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Abstract. Along the years, Abstract State Machines (ASMs) have been
successfully applied for modeling critical and complex systems in a wide
range of domains, and for analyzing their computationally interesting
properties. However, unlike other well-known and established formalisms,
such as Petri nets, they lack of a framework aimed at better supporting
their applicability to the formal verification of systems. The goal of my
PhD research is to reinforce the ASM formalism as a conceptual tool that
developers can find useful and practical in order to analyze properties.

1 Research Objectives

Several formalisms are successfully applied to the development of critical and
complex systems in a wide range of application domains, and to their ex-ante
and ex-post analysis aimed at verifying and validating functionality and quality
issues. Representing the system-under-study at a high level of abstraction allows
developers to focus on algorithmic aspects, rather than on specific realizations
of solutions at lower levels. Moreover, the mathematical foundation of formal
methods provides complete and unambiguous investigations about the behavior
and the properties the system-under-study is required to exhibit.

In this context, researchers usually distinguish two orthogonal classifications
of computationally interesting properties. On one hand, they distinguish between
safety properties, which stipulate that “something bad” must never happen, and
liveness properties, which state that “something good” must eventually happen,
during computation [19]. On the other hand, they distinguish between domain-
independent properties, which are interesting for broad classes of systems, and
domain-specific, which strictly depend on the specific domain [11].

My PhD research is aimed at moving a first step towards the construction of
a framework capable of capturing computationally interesting properties within
the Abstract State Machine (ASM) formalism [12].

1.1 Motivations

Along the years, ASMs have been used for modeling several systems, often con-
current and distributed, and for investigating their properties [12]. However,
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unlike other well-known and established formalisms, such as finite state ma-
chines in model checking [4], Petri nets [18], process algebras (e.g. CSP [17]) and
various domain specific languages (DSLs) [11], they lack of a framework aimed
at better supporting their applicability to the formal verification of systems.

Concerning domain-independent properties, both safety and liveness, tradi-
tional model checking [4] approaches to the problem of verifying properties suffer
from two main limitations. First of all, because of decidability issues, they model
systems through formalisms, finite state machines or variants, whose expressive
power is generally low (according to [16], in the present work “expressiveness”
is intended as “the power to model algorithms in step-for-step fashion”). Sec-
ondly, they require the usage of declarative specifications of the properties to be
verified, usually through some temporal logic, which are considered by several
authors less comfortable for practitioners with respect to operational specifica-
tions within the same formalism (e.g. [3]). Analogously, when model checking
techniques are applied to ASMs, as well as to other general purpose formalisms,
these limitations are not overcome (e.g. [14]). Conversely, some formalisms, e.g.
Petri nets [18], provide operational, domain-independent characterizations of
properties so that the formal verification of the modeled systems can be con-
ducted in a different and sometimes easier manner. However, ASMs lack of these
features.

Concerning domain-specific properties, both safety and liveness, of particu-
lar interest for my research group is the Mobile Ad-hoc NETwork (MANET)
domain [1]. MANETs are critical and complex systems that pose problems, such
as study of performance, synchronization issues, concurrency, and so on, which
can benefit from a formal approach. Several DSLs, e.g. CMN [22], and general
purpose formalisms, e.g. Petri nets [6], have been proposed in order to study
MANET properties. However, these approaches present some drawbacks: under-
standability, since they are based on a syntax dissimilar to traditional program-
ming languages; expressiveness, because they typically provide only few levels of
abstraction; executability, since, especially process algebras, are not directly ex-
ecutable. To my best knowledge, the ASM-based approach has been used in the
MANET domain only for specifying the location services of a routing protocol
[5]. No work in literature has been devoted to explore the application of ASMs
as specific modeling language for MANETs.

1.2 Purposes

On one hand, the goal is to provide operational, domain-independent character-
izations of properties in order to overcome the main limitations that penalize
traditional model checking techniques applied to ASMs. In fact, the proposed
approach can support the properties analysis in such a way that it can be con-
ducted entirely within the ASM framework, so without the need of less expressive
models and without the burden of temporal logics. On the other hand, concern-
ing domain-specific properties analysis, the goal is to explore the suitability
of ASMs in capturing the specific MANET features. Their use can overcome
the various drawbacks suffered by both DSLs and general purpose formalisms



typically adopted in this context. Ultimately, the aim is to reinforce the ASM
framework as a conceptual tool that developers can find useful and practical for
formally analyzing systems properties in critical and complex domains.

