
Model-Based Reuse of APIs
using Concern-Orientation

Matthias Schöttle
School of Computer Science

McGill University
Montreal, QC, H3A 0E9, Canada

Matthias.Schoettle@mail.mcgill.ca

Abstract—Despite the promises of Model-Driven Engineering
(MDE) to address complexity and improve productivity, no
widespread adoption has been observed in industry. One reason
this paper focuses on is reuse, which is essential in modern
software engineering. In the context of MDE, poor availability
of reusable models forces modellers to create models from
scratch. At the same time, reusable code artifacts, such as
frameworks/APIs are widespread. They are an essential part
when creating software. This paