2: for x ∈ U do

3: for y ∈ U do

4: if d(x) 6= d(y) then

5: count← 0
6: for a ∈ A do

7: if a(x) 6= a(y) then

8: count← count + 1
9: candidate← a

10: end if

11: end for

12: if count = 1 and candidate 6∈ C then

13: C ← C ∪ {candidate}
14: end if

15: end if

16: end for

17: end for

Input to the algorithm CORE-IDM is decision table DT , and output is core C. A

denotes condition attributes set. In the first step core C is initialized as empty set. Two

loops in lines 2 and 3 take subsequent objects from decision table for comparison. Line

4 performs the comparison between decision attribute value of two objects x and y. If

these two objects belong to different decision classes, the rest of the algorithm is pro-

cessed. count variable, responsible for storing the number of differences on condition

attributes values between objects x and y is set to 0 in line 5. Loop in line 6 iterates

over set of condition attributes A. Values of a condition attribute is compared between

objects x and y in line 7. In case of difference, the count variable is incremented and

a attribute is stored in candidate variable. When the attribute loop finishes, attribute in

candidate variable is added to the core if count variable is equal to 1 and this attribute

is not in core (lines 12 to 14).

2.4 Algorithm CORE-HIDM for Hardware Supported Core Calculation with

No Discernibility Matrix

Algorithm described in previous section cannot be run in hardware because of FPGA

resources limitations. It is impossible to store large dataset inside hardware module.

This is the reason why we present the modification of previous algorithm - CORE-

HIDM (CORE Hardware Indirect Discernibility Matrix). Main idea is to divide the

entire dataset into parts stored in two independent memory units for hardware module.

These parts are subsequently processed by the unit. Pseudocode for the algorithm is

given below:
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INPUT: decision table DT = (U,A ∪ {d})
OUTPUT: core C ⊆ A

1: C ← ∅
2: for cnt1 ← 0 to m− 1 do

3: RAM1← {x ∈ U : xcnt1·n to x(cnt1+1)·n−1}
4: for cnt2 ← cnt1 to m− 1 do

5: RAM2← {x ∈ U : xcnt2·n to x(cnt2+1)·n−1}
6: for x ∈ RAM1 do

7: for y ∈ RAM2 do

8: if d(x) 6= d(y) then

9: count← 0
10: for a ∈ A do

11: if a(x) 6= a(y) then

12: count← count + 1
13: candidate← a

14: end if

15: end for

16: if count = 1 and candidate 6∈ C then

17: C ← C ∪ {candidate}
18: end if

19: end if

20: end for

21: end for

22: end for

23: end for

Input to the algorithm CORE-HIDM is decision table DT , and output is core C.

A denotes condition attributes set. In the first step core C is initialized as empty set.

Two loops in lines 2 and 4 are responsible for choosing parts of input decision table.

Decision table is divided into m parts, where each of them have the size of n objects. In

lines 3 and 5 chosen parts are loaded into RAM memories of hardware unit. The rest of

the algorithm (lines 6 ro 21) is similar to the previously described. The only difference

is that the objects for comparison are loaded from RAM memories.

2.5 Data to Conduct Experimental Research

In this paper, we present the results of the conducted experiments using two datasets:

Poker Hand Dataset (created by Robert Cattral and Franz Oppacher) and data about

children with insulin-dependent diabetes mellitus (type 1).

First dataset was obtained from UCI Machine Learning Repository [6]. Each of 1

000 000 records is an example of a hand consisting of five playing cards drawn from a

standard deck of 52. Each card is described using two attributes (suit and rank), for a

total of 10 predictive attributes. There is one decision attribute that describes the ”Poker

Hand”. Decision attribute describes 10 possible combinations of cards in descending

probability in the dataset: nothing in hand, one pair, two pairs, three of a kind, straight,

flush, full house, four of a kind, straight flush, royal flush
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Insulin-dependent diabetes mellitus is a chronic disease of the body’s metabolism

characterized by an inability to produce enough insulin to process carbohydrates, fat,

and protein efficiently. Treatment requires injections of insulin. Twelve condition at-

tributes, which include the results of physical and laboratory examinations and one

decision attribute (microalbuminuria) describe the database used in our experiments.

The data collection so far consists of 107 cases. The database is shown at the end of the

paper [10]. A detailed analysis of the above data (only with the use of software systems)

is in chapter 6 of the book [11].

