
Towards the Automatic Verification of

Behavior Preservation at the Transformation Level

for Operational Model Transformations∗

Johannes Dyck1, Holger Giese1, Leen Lambers1, Sebastian Schlesinger2, and Sabine Glesner2

1System Analysis and Modeling Group, Hasso Plattner Institute at the University of Potsdam, Germany
2Software Engineering for Embedded Systems, Technical University of Berlin, Germany

Abstract

The correctness of model transformations and, in particular, behavior
preservation is important for model-driven engineering of high quality
software. Behavior preservation verification techniques have been pre-
sented with automatic tool support for the instance level, i.e. for a
given source and target model specified by the model transformation.
However, up until now there is no automatic verification approach avail-
able for operational model transformations at the transformation level,
i.e. for all source and target models specified by an operational model
transformation. In this paper, we outline a first approach towards the
automatic verification of behavior preservation for operational model
transformations at the transformation level extending our previous re-
sults for relational model transformations. In particular, we show that
in restricted cases the behavior preservation problem for an operational
model transformation can be reduced to invariant checking for graph
transformation with priorities illustrated by a simple example.

1 Introduction

The correctness of model transformations and, in particular, behavior preservation is a crucial element for model-
driven engineering of high quality software. In this paper we focus on behavior preservation for operational
model transformations (cf. QVT operational [1]). Behavior preservation verification techniques either show that
specific properties are preserved, or more generally and complex, they show some kind of behavioral equivalence
(e.g., bisimulation ≈bsim) between source and target model of the transformation. For both kinds of behavior
preservation, verification goals have been presented with automatic tool support for the instance level [2, 3, 4],
i.e. for a given source and target model specified by the model transformation. However, the development of the
transformation and its application are separate activities and therefore detecting that the transformation is not
correct during application is thus too late. Instead means for the automatic verification at the transformation
level, i.e. for all source and target models specified by the model transformation, are required.

We presented a first approach [5] attacking this problem on the transformation level in a semi-automated man-
ner in form of a verification technique based on interactive theorem proving for relational model transformations
[6]. Based on this former result we developed an automatic verification approach at the transformation level for
relational model transformations [7, 8], but up until now such an approach for operational model transformations
is not available.

∗This work was developed in the course of the project Correct Model Transformations II (GI 765/1-2) at Hasso Plat-
tner Institute at the University of Potsdam and Technical University of Berlin and was funded by the Deutsche Forschungs-
gemeinschaft and published on its behalf. See http://www.hpi.uni-potsdam.de/giese/projekte/kormoran.html?L=1 and
http://www.pes.tu-berlin.de/menue/forschung/projekte/kormoran/parameter/en/.

The main result presented in this paper is a scheme for the automatic verification of behavior preservation at
the transformation level for operational model transformations given in the form of a restricted Story Diagram
(SD) [9]. In particular, the verification scheme employs graph transformation with priorities and inductive invari-
ant checking [10, 11].1 To this end we moreover present a formalization of restricted SDs with a corresponding
mapping to graph transformation systems with priorities. Given a model transformation MT ⊆ LS × LT for
a source LS and target language LT , we require that correspondences between the source and target are cap-
tured leading to a model transformation with correspondences MTC ⊆ LSCT , where the added correspondence
elements capture the traceability between source and target elements. Our running example describes a transfor-
mation from lifelines to automata. Fig. 1(a) shows the metamodel for this transformation with correspondences.
The dashed edges denote dynamic elements of the source and target metamodel of the transformation.

The verification scheme presented in this paper shares some elements with our former work on checking
behavior preservation for relational model transformations [7, 8] by bisimulation. The verification scheme there
is based on a so-called bisimulation constraint CBis, being a sufficient condition for the membership of a source
and target semantics state of a model transformation instance to an induced bisimulation relation, and it consists
of two parts. (1) Checking the satisfaction of CBis on all model transformation instances with correspondences
gathered in MTC(REL) ⊆ LSCT being conform to the relational model transformation REL. (2) Checking
that based on the result in (1) all model transformation instances satisfying the bisimulation constraint CBis

have bisimilar semantics. For our running example this means informally that, (1) considers all possible model
transformation instances consisting of a lifeline and corresponding automaton and (2) then compares the actual
behavior of all these instances. In [7] a semantics definition for the lifeline/automaton is given based on graph
transformation systems describing how dynamic elements may be changed in each runtime step of the behavior.
In Fig. 2(a) an example lifeline and corresponding automaton are shown in abstract (top, left and right) and
concrete (bottom) syntax with preserved behavior as described by their respective LTSs.

∀ SCT ∈ MTC(REL) : SCT � CBis (1) ∀ SCT � CBis : sem(S) ≈bsim sem(T) (2).

In this work we have to adapt check (1) for all instances in MTC(REL) into a check (1∗) for all instances
in MTC(OP) conforming to our operational model transformation OP . In contrast check (2) can be reused as
described in [7, 8], since it is independent from the model transformation type.

∀ SCT ∈ MTC(OP) : SCT � CBis (1∗) ∀ SCT � CBis : sem(S) ≈bsim sem(T) (2).

The paper is structured as follows: In Section 2 we further describe our running example and explain our
notion of operational model transformations. In Section 3, we reintroduce briefly all prerequisites for formalizing
our notion of operational model transformations presented in Section 4 and the verification scheme presented in
Section 5. This verification scheme is applied and evaluated by means of the running example in Section 6. We
close the paper with some final conclusions and an outlook on future work.

2 Operational Model Transformations with Story Diagrams

We rely on Story Diagrams [9] as representatives for defining operational model transformations. We further
restrict ourselves to model transformations describing outplace model transformations (i.e. transformations not
changing the source model) with traceability information. The latter is encoded in a so-called correspondence
model, storing traceability information explicitly between source and target model. The metamodel of a model
transformation with traceability information MTC therefore consists of the following three parts: the source
metamodel STT of the source modeling language LS of the transformation linked with a correspondence meta-
model CTT for the correspondences to the target metamodel TTT of the target modeling language LT . We
moreover allow constraints to further restrict the metamodel.

Example 1 (Metamodel for Lifeline2Automaton). Fig. 1(a) shows the metamodel of our running example
transformation from lifelines to automata. A lifeline describes the sending/receiving of messages on a timeline.
It consists of Events and one distinguished event is marked as first event. Events are connected with Send or
Rcv objects. An automaton consists of States and one distinguished State is marked as initial state. States are
connected with TR or TS objects. Events correspond to states, Send (Rcv) objects to TS (TR) objects. Fig. 1(b)
shows a constraint forbidding the existence of two Events marked with first.

1Note that other approaches for checking consistency of graph transformation systems w.r.t. graph constraints such as [12] may
be in principle also employed here. For a discussion of the differences see [11].

(a)
Event

Send

first

pre,post
TS

State

init

S2T

E2S

Rcv R2T TR

src,tgt

STT CTT TTT

active activated activated active (b)



first

first

Event

Event

(c)

Source

Object

Source

Object

++

Target

Object

Target

Object

Correspondence

Object

Correspondence

Object

++

++ ++

++ ++
1..*

1..*

1

1

1

Figure 1: (a) Metamodel of Lifeline2Automaton, (b) metamodel constraint, and (c) prototypical structure of
story patterns

Story diagrams originate from the Unified Modeling Language (UML) [9]. As enhanced activity diagrams they
offer a way of operationally defining model transformations. Story diagrams consist of activity nodes containing
story patterns. Activity nodes are connected via edges, which, along with conditional branches and loops, define
control flow of a story diagram. A story diagram has an initial (final) node, where control flow starts (ends).

A story pattern describes a transformation rule. Each story pattern specifies in a condensed format the types
of objects and links that need to be matched or added (marked with ++) when applied to a model. These
types correspond to a given metamodel containing classes and associations. Story patterns may have negative
application conditions specifying which elements are forbidden for a valid match; those are crossed out.

In this paper we assume restricted SDs in particular consisting of a sequence of n > 0 particular WHILE loops
containing one non-deleting story pattern without nesting: WHILE(ρ1);WHILE(ρ2); . . . WHILE(ρn). The loop
condition coincides with the applicability of the contained story pattern. This is described in story diagrams by
a success loop edge attached to the story pattern node and an outgoing failure edge. Finally we restrict to
story patterns that obey to the prototypical structure as depicted in Fig. 1(c) (conditions a)-c) are depicted).
They a) create a unique correspondence object c, b) have a non-empty fragment of source objects not linked to a
correspondence object yet (i.e. to be translated) which will be linked to c (i.e. will be translated), and c) include
at least the unique correspondence object for each already translated fragment that is referred to. Furthermore,
we require d) that each story pattern contains a NAC forbidding for each source object to be translated by this
story pattern that it is already translated. Finally, we require e) that the type of the created correspondence
object c of each story pattern ρi is not present as a type required by some story pattern ρj occurring earlier in
the story diagram. Note that story patterns of this prototypical kind preserve all elements of the source model
and thus describe only outplace model transformations. These story patterns also relate source patterns via a
unique correspondence objects to its translated target pattern. Each source pattern is only translated once and
a story pattern ρi occurring after a story pattern ρj in the story diagram does not create new matches for ρj .

A restricted story diagram is then executed starting with the first activity node succeeding the initial node. If
a match for the story pattern of the current activity node is found, the story pattern is applied and the activity
node linked via a success edge becomes the current one. Otherwise, the activity node linked via a failure is
chosen. Due to the prototypical structure of the story pattern thus at first a valid match for the source model
is searched and then the prescribed correspondence and target elements are added while the source model is
always preserved. Note that the prototypical structure of story patterns ensures termination for each finite
source model, since each story pattern connects at least one source object to a correspondence object (i.e. at
least one objects is translated) and it forbids source objects to be connected to more than one correspondence
object (i.e. each object is translated only once).

Example 2 (SD for Lifeline2Automaton). Fig. 2(b) shows a Story Diagram that describes our example trans-
formation. The story diagram starts with a lifeline and sets up a corresponding automaton related with corre-
spondences step by step. The first activity node creates an initial state for the first event. Since there is only one
first event, this is done only once. Afterwards all other events are translated. Activity node three connects the
states that belong to already translated events that are connected via a Send object properly. The fourth activity
node is the same as the third, but for Rcv obejcts instead of send objects. In the top of Fig. 2(a) an example
model transformation instance (with active edges as dynamic elements) is depicted computed by this SD.