With respect to the other formalisms, used both in domain-independent and
domain-specific properties analysis, the focus is on ASMs because the advantages
they provide under several viewpoints. From the point of view of expressiveness,
ASMs represent a general model of computation which “subsumes” all other
classic computational models [13]. Moreover, the ASM approach provides a way
to describe algorithmic issues in a simple abstract pseudo-code, which can be
translated into a high level programming language source code in a quite simple
manner [12]. Secondly, considering methodological issues, the ASM formalism is
the basis of a development method which has attracted considerable attention in
the last years [12]. Finally, considering the implementation point of view, unlike
many other formalisms, ASMs provide a way for translating formal specifications
into executable models in order to conduct simulations: this is possible by using
tools like CoreASM [14].

It is worth remarking that, since ASMs are Turing-equivalent, properties
are, in general, undecidable, i.e. their analysis cannot be fully automatized [24].
Nevertheless, in most cases, properties are semi-decidable, so they can still be
investigated by focusing on the specific issues of the model under study.

The rest of this paper is organized as follows. Section 2 provides background
knowledge on both ASMs and the chosen case study. Section 3 is about the
current status of my research. Finally, Section 4 sketches future plans. Since my
research is conducted with the support of my supervisor, Alessandro Bianchi,
and Sebastiano Pizzutilo, in the following I use the term “we” instead of “I” in
order to give credit to their contribution.

2 Background

For better explaining our research, background on both the formalism and the
chosen domain is provided. In particular, we take into account the popular Ad-
hoc On-demand Distance Vector (AODV) routing protocol for MANETs [23] as
case study for both domain-independent and domain-specific properties analysis.

2.1 The ASM Framework

ASMs are finite sets of so-called rules of the form if condition then updates
(possibly with the else clause) which transform abstract states [12]. An ASM
state is an algebraic structure, i.e. a domain of objects with functions and rela-
tions defined on them. On the other hand, the concept of rule reflects the notion
of transition occurring in traditional transition systems: condition is a first-order
formula whose interpretation can be true or false, whereas updates is a finite set
of assignments of the form f(t1, . . . , tn) := t, whose execution consists in chang-
ing in parallel the value of the specified functions to the indicated value. Pairs
of function names, fixed by a signature, together with values for their arguments



are called locations: they abstract the notion of memory unit. Therefore, a state
can be viewed as a function that maps locations to their values: the current con-
figuration of locations together with their values determines the current state of
the ASM. As usual in computational models, an ASM step is a pair (s, s′) of
states: in a given state, all conditions are checked, so that all updates in rules
whose conditions evaluate to true are simultaneously executed, and the result is
a transition of the machine from that state to another. Note that for the unam-
biguous determination of the next state, updates must be consistent, i.e. no pair
of updates must refer to the same location.

A generalization of basic ASMs is represented by Distributed ASMs (DASMs)
[12], capable of capturing the formalization of multiple agents acting in a dis-
tributed environment. Essentially, a DASM is intended as an arbitrary but finite
number of independent agents, each executing its own underlying ASM.

2.2 AODV Routing Protocol for MANETs

MANETs are wireless networks designed for communications among nomadic
hosts in absence of fixed infrastructure [1]. MANETs are useful, sometimes nec-
essary, for allowing hosts to communicate when fixed infrastructures cannot be
used, for example for supporting rescue teams operating where pre-existing in-
frastructures are not reliable [21]. Hosts are intended as autonomous agents and
they can dispose without according to a predefined topology; moreover, during
their lifetime, they can enter or leave the network at will and continuously change
their relative position.The twofold role played by hosts (end-point and router),
as well as the continuous change of the network topology due to movement, re-
quires the definition of specific routing protocols for properly managing the lack
of a fixed infrastructure. Since each host can directly communicate only within
the area established by its transmission range, these protocols need to take into
account the contribution of intermediate hosts for ensuring broadcasting and
unicasting of packets and so realizing communications.