The Poker Hand database was used for creating smaller datasets consisting of 1 000

to 500 000 of objects by selecting given number of first rows of original dataset. Di-

abetes database was used for generating bigger datasets consisting of 1 000 to 10 000

000 of objects. New datasets were created by multiplying the rows of original dataset.

Created datasets had to be transformed to binary version. Numerical values were dis-

cretized and each attributes’ value was encoded using four bits for both datasets.Every

single object was described on 44 bits for Poker Hand and 52 bits for Diabetes. To fit

to memory boundaries in both cases, objects descriptions had to be extended to 64 bits

words filling unused attributes with binary 0’s.

3 Hardware Implementation

Solution created by the authors uses combination of softcore processor and hardware

unit designed to calculate the core. Diagram of the device is shown on Fig. 1. Core

calculation process for large data sets is based on algorithm CORE-HIDM described in

Section 2.4. The same input size of the module was used for both datasets.

Fig. 1. Diagram of core calculation module for large datasets

Purpose of processor is to:

1. Control the process of dividing large input decision table.

2. Control the core hardware calculation block.
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3. Reload the data between internal and external RAM memories.

4. Process the results returned by core hardware calculation block.

Selected processor is NIOS II. This is the proprietary softcore unit provided by Altera

for its FPGAs. It is fully functional, 32-bit, RISC processor with support of modern

solutions enhancing the calculation power (e.g. multi-stage pipeline, dynamic branch

prediction, separate instruction and data cache, MMU, MPU, . . . ).

DDR2 memory stores the large input decision table. SD card is the temporary solu-

tion for transferring data from PC to FPGA based solution. Data from SD card is copied

to FPGAs DDR2 memory in the beginning of calculation process.

Core calculation unit is responsible for hardware support related to calculating sub-

cores for given parts of decision table. Authors have used modified version of sequential

core hardware calculation unit described in paper [4]. This unit has been extended in

order to allow processing large datasets. To give reader better overview of prepared

solution, the previous sequential core module is shortly described below.

The architecture of the sequential hardware core calculation unit shown on Fig. 2.

Input of this block is decision table. Circuit consists of five functionally separated

blocks:

1. Comparators – block of identical comparators which calculate the single row of

discernibility matrix.

2. OR-gates cascade – block of OR-gates connected in a cascade. Every gate calcu-

lates logical OR operation on two elements: one from previous gate in a cascade

and second from comparator.

3. Singleton Detector – block for checking if single row in discernibility matrix is a

singleton (contains only one logical ’1’). Outputs from this block are connected to

OR-gates cascade.

4. Multiplexer MUX – in every turn selects the following object from decision table

and puts it into the comparators in order to calculate single row of discernibility

matrix.

5. Control Logic – responsible for storing calculation data and controls overall oper-

ations of the module.

Discernibility matrix entries are calculated by comparators very quickly, mostly

because of simplicity of each comparator architecture. Then all entries goes to OR-

gates cascade. The time to calculate the result depends on the size of discernibility

matrix, increasing with its size. Last gate in cascade stores the result of calculations in

the CORE register.

Sequential type of the core calculation module limits the utilization of LEs (Logical

Elements) in FPGA. The disadvantage of this unit is its processing speed. Number of

cycles needed to complete the calculation is equal to the number of objects in the input

decision table.

Core calculation unit described previously cannot handle bigger data than size of

the input register related to decision table. In order to process large datasets two blocks

of fast static RAM memories were added to the solution. The control unit of the module

has also been modified. Block diagram of modified unit is presented on Fig. 3.
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Fig. 2. Block diagram of the hardware implementation of sequential core calculation

module

Fig. 3. Block diagram of the hardware implementation of sequential core calculation

module with modifications for large datasets
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RAM were created as instances of dedicated FPGA blocks (MLAB, M9k and

M144k). MLAB blocks are synchronous, dual-port memories with configurable organi-

sation 32 x 20 or 64 x 10. M9k and M144k blocks are synchronous, true dual-port mem-

ory blocks with registered inputs and optionally registered outputs with many possible

configurable organisations. Both data memories used in module, denoted as RAM1 and

RAM2, store parts of input decision table to comparison. In the beginning, memories

contain the same part of decision table. When objects from RAM2 were compared with

all objects from RAM1, then RAM2 is reloaded with next part of decision table, until

decision table has any not compared elements in it. Then RAM1 and RAM2 are loaded

with second part of dataset and whole process continues.