The prototypical structure, while appearing to only impose additional restrictions, is actually also a means
of explicitly capturing traceability information required for the transformation. While other approaches and
model transformation languages may do this in an implicit way, they still require similar mechanisms. Moreover,
restricted SDs roughly correspond to the phased construction design pattern [13] based on the investigation of
leading model transformation languages such as ATL, QVT and graph transformation based approaches. In

(a) MT instance for Lifeline2Automaton
from [7]

(b) SD for Lifeline2Automaton

R2T

Event State E2S

Event E2S

Event E2S

State

State

Send TS pre

post
S2T

src

tgt
++

Event E2S

Event E2S

State

State

Rcv TR pre

post
R2T

src
tgt

++
++

++

++
++ ++ ++

++

++
++

++ ++

++

++

++

Event

first

State

init

E2S
++

++

++

++

E2S

E2S

S2T

(c) Rules for Lifeline2Automaton or-
dered by priority (descending)

Figure 2: Lifeline2Automaton Running Example

general, considering restricted forms of model transformations to guarantee important transformation properties
and to enable verification at the transformation level is a common approach (see e.g. [14]).

3 Formal Model

In order to formalize operational model transformations and our verification scheme in the subsequent sections,
we reintroduce the notions: typed graph, morphism, transformation, transformation system and constraint as
well as graph language. Moreover we revisit control conditions for a transformation system and inductive invari-
ants. Finally, we reintroduce how these notions can be generalized to so-called triple graphs, consisting of the
following parts: the source (target) component describing the source (target) of a model transformation related
by correspondence relationships in the correspondence component.

A graph G = (V,E, s, t) consists of a set V of nodes (also called vertices), a set E of edges, and two mappings
s, t : E → V , the source and target mappings, respectively. Graphs can be equipped with typing over a given
type graph TG as usual [15] by adding a so-called typing morphism from each graph to TG. Such a typing
morphism is a regular graph morphism from the graph G to be typed into the type graph TG, expressing to
which type node/edge in TG each node/edge in G, resp., is being mapped. A graph morphism f = (fV , fE)
consists of a node mapping fV and edge mapping fE preserving source and target mappings. A graph language
L(TG) consists of all graphs typed over TG. The category of typed graphs and morphisms is called GraphsTG.

We can further constrain this set of typed graphs using graph constraints. We restrict to a specific kind of
constraints that can be handled by our invariant checker [10, 11], but in general they may be more expressive [16].
true and false are graph constraints. For every graph N , ¬∃N is a graph constraint. For every graph P , Ci
such that P is included in Ci via some inclusion morphism ci : P → Ci with i in an index set I, ∀(P,∨i∈I∃ci)
is a graph constraint. If the inclusion morphism ci is clear from the context we also write ∀(P,∨i∈I∃Ci). Every
conjunction of graph constraints is a graph constraint. Satisfiability of graph constraints is inductively defined
as follows: A graph G satisfies ¬∃N if there does not exist an injective morphism q : N → G. A graph G satisfies
∀(P,∨i∈I∃ci) if there exists for each injective morphism q : P → G at least one i ∈ I such that an injective
morphism q′ : Ci → G exists with q′ ◦ ci = q. A graph constraint satisfies a conjunction of graph constraints if
it satisfies each graph constraint in the conjunction. Graph constraints can be equipped with typing over a type
graph TG as usual [15] by adding typing morphisms from each graph to TG and by requiring type-compatibility
w.r.t. TG for each morphism. We can now restrict the language L(TG) to a so-called graph language with
constraint L(TG, C) comprising those graphs also satisfying a constraint C typed over TG.

A graph rule ρ : (L
r→ R,NACρ) consists of a graph morphism r, which is an inclusion and a so-

called negative application condition (NAC) NACρ = ∧i∈I(¬∃ni) with ni : L → Ni. Given a graph rule

ρ : (L
r→ R,NACρ) and a graph G, ρ can be applied to G if there is an occurrence of L in G i.e. an in-

jective graph morphism m : L → G, called match, such that m � NACρ. The latter is the case if for each
ni in NACρ it holds that there does not exist an injective morphism qi : Ni → G such that qi ◦ ni = m.

L R

G H

(PO)

r

m n

h

Note that we restrict to non-deleting rules in this paper. A direct graph transformation
G⇒ρ,m H from G to H or short G⇒ρ H via ρ and m consists of the pushout (PO) in
GraphsTG.

For a set of rules R a direct graph transformation G ⇒R G′ is given if a rule ρ ∈ R
with G ⇒ρ G

′ exists. A graph transformation, denoted as G0 ⇒∗R Gn, is a sequence
G0 ⇒R G1 ⇒R · · · ⇒R Gn of direct graph transformations. Graph rules and transformations can be equipped
with typing over a given type graph TG as usual [15] by adding typing morphisms from each graph to TG and
by requiring type-compatibility with respect to TG for each graph morphism. A graph transformation system
(GTS) gts = (R,TG) consists of a set of rules R typed over a type graph TG.

The application of graph transformation (GT) rules from a GTS can be restricted via a so-called control
condition [17] restricting the non-determinism of rule application during the transformation process. A graph
transformation G ⇒∗R G′ via rules in R that is allowed by some control condition CC is denoted G ⇒∗R,CC G′.
A GTS with control condition (gts, CC) consists of a GTS gts = (R,TG) and control condition CC over R.
Priorities are a well-known possible control condition for graph transformation systems, where the rule with
the highest priority is always applied first. Given a set of graph transformation rules R = {ρ1, . . . , ρn} then
p : R → N defines priorities over R. Thereby, G ⇒R,p G′ is a direct graph transformation allowed by p if

∃ρ ∈ R : G⇒ρ G
′ and ¬∃ρ′ ∈ R : G⇒ρ′ G

′′ ∧ p(ρ) < p(ρ′). G
∗⇒R,p G′ is a sequence of direct transformations

allowed by p. A graph constraint C is an inductive invariant of the graph transformation system with priorities
gts = ((R,TG), p), if for all graphs G in L(TG), it holds that G � C ∧ G⇒R,p G′ implies G′ � C.