AODV is a reactive protocol that discovers and maintains routes on-demand,
i.e. routes are built only as desired by initiator nodes using a route request/route
reply cycle, which updates routing tables stored in each node [23]. When an
initiator needs to start a communication session to a destination, and it does
not know a proper route, it broadcasts a route request (RREQ) packet to all
its neighbors. An RREQ packet includes information about initiator and desti-
nation addresses, their sequence numbers, which expresses the freshness of the
information, and the length of the route. When a node receives an RREQ, it
checks if one of the following holds: it is the destination, or destination is one
of its neighbors, or it knows a route to destination with corresponding sequence
number greater than or equal to the one contained in the RREQ. If so, it uni-
casts a route reply (RREP) packet back to initiator; otherwise, it rebroadcasts
the RREQ to all its neighbors. The process is so reiterated until a route to des-
tination is found, or until a previously set timeout expires. While RREP travels
towards initiator, routes are set up inside the routing tables of the traversed
hosts. Once initiator receives the RREP, communication starts.



3 Current Status of the Research

Currently, my research is dealing with:

– The definition of starvation-freedom, which is a domain-independent liveness
property, in terms of ASMs;

– The study of network topology awareness, which is a MANET-specific live-
ness property, by means of ASMs.

In order to deepen into the issues above, we are also investigating the appli-
cation of a predicate abstraction approach to ASMs.

3.1 Predicates over ASM States

Classic computational models, such as finite state machines and Turing ma-
chines, represent the current state of the computation with (sequence of) sym-
bols belonging to finite alphabets. This poses a limitation: the representation of
states is restricted to a specific data structure. Instead, as explained in Section
2.1, ASMs allow any algebraic structure to serve as representation of states. This
results in a great amount of details specifying the states, so making the analysis
of the properties of the whole system more difficult, mainly for what concerns the
comprehension of the semantics of each state with respect to the computational
behavior of the modeled system.

Consider two examples. In the case of a DASM model, the simple execution
of one or more updates does not necessarily involve the change of the locations
values in such a way that a process makes real computational progress, so driving
to starvation. In fact, an ASM could starve even if the computation continues to
evolve through different states. In other words, it is difficult to recognize effective
progress. On the other hand, the second case concerns, for example, a process
that acts both as a client with respect to a service, and, simultaneously, as a
server with respect to another service. In this case, ASMs easily capture in a
same state different computational activities to be run in parallel. However, it is
difficult for the modeler to distinguish, inside the same state, what computational
branches have been entered or not.

In order to overcome these problems, the need of an abstraction framework
capable of capturing the semantics of the ASM states arises. More precisely,
there is the need to partition the set of locations into subsets and extract from
them the locations specifically interesting for the verification purposes. To this
end, we propose a predicate abstraction approach [9]. Predicate abstraction is a
popular and widely used technique for the analysis of programs [15]. It aims at
generating an abstract model from the concrete system to be verified, so checking
the former instead of the latter. Briefly speaking, the states of the system are
mapped to states of the model according to their evaluation with respect to a
finite set of predicates defined over the system states. The model has the same
control flow of the original program but it concerns only the predicates over the
states.



Literature agrees that a program state coincides with the configuration of
program variables together with their current values, e.g. [20]. Analogously, an
ASM state coincides with the configuration of ASM locations together with their
current values. Therefore, since there exists a natural parallelism between classic
program states and ASM states, predicate abstraction can be applied to ASMs
as much as to traditional programs. More precisely, it can be applied through
the following:

Definition 1. A predicate φ over an ASM state s is a first-order formula defined
over the locations in s, such that s |= φ.

Predicates over the states serve to represent the semantics of each state
and can be regarded as a non-injective labeling function that maps predicates
to each state. An ASM model can then be equipped with a set of predicates
Φ = {φ1, . . . , φn} such that, in the current state, each φi can be satisfied or not.
In this way, the ASM control flow can be represented by the truth value of the
predicates over the states. Properties to be verified, such as starvation-freedom,
can then be analyzed by focusing on the composition of these predicates.