4 Experimental Results

For the research purpose the core calculation was implemented in C language. Algo-

rithms CORE-DDM described in Section 2.2 and CORE-IDM described in Section 2.3

were used.

The results of the software implementation were obtained using a PC equipped with

an 8 GB RAM and 4-core Intel Core i7 3632QM with maximum 3.2 GHz in Turbo mode

clock speed running Windows 7 Professional operational system. The source code of

application was compiled using the GNU GCC 4.8.1 compiler. Given times for smaller

datasets are averaged for 1 000 runs of algorithm with the same input data.

Quartus II 13.1 was used for design, compilation, synthesis and verifying simulation

of the hardware implementation in VHDL language. Synthesized hardware blocks were

downloaded and run on TeraSIC DE-3 equipped with Stratix III EP3SL150F1152C2N

FPGA chip. FPGA clock running at 50 MHz for the sequential parts of the project was

derived from development board oscillator. Implemented algorithm CORE-HIDM is

presented in Section 2.4.

NIOS II softcore processor, as well as most parts of embedded system were instan-

tiated using Qsys 13.1 tool. Software for NIOS II was implemented in C language using

NIOS II Software Build Tools for Eclipse IDE.

Timing results were obtained using LeCroy waveSurfer 104MXs-B (1 GHz band-

width, 10 GS/s) oscilloscope. For longer times, hardware time measurement units in-

stantiated inside FPGA were used.

It should be noticed, that PCs clock is clkP C

clkF P GA
= 64 times faster than development

boards clock source.

All calculations were performed using datasets described in Section 2.5 with sizes

between 1 000 and 10 000 000 objects.

Table 1 presents the results of the time elapsed for hardware and software solution

using indirect row-by-row discernibility matrix calculation (algorithms CORE-IDM

and CORE-HIDM described in Sections 2.3 and 2.4). Table 2 presents the results of

the time elapsed for hardware and software solution using direct discerniblity matrix

calculation (software algorithm CORE-DDM and hardware algorithm CORE-HIDM

described in Sections 2.2 and 2.4). Last two columns in both tables describe the speed-

up factor without (C) and with (Cclk) taking clock speed difference between PC and

FPGA into consideration. Abbreviations in objects number are: k = 103, M = 106.
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Core generation related to software implementation using direct discernibility matrix

calculation could not be performed for datasets having more than 10 000 objects be-

cause of extensive memory usage which is n
2
k

2 , where k denotes number of conditional

attributes and n is the number of objects in decision table. One must remember that

each cell of matrix is described by 32 bit value using linked list consiting of another 32

bit values, what results in extensive memory usage.

Table 1. Comparison of execution time between hardware (algorithm CORE-HIDM)

and software (algorithm CORE-IDM) implementation without using discernibility ma-

trix explicit calculation for both datasets

Objects Hardware - tH Software - tS C = tS

tH
Cclk = 64 tS

tH

— [s] [s] — —

Poker Hand dataset

1k 0.003 0.033 10.875 695.992

2.5k 0.013 0.143 11.119 711.632

5k 0.055 0.603 10.951 700.876

10k 0.207 2.410 11.623 743.851

25k 1.225 14.721 12.015 768.940

50k 4.710 58.726 12.469 798.043

100k 21.737 237.942 10.946 700.572

250k 130.947 1 515.449 11.573 740.674

500k 506.225 6 092.916 12.036 770.302

1M 1 850.523 24 313.094 13.138 840.864

Diabetes dataset

1k 0.003 0.018 5.911 378.325

2.5k 0.013 0.078 6.044 386.827

5k 0.055 0.328 5.953 380.980

10k 0.207 1.31 6.318 404.340

25k 1.225 8.002 6.531 417.978

50k 4.710 34.216 7.265 464.970

100k 21.737 135.309 6.225 398.390

250k 130.947 861.781 6.581 421.194

500k 506.225 3 464.821 6.844 438.043

1M 1 850.523 13 825.976 7.471 478.169

2.5M 11 729.536 81 234.655 6.926 443.242

5M 46 392.722 331 931.342 7.155 457.908

10M 185 182.545 1 293 245.545 6.984 446.952

FPGA resources utilization is fixed and is independent of the input dataset size.