Triple graphs are defined as introduced in [18, 19], a particular formalization different from the original one
introduced in [6]. Thereby, the main idea is to use a distinguished, fixed graph TR which all triple graphs,
including the type triple graph STTCTTTTT , are typed over. It defines three node types s, c, and t representing
the source, correspondence, and target nodes, and corresponding edge types ls and lt for source and target graph
edges. Moreover, for the connections from correspondence to source or target nodes the edge types ecs and ect
are available.

TR s c t
ecs ect

ls lt

We say that TRS , TRC , TRT , and TRSC as shown below,

TRS s
ls

TRC s c t
ecs ect

TRT t
lt

TRSC s cecs

are the source, correspondence, target and source-correspondence component of TR, respectively.

Analogously, the projection of a graph G typed over TR to TRS , TRC , TRSC , or TRT selects the corresponding
component of this graph. A triple graph (G, tripleG) is a graph G equipped with a morphism tripleG : G→ TR.
We denote a triple graph as a combination of three indexed capitals, as for example SGCGTG, where SG denotes
the source and TG denotes the target component of G, while CG denotes the correspondence component, being
the smallest subgraph of G such that all c-nodes as well as all ecs- and ect-edges are included in CG. Note that
CG has to be a proper graph, i.e. all target nodes of ecs and ect-edges have to be included. Moreover, CSG denotes
the source-correspondence component of G.

Analogously to typed graphs, typed triple graphs are triple graphs typed over a distinguished triple graph
STTCTTTTT , called type triple graph. In the remainder of this paper, we assume every triple graph SGCGTG
and triple graph morphism f to be typed over STTCTTTTT , even if not explicitly mentioned. In particular, this
means that SG is typed over STT , CG is typed over CTT , and T is typed over TTT . We say that SG (TG or CG)
is a source graph (target graph or correspondence graph, respectively) belonging to the language L(STT) (L(TTT)
or L(CTT), respectively). Note that each source graph (target graph) corresponds uniquely to a triple graph
with empty correspondence and target (source and correspondence) components, respectively. Therefore, if it is
clear from the context that we are dealing with triple graphs, we denote triple graphs SG∅∅ (∅∅TG) with empty
correspondence and target components (source components) also as SG (TG), respectively. Typing a graph over
a type triple graph STTCTTTTT already defines the triples, i.e. any graph and any morphism typed over the
type triple graph STTCTTTTT corresponds uniquely to a typed triple graph and a typed triple graph morphism,
respectively. Analogously [18, 19], also graph rules, graph transformations as well as graph constraints can be
generalized to typed triple graph rules, transformations as well as constraints by requiring that each graph and
morphism therein is typed over STTCTTTTT .

The type graph STTCTTTTT can be enriched with dynamic types for source and target languages and is then
denoted as SRTCTTTRT . In particular, the bisimulation constraint CBis mentioned in the introduction and used
throughout the paper is a graph constraint typed over SRTCTTTRT . If some graph SGCGTG, morphism m, rule

ρ, or condition ac is typed over a subgraph SSGCSGTSG of SRTCTTTRT , then it is straightforward to extend the
codomain of the corresponding typing morphisms to SRTCTTTRT such that SGCGTG, m, ac, or ρ are actually
typed over SRTCTTTRT . We therefore do not explicitly mention this anymore in the rest of this paper.

4 Operational Model Transformations Formalized

We formalize the source and target modeling language LS and LT of restricted SDs describing our operational
model transformations (see Section 2) by a graph language with constraint. Thus we have a source and target
graph language L(STT , CS) and L(TTT , CT) with source and target type graph STT and TTT and source and
target constraints CS and CT , respectively. For example, Fig. 1(b) shows a fragment of the source constraint
CS of our running example. The model transformation instances with correspondences belonging to LSCT are
formalized by triple graphs. These instances conform to the metamodel of our model transformation that is
formalized by a type triple graph STTCTTTTT . To further restrict the set of model transformation instances
with correspondences, we allow a graph constraint CSCT typed over the type triple graph STTCTTTTT expressing
restrictions on the correspondences between source and target models. W.l.o.g. we assume that CSCT comprises
the source and target constraints CS and CT of the source and target graph language L(STT , CS) and L(TTT , CT),
respectively, such that the target component T of each SCT in L(STTCTTTTT , CSCT) automatically belongs to
L(TTT , CT).

For our verification scheme it will be important that traceability information for source elements is complete
as well as unique in the following sense. Note that restricted story diagrams as described in Section 2 only create
uniquely traceable model transformation instances.

Definition 1 (Uniquely/Complete Traceability). Given a triple graph SCT , then SCT is completely traceable,
if each node s of S is connected via a correspondence edge to at least one correspondence node c of C. More-
over, SCT is uniquely traceable, if each node s of S is connected via a correspondence edge to at most one
correspondence node c of C.

We formalize the story patterns present in a restricted SD by a set R of non-deleting triple graph transfor-
mation rules and the control flow by a control program P , being a specific control condition over R. Note that
as explained in the previous section, the prototypical structure of SPs in restricted SDs ensures that a control
program over rules derived from these patterns terminates. Moreover, w.l.o.g. we assume that each control
program P over R is complete meaning that each rule ρ of R is used in P .