Note that our use of predicate abstraction is quite different with respect to
the traditional way: instead of extracting abstract models from the given ASM,
the aim is to use predicates over the states in order to support the verification
of its properties. In particular, applying predicate abstraction to ASMs induces
the partition of locations we need for expressing the semantics of the states.

3.2 ASM-based Starvation-freedom

Literature does not provide a univocal, formal definition of starvation: different
authors provide different definitions from different perspectives. In any case, at
high description level, starvation can be described as an accident occurring in a
multi-process system which hampers a process to continue its proper computa-
tion (e.g. [2]). In general, a process starves because it requires the access to an
external resource which is never available. In some cases, e.g. in communication
systems, the required resource is represented by a message a process waits for.

In [10] we investigate starvation in the AODV routing protocol for MANETs
using ASMs. In particular, two formalizations of the protocol are given. The first
one is starvation-prone because it intentionally ignores the timeout mechanism
adopted for escaping infinite waiting: they arises when links between initiator
and the desired destination lack. Instead, the second one is a refinement which
makes the model starvation-free thanks to the reintroduction of the timeout.
The comparative analysis of both models suggests that the risk of starvation is
due to the presence of what we call vulnerable rules.

Definition 2. A vulnerable rule is a rule of the form if cond then update-true
else update-false characterized by the following features:

1. The truth value of cond depends on one or more risky functions;



2. a) One update between update-true and update-false generates a computa-
tion that does not change the value of a risky predicate over the states;

b) The computation evolves to a subsequent state, in which the risky pred-
icate over the states does not hold, through the other update.

The functions in feature (1) are risky because the risk to starve the system
depends on their values. Concerning the class they belong to, it is worth noting
that a rigorous classification of ASM functions exists in literature [12]; however,
for the purposes of the present work, it is sufficient to remark that they are risky if
they represents the dependency of the ASM from external resources. Concerning
feature (2a), an important issue is related to the granularity used for defining
the states: they are characterized by the same value for the risky predicate that
expresses the waiting situation [9]. More precisely, if the states are expressed
at a finer granularity, then the computation cyclical returns through several
intermediate states characterized by the same risky predicate; but if granularity
is coarser, then the rule execution could not produce any appreciable change of
the ASM state. Moreover, an adequate stepwise refinement can be defined so
that the case of a single vulnerable rule can be generalized to any finite number
of rules, in which at least one rule satisfies the three features above. Finally, it is
worth noting that the update allowing the computation to proceed is the “good
thing” stated in [19].

From a methodological point of view, the vulnerable rules definition implic-
itly suggests some tasks a modeler can execute for determining the possible
presence of starvation risk: analyze the model, looking for cyclical returns to
states characterized by the same predicate; if so, the modeler must check if they
are driven by conditions depending on some risky function; in this case, the cor-
responding updates must be studied for investigating their effects. Some of these
activities could be supported by automatic tools, such as parsers, dependency
graph analyzers, and so on.

3.3 ASMs for Network Topology Awareness in MANETs

In [8] by modeling AODV and proving some computationally interesting prop-
erties, we show that the ASM approach is very useful for capturing the specific
MANET features and for reasoning about them. A MANET is characterized by
a parallel composition of network nodes in which different sequential activities
are, in turn, executed in parallel. The notion of run in a DASM, in which several
ASMs are simultaneously executed, and the intrinsic parallel computation of
ASM rules allow the modelers to express the nodes’ execution in a very natural
manner. Secondly, ASM functions, that can be defined over universes of objects
of arbitrary complexity, can be used for representing nodes in neighborhood,
so abstracting from physical features, and for recording the information about
routes stored in routing tables. Thirdly, broadcasting and unicasting of pack-
ets can be simply modeled by manipulating abstract messages and by inserting
or deleting them into abstract queues. Finally, the similarity between the ASM
pseudo-code and the syntax of traditional programming languages provides a



way for describing algorithmic issues that developers can find familiar for mod-
eling the system at high abstraction level and for investigating its properties.