Datasets are divided into parts which are processed by the module. Module uses 21 562

Logical Elements (LE) of 113 600 total available.
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Table 2. Comparison of execution time between hardware (algorithm CORE-HIDM)

and software (algorithm CORE-DDM) implementation using explicit discernibility ma-

trix calculation for both datasets

Objects Hardware - tH Software - tS C = tS

tH
Cclk = 64 tS

tH

— [s] [s] — —

Poker Hand dataset

1k 0.003 0.296 97.209 6 221.346

2.5k 0.013 1.843 142.813 9 140.023

5k 0.055 7.496 136.044 8 706.788

>10k 0.207 N/A N/A N/A

Diabetes dataset

1k 0.003 0.154 50.575 3 236.782

2.5k 0.013 1.096 84.928 5 435.413

5k 0.055 5.864 106.425 6 811.180

10k 0.207 29.021 139.961 8 957.531

>25k 1.225 N/A N/A N/A

Fig. 4 presents a graphs showing the relationship between the number of objects and

execution time for hardware and software solution using indirect discernibility matrix

calculation for both datasets. Both axes have the logarithmic scale.

Presented results show big increase in the speed of data processing. Hardware mod-

ule execution time compared to the software implementation using row-by-row dis-

cernibility matrix calculation is 5 to 12 times faster, while comparing time to need

to obtain full discernibility matrix is around 50 to 142 times faster in case of biggest

processed dataset. If we take clock speed difference between PC and FPGA under con-

sideration, these results are much better - average speed-up factor is 378 to 840 for

indirect discernibility matrix method and up to 9 140 for method using discernibility

matrix calculation first. The hardware core calculation unit was not optimized. Resuls

are expected to be few times better after optimization.

We have used the same module size (configuration) for both datasets, that is why

time results for the hardware are the same. It is not important what type of data is

processed for hardware unit.

Let comparison of attribute value between two objects or retrieving the element

from discernibility matrix be an elementary operation. k denotes number of conditional

attributes and n is the number of objects in decision table. Computational complexity of

software implementation for the core calculation is Θ(kn2+n2) according to algorithm

CORE-DDM in Section 2.2 (discerniblity matrix calculation and core calculation). For

algorithm CORE-IDM described in Section 2.3 it is Θ(kn2). Using hardware imple-

mentation (CORE-HIDM), complexity of core calculation is Θ(n2). The k is missing,

because our solution performs comparison between all attributes in Θ(1) - all attributes

values between two objects are compared in single clock cycle. Additionally, core mod-

ule performs comparisons between many objects at time. In most cases k << n, so we
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Fig. 4. Relation between number of objects and calculation time for hardware (algo-

rithm CORE-HIDM) and software implementation (algorithm CORE-IDM) using indi-

rect discernibility matrix calculation method for both datasets

can say, that computational complexity for software and hardware implementations are

the same.

5 Conclusions and Future Research

Performing core calculations using hardware implementations gives us a big accelera-

tion in comparison to software solution. If we compare the results to core calculation

using discernibility matrix we can notice two advantages: shorter time to finish calcu-

lations and possibility of processing much bigger datasets.

Core hardware calculation unit was not optimized for performance in this paper.

Processing time can be substantially reduced by increasing FPGA clock frequency and

by modifying control unit to introduce triggering on both edges of clock signal. This

will speed-up processing time nearly twice.

Hardware solution presented in this paper is easibly scalable. Duplicating calcula-

tion unit will improve processing speed. One must remember that this approach needs

preparation of specialized control unit responsilbe for controlling performing concur-

rent operations (data flow of both input and output).

Another calcultion speed impact factor is the size of hardware processing module in

terms of capacity to process given number of objects. Bigger size of the unit will allow

to shorten calculation time.

Further research will focus on checking different sizes of core module and obtaining

results of performing the calculations in parallel by multiplying units.
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2. M. Kopczyński, J. Stepaniuk: Hardware Implementations of Rough Set Methods in Pro-

grammable Logic Devices, Rough Sets and Intelligent Systems - Professor Zdzisław Pawlak

in Memoriam, Intelligent Systems Reference Library 43, Heidelberg, Springer, 2013, pp. 309–

321
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