Definition 2 (Operational Rules & Control Program). An operational rule is a triple graph rule ρ : (SLCLTL
r→

SLCRTR, NACρ) typed over STTCTTTTT . Given a non-empty set of operational rules R, then a control program
P over R is defined recursively, as follows: WHILE(ρ) is a control program over {ρ}, and WHILE(ρ′);P ′ is a control
program over ρ′∪R′ with P ′ a control program over R′ such that ρ′ is not in R′ and any rule in R′ is not allowed
to create any new match for ρ′. Finally, G⇒∗{ρ},WHILE(ρ) G

′ if G⇒∗{ρ} G
′∧G′ 6⇒{ρ}, and G⇒∗ρ′∪R′,WHILE(ρ′);P ′ G′

if ∃G′′ : G⇒∗{ρ′},WHILE(ρ′) G
′′ ∧G′′ ⇒∗R′,P ′ G′.

Now we are ready to formalize operational model transformations given as restricted SDs (see Section 2).

Definition 3 (Operational Model Transformation OP). An operational model transformation OP =
((R, STTCTTTTT), P), CSCT) consists of a GTS (R, STTCTTTTT) with control program P over a non-empty
finite set of operational rules R as given in Def. 2 typed over a uniquely traceable type triple graph STTCTTTTT
and a graph constraint CSCT typed over STTCTTTTT . The induced model transformation with correspondences
MTC(OP) consists of the subset of L(STTCTTTTT , CSCT) containing exactly those triple graphs SCT for which
there exists a triple graph transformation S ⇒∗R,P SCT such that SCT is completely and uniquely traceable. A
model transformation instance of MTC(OP) is an element of MTC(OP).

5 Verification Scheme for Checking the Bisimulation Constraint

Recall that for solving the behavior preservation problem we want to be able to check for some operational model
transformation OP that all its instances fulfill the bisimulation constraint CBis, i.e. ∀SCT ∈ MTC(OP) : SCT �
CBis (1∗) (see Sect. 1). In our verification approach, we aim at reducing this problem to invariant checking. In
principle, this means showing that CBis holds for each valid source model S (induction base) and that CBis is an
inductive invariant of the operational model transformation OP (induction step). We conduct the verification

with our invariant checker [10, 11], which is able to automatically perform inductive invariant checking for typed
graph transformation systems with priorities and graph constraints as invariants as introduced in Section 3.
Since the invariant checker does not directly support control programs P over rules as employed by OP, we first
study how we can map the behavior of P to priorities as in the following Lemma. Note that this is correct since
each rule in P is not allowed to create any new matches for an earlier rule.

Lemma 1 (Mapping of Control Programs to Priorities). Given a graph transformation system with control
program ((R, STTCTTTTT), P) with non-empty rule set R and control program P we can derive a GTS with
priorities ((R, STTCTTTTT), p) such that

G⇒∗R,P G′ =⇒ (G⇒∗R,p G′ ∧ G′ 6⇒∗R).

Proof. We define priorities following the recursive definition of a control program in Def. 2. For WHILE(ρ) a
control program over {ρ} we define the priority p(ρ) := 1. For WHILE(ρ′);P ′ such that P ′ is a control program
overR′ we define p(ρ′) := max{p(ρ)|ρ ∈ R′}+1. More informally, we have that the priority p(ρ′) is the maximum
of the priorities of all rules occurring in P ′ incremented by 1. Now we can prove the above condition. For
WHILE(ρ) the above condition is trivially true. For WHILE(ρ′);P ′ we assume that the above condition holds
for P ′ over R′ (∗). Given G⇒∗ρ′∪R′,WHILE(ρ′);P ′ G′, then by definition ∃G′′ : G⇒∗{ρ′},WHILE(ρ′) G

′′ ∧G′′ ⇒∗R′,P ′ G′.

By hypothesis (∗) for G′′ ⇒∗R′,P ′ G′ it follows that G′′ ⇒∗R′,p G
′ and G′ 6⇒∗R′ . Consequently, since ρ′ has

by definition a higher priority than all rules in R′ and they do not create new matches for ρ′ it follows that
G⇒∗ρ′∪R′,p G

′ and G′ 6⇒∗ρ′∪R′ .

Example 3. The priorities for our model transformation example are depicted in Figure 2(c) by the ordering.

Two problems occur when now trying to check CBis as an invariant of our operational model transformation OP.
On the one hand not every constraint in CBis holds for each valid source model S (induction base) and on the other
hand CBis might be too weak to be established as an inductive invariant for the operational rules with priorities
derived from OP (induction step). In the following theorem we therefore present a derived bisimulation constraint
that we can check as an alternative invariant such that in the end ∀SCT ∈ MTC(OP) : SCT � CBis (1∗) holds.
For a successful induction base we argue that CBis can be weakened to a constraint CwBis because of completeness
and uniqueness of the traceability information in each model transformation instance. For a successful induction
step we introduce a so-called transformation constraint CTR that can be used to strengthen CBis.

Definition 4 (weakened bisimulation constraint, transformation constraint, derived bisimulation constraint).
Given a bisimulation constraint CBis typed over SRTCTTTRT , then a graph constraint CwBis typed over SRTCTTTRT
is a weakened bisimulation constraint for CBis if (1) for each completely and uniquely traceable triple graph
SCT � CwBis also implies SCT � CBis and if (2) each graph S ∈ L(STT , CS) satisfies CwBis. Moreover, a graph
constraint CTR typed over SRTCTTTRT is a transformation constraint for CBis if each graph S ∈ L(STT , CS)
satisfies CTR. The graph constraint C′Bis = CwBis ∧ CTR is then a derived bisimulation constraint for CBis.