Moreover, in [9] we show how predicate abstraction can help in expressing
the node’s behavior. In fact, the simultaneous fulfillment of different predicates
over the same ASM state is very suitable for capturing the intrinsic concurrency
of the nodes’ computation.

More specifically, the main focus of this branch of my research is on network
topology awareness (NTA). Typically, in reactive protocols, a host has not full
knowledge about the network in the whole: it has only a local view, limited to
its neighborhood, and information about the other hosts can only be obtained
through the dissemination of control packets across the network. This knowledge
represents the awareness of each host about the current network topology. In [7]
we propose a variant of AODV aimed at making each host more aware about the
current topology. We call the variant N-AODV (NACK-based AODV) because
the improvement of NTA is obtained through the introduction of a new control
packet: a Not-ACKnowledgement (NACK) packet. In the original AODV, when
an intermediate node n receives an instance of an RREQ and does not know a
route to reach the desired destination, it simply rebroadcasts the RREQ to all
its neighbors. Instead, in N-AODV, in addition to rebroadcasting the RREQ,
n unicasts a NACK packet back to initiator. The NACK is so used to inform
all nodes between n and initiator that, roughly speaking, n “does not know
anything” about the destination. It is worth noting that the usage of NACKs
provides information gain under three points of view:

– When a route to destination is found, initiator is aware about not only the
next hop in the route to reach destination, but also about all the intermediate
nodes of that route. Note that, even if the route discovery process fails,
initiator is aware about all nodes reached by an RREQ until the timeout
expiration;

– Initiator is also aware about all nodes reached by an RREQ but not neces-
sarily involved in a route to reach destination;

– Because of the forwarding activities due to NACKs unicasting, all nodes
in the reverse route to reach initiator, are aware about the senders of the
various NACKs.

In the work we describe the proposal and prove its correctness.

4 Future Work

The aim of my PhD research is to move a step towards the construction of a
framework capable of capturing systems properties inside the ASM formalism.
To this end, our research develops over two parallel directions: on one hand, the
aim is to provide operational characterizations of domain-independent properties
in terms of ASMs; in particular, the focus is on starvation-freedom. On the other
hand, the aim is to show the suitability of ASMs in modeling specific issues of
MANETs; in particular, the focus is on network topology awareness.



Concerning domain-independent properties analysis, the results obtained from
the study of starvation in the AODV protocol are encouraging for the purposes of
our research. In fact, the operational definition of vulnerable rules allows model-
ers to treat starvation analysis entirely within the ASM framework, i.e. without
translating ASMs into less expressive models and without adopting temporal
logics. In this way, the main limitations that penalize traditional model check-
ing techniques applied to ASMs can be overcome. The research will continue
with the purpose of generalizing the finding of the case study in order to for-
mally prove the necessary and sufficient conditions that enable starvation inside
ASMs. To achieve this goal, we will deepen into the relationship between the
syntactic notion of starvation inside ASMs and the classic, semantic notion of
starvation in literature.

Conversely, concerning domain-specific properties analysis, ASMs have shown
to be very useful for modeling MANETs and investigating their properties. In-
deed, the advantages they provide overcome the various drawbacks that affect
the other formalisms typically applied in this context, i.e. the lack of under-
standability, expressiveness and executability features. Moreover, ASMs helped
in formally specifying a variant of the AODV protocol, namely N-AODV, aimed
at improving the network topology awareness of each node. Since the use of
NACKs injects overhead in the computation activities carried on by hosts, the
research will continue with the aim to compare AODV and N-AODV perfor-
mance through simulations in order to evaluate if the overhead is adequately
balanced by the information gain obtained. For this purpose, CoreASM provides
an excellent simulation environment for conducting experiments.

More in general, in order to support the ASM-based properties analysis,
independently from the class a property belongs to, we discovered that predicates
over the states provide the abstraction framework we need for managing the high
complexity of the representation of the states implicitly given by ASMs.

It is worth noting that the research conducted so far has dealt only with
liveness properties. However, future directions could explore more in deep safety
properties, both domain-independent and domain-specific. For example, deadlock-
freedom as an instance of safety domain-independent properties, and some se-
curity issues in MANETs, as instances of safety domain-specific properties.
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