Theorem 1. Given an operational model transformation OP = (((R, STTCTTTTT), P), CSCT) as in Def. 3 and
a bisimulation constraint CBis typed over SRTCTTTRT , then ∀SCT ∈ MTC(OP) : SCT � CBis if the graph trans-
formation system with priorities ((R, STTCTTTTT), p) derived from ((R, STTCTTTTT), P) according to Lemma 1
has a derived bisimulation constraint C′Bis as given in Def. 4 as inductive invariant.

Proof. We prove first that each SCT ∈ MTC(OP) satisfies C′Bis by induction over the length of the graph
transformation needed to create some triple SCT ∈ MTC(OP). (Induction base) The weakened bisimulation
constraint CwBis and also the transformation constraint CTR are fulfilled by construction. (Induction step) By
construction and by Lemma 1. Then we know by definition of the weakened bisimulation constraint that also
CBis holds.

6 Application of Verification Scheme

We outline in this section that for a bisimulation constraint CBis fulfilling certain restrictions we can determine
a related derived bisimulation constraint as required for Theorem 1. We exploit in the following that graph
constraints may be trivially true for each potential model transformation instance (CTrueBis), that a graph constraint
may hold for each source graph S in L(STT , CS) (CsrcBis), and that for some constraints a weakened bisimulation

(a)



active

active

Event

Event

(b)
e2:Event E2S

e1:Event E2S

State

State

s:Send TS

pr:pre

po:post
S2T

src

tgt  , 

e2:Event

e1:Event

s:Send

pr:pre

po:post

(c)
e2:Event b:E2S

e1:Event a:E2S

State

State

s:Send TS

pr:pre

po:post
c:S2T

src

tgt  , 

e2:Event b:E2S

e1:Event a:E2S

s:Send

pr:pre

po:post

c:S2T

Figure 3: (a) Fragment of CTrueBis , (b) fragment of CBis to be weakened, and (c) weakened fragment of CwBis

constraint (CwBis) can be derived. In addition, we will show how a suitable transformation constraint CTR for CBis

can be derived systematically.
The trivially true constraint CTrueBis summarizes all graph constraints in CBis typed over SRTCTTTRT that

are true for each potential model transformation instance SCT ∈ L(STTCTTTTT). In particular, some of the
conditions of CBis refer to dynamic elements required for the semantics definitions as follows: Conditions of the
form ∧i∈I∀(SPi

CPi
TPi

,∃SCi
CCi

TCi
) with SPi

CPi
TPi

typed over SRTCTTTRT but not STTCTTTTT alone are
true for all SCT typed over STTCTTTTT since the precondition can never be fulfilled by a graph typed over
STTCTTTTT . Moreover, conditions of the form ∧i∈I¬∃SNiCNiTNi with SNiCNiTNi typed over SRTCTTTRT but
not STTCTTTTT alone are true for all SCT typed over STTCTTTTT since SNi

CNi
TNi

can never be found for a
graph typed only over STTCTTTTT .

Example 4. The constraint fragment shown in Figure 3(a) is part of CTrueBis for our example. It is true for
all triple graphs SCT typed over STTCTTTTT , since it describes the non-existence of dynamic elements and
STTCTTTTT does not contain dynamic types.

The invariant source constraint CsrcBis further summarizes all graph constraints in CBis typed over SRTCTTTRT
that hold for each source graph S in L(STT , CS) and thus can be directly approached by the invariant checker.

Employing the introduced CTrueBis and CsrcBis , we assume that CBis has the form CTrueBis ∧ CsrcBis ∧
∧i∈I∀(SPi

,∃SPi
CPi

TPi
) and we can observe that in this case only the constraints of the form ∀(SPi

,∃SPi
CPi

TPi
)

(typed over STTCTTTTT) may be false for each valid source model. This is because they may imply the exis-
tence of a non-empty correspondence and target pattern for a specific source pattern. Obviously, no graph typed
only over STT can fulfill this requirement. Hence, these constraints have to be weakened to fulfill the induction
base for our inductive approach. We need a constraint CwBis such that each completey and uniquely traceable
triple graph SCT fulfilling CwBis also fulfils the original constraints and that each graph in the source language
L(STT , CS) fulfils CwBis (cf. Def. 4).

Lemma 2 (Weakened Bisimulation Constraint CwBis). Given the bisimulation constraint CBis = CTrueBis ∧ CsrcBis ∧
∧i∈I∀(SPi

,∃SPi
CPi

TPi
) then the constraint CwBis = CTrueBis ∧ CsrcBis ∧ ∧i∈I∀(SPi

CSPi
,∃SPi

CPi
TPi

) is a weakened
bisimulation constraint for CBis as given in Def. 4.

Proof. We have to show that (1) for each completely and uniquely traceable triple graph SCT with SCT � CwBis,
SCT � CBis also holds and that (2) each graph S ∈ L(STT , CS) satisfies CwBis. (2) holds by construction of CwBis.
For (1) we in particular have to show that if SCT � ∧i∈I∀(SPi

CSPi
,∃SPi

CPi
TPi

) then SCT � ∀(SPi
,∃SPi

CPi
TPi

).
First, it follows from the complete and unique traceability of the type triple graph STTCTTTTT in OP and the
fact that our constraint to be weakened is typed accordingly that for SPi

only a unique extension CS can exist
and due to the guaranteed type conformance CSPi

must be a subgraph of that. Consequently, any completely and

uniquely traceable SCT that matches SPi
also matches SPi

CS and thus SPi
CSPi

such that condition (1) must be
fulfilled as well.

Example 5. The constraint fragment in Figure 3(b) is part of ∧i∈I∀(SPi ,∃SPiCPiTPi) for our example. Fig-
ure 3(c) shows how this fragment can be weakened such that it holds for each graph S in L(STT , CS), i.e. for
each valid source model, because no such graph S can contain correspondence nodes.

We further use a transformation constraint typed over STTCTTTTT to strengthen the bisimulation constraint
CBis = CTrueBis ∧ CsrcBis ∧ ∧i∈I∀(SPi

,∃SPi
CPi

TPi
) describing that the existence of a correspondence or target model

node in a graph SCT implies that one of the rules capable of creating the respective correspondence or target
model node has been applied and that one of those rules’ side effects (right-hand rule side) is present in SCT .
By construction, this transformation constraint is fulfilled by all source graphs S typed over STT as these graphs
contain no correspondence nodes and can thus never fulfill the precondition. Since the operational rules are
derived from the operational rules, they will usually be inductive invariants.

(a)
Event E2S

Event E2S

State

State

Send TS

pre

post
s:S2T

src

tgt  ,  s:S2T

(b)
Event E2S

Event E2S

State

State

Send t:TS

pre

post
S2T

src

tgt  ,  t:TS

Figure 4: Fragments of the transformation contraint CTR for (a) correspondence nodes and (b) target nodes

Lemma 3 (Transformation Constraint CTR). Given a set of operational rules R = {ρi|i ∈ I} with ρi :

(SLi
CLi

TLi

ri→ SLi
CRi

TRi
, NACρi), then the related transformation constraint for correspondence nodes is

CCρi = ∀(ci,∨j∈Ji∃SLj
CRj

TRj
) with ci a correspondence node in CRi

but not in ri(CLi
) created by ρi and

Ji = {j|ρj creates a correspondence node of the same type in STTCTTTTT as ci} ⊆ I and the related transfor-
mation constraint for target nodes is CTρi = ∀(ti,∨j∈Ji∃SLjCRjTRj) with ti a target node in TRi but not in
ri(TLi) created by ρi and Ji = {j|ρj creates a target node of the same type in STTCTTTTT as ti} ⊆ I. Given
the bisimulation constraint CBis, then the constraint CTR = ∧i∈ICCρi ∧ C

T
ρi is a transformation constraint for CBis

as given in Def. 4.

Proof. Since CTR = ∧i∈ICCρi ∧ C
T
ρi is a constraint typed over STTCTTTTT and it holds for each graph S ∈

L(STT , CS), it is a well-defined transformation constraint for CBis.

Example 6 (Transformation constraint). Two fragments of the transformation constraint CTR are depicted in
Figure 4. Note that each valid source model satisfies such constraints. In particular, the fragments state that the
existence of a correspondence node of type S2T (TS) requires the existence of the side effect of a rule capable of
creating nodes of type S2T (TS, respectively). In both cases, there is only one such rule – the third rule in Figure
2(c), which creates TS and S2T nodes for Send nodes. Hence, the fragments’ disjunctions (∨j∈Ji∃SLj

CRj
TRj

)
contain only one condition each.

We performed the inductive invariant check for ((R, STTCTTTTT), p) with priorities p derived from the control
program P in OP according to Lemma 1 and the derived bisimulation constraint C′Bis of our running example Life-
line2Automaton introduced in Section 2 with our invariant checker [10, 11]. In particular, ((R, STTCTTTTT), p)
and C′Bis are supported by our checker and the check was successful. Using Theorem 1 we can then conclude
for our running example that indeed (1∗) ∀SCT ∈ MTC(OP) : SCT � CBis holds. The successful verification
of (2) ∀SCT ∈ MTC(OP) : sem(S) ≈bsim sem(T) for our running example is explained in [7, 8] such that our
running example transformation Lifeline2Automaton is behavior preserving.

For our example consisting of four transformation rules with at most 9 nodes and constraints with at most 9
nodes, the verification of condition (1∗) takes about 10 seconds on an Intel Core-i7-2640M processor with two
cores at 2,8 GHz, 8 GB of main memory and running Eclipse 4.2.2 and Java 8 with a limit of 2 GB on Java
heap space, which is very acceptable. As can be inferred from [11], the size of rules and constraints is usually
the limiting factor for feasibility of verification rather than the number of rules or constraints.

7 Conclusion and Future Work

In this paper, we presented a first approach towards the automatic verification at the transformation level of
behavior preservation captured by bisimulation for operational model transformations. To achieve this, we also
presented a formalization of restricted Story Diagrams with a mapping to graph transformation systems with
priorities. Our main result has been obtained by reusing parts of our approach for relational model transforma-
tions [7, 8] and showing that required checks for the operational model transformation can be in case of a specific
restricted form reduced to invariant checking for graph transformation with priorities. We further illustrate the
feasibility by reporting on a simple example.

Besides the covered control constructs for operational model transformations such as while loops and sequence,
operational model transformations may also employ as special cases single transformation steps, conditionals,
general loops, nesting, or specific means to hand over binding from one rule to another. Also the type of language
constraints as well as transformation rules might become more complex and may contain, for example, arbitrary
levels of nesting. While in many cases these constructs can be mapped on the outlined restricted form, it remains
an open question whether the approach can be extended to also cover these more general forms. Another open
question is whether the required correspondence model (traceability information) is really necessarily an element
that has to be specified explicitly as part of the operational model transformation or whether it can be synthesized

systematically in a pre-processing step of the verification. As future work we plan to approach the outlined open
questions and also study the feasibility by means of larger and more complex case studies.

References

[1] OMG: MOF QVT Final Adopted Specification, OMG Document ptc/05-11-01. (http://www.omg.org/)

[2] Varró, D., Pataricza, A.: Automated Formal Verification of Model Transformations. In Jürjens, J., Rumpe, B.,
France, R., Fernandez, E.B., eds.: CSDUML 2003: Critical Systems Development in UML; Proceedings of the
UML’03 Workshop. Number TUM-I0323 in Technical Report, Technische Universitat Munchen (2003) 63–78

[3] Engels, G., Kleppe, A., Rensink, A., Semenyak, M., Soltenborn, C., Wehrheim, H.: From UML Activities to TAAL
- Towards Behaviour-Preserving Model Transformations. In I. Schieferdecker, A.H., ed.: Proceedings of the 4th
European Conference on Model Driven Architecture - Foundations and Applications (ECMDA-FA 2008), Berlin
(Germany). LNCS, Berlin/Heidelberg, Springer (2008) 95–109

[4] Narayanan, A., Karsai, G.: Verifying Model Transformations by Structural Correspondence. Electronic Communi-
cations of the EASST: Graph Transformation and Visual Modeling Techniques 2008 10 (2008)

[5] Giese, H., Glesner, S., Leitner, J., Schäfer, W., Wagner, R.: Towards Verified Model Transformations. In Hearnden,
D., Süß, J., Baudry, B., Rapin, N., eds.: Proc. of the 3rd International Workshop on Model Development, Validation
and Verification (MoDeV2a), Genova, Italy, Le Commissariat à l’Energie Atomique - CEA (2006) 78–93

[6] Schürr, A.: Specification of graph translators with triple graph grammars. In Mayr, E.W., Schmidt, G., Tinhofer, G.,
eds.: Graph-Theoretic Concepts in Computer Science, 20th International Workshop, WG ’94. Volume 903 of LNCS.,
Herrsching, Germany (1994) 151–163

[7] Giese, H., Lambers, L.: Towards Automatic Verification of Behavior Preservation for Model Transformation via
Invariant Checking. In Ehrig, H., Engels, G., Kreowski, H., Rozenberg, G., eds.: Proceedings of Intern. Conf. on
Graph Transformation (ICGT1́2). Volume 7562 of LNCS., Springer (2012) 249–263

[8] Dyck, J., Giese, H., Lambers, L.: Automatic Verification of Behavior Preservation at the Transformation-Level for
Relational Model Transformation. Technical report, Hasso Plattner Institute at the University of Potsdam, Potsdam,
Germany (2015) (forthcoming).

[9] Fischer, T., Niere, J., Torunski, L., Zündorf, A.: Story Diagrams: A New Graph Rewrite Language Based on
the Unified Modeling Language and Java. In: TAGT’98: Selected papers from the 6th International Workshop
on Theory and Application of Graph Transformations. Volume 1764/2000 of Lecture Notes in Computer Science
(LNCS)., London, UK, Springer-Verlag (2000) 296–309

[10] Becker, B., Beyer, D., Giese, H., Klein, F., Schilling, D.: Symbolic Invariant Verification for Systems with Dynamic
Structural Adaptation. In: Proc. of the 28th International Conference on Software Engineering (ICSE), Shanghai,
China, ACM Press (2006)

[11] Dyck, J., Giese, H.: Inductice Invariant Checking with Partial Negative Application Conditions. In Parisi-Presicce,
F., Westfechtel, B., eds.: Graph Transformation. Volume 9151 of LNCS., Springer International Publishing (2015)

[12] Pennemann, K.-H.: Development of Correct Graph Transformation Systems. PhD thesis, Department of Computing
Science, University of Oldenburg, Oldenburg (2009)

[13] Lano, K., Kolahdouz-Rahimi, S.: Model-Transformation Design Patterns. Software Engineering, IEEE Transactions
on 40(12) (2014) 1224–1259

[14] Selim, G.M.K., Lúcio, L., Cordy, J.R., Dingel, J., Oakes, B.J.: Specification and Verification of Graph-Based Model
Transformation Properties. In Giese, H., Knig, B., eds.: Graph Transformation. Volume 8571 of Lecture Notes in
Computer Science. Springer International Publishing (2014) 113–129

[15] Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transformation. Springer (2006)

[16] Habel, A., Pennemann, K.-H.: Correctness of high-level transformation systems relative to nested conditions. Math-
ematical Structures in Computer Science 19 (2009) 1–52

[17] Kuske, S.: More about control conditions for transformation units. In Ehrig, H., Engels, G., Kreowski, H.J.,
Rozenberg, G., eds.: TAGT. Volume 1764 of Lecture Notes in Computer Science., Springer (1998) 323–337

[18] Giese, H., Hildebrandt, S., Lambers, L.: Bridging the Gap between Formal Semantics and Implementation of Triple
Graph Grammars - Ensuring Conformance of Relational Model Transformation Specifications and Implementations.
Software and Systems Modeling 13(1) (2014) 273–299

[19] Golas, U., Lambers, L., Ehrig, H., Giese, H.: Bridging the Gap between Formal Foundations and Current Practice
for Triple Graph Grammars. In: Proceedings of ICGT 2012. LNCS, Springer (2012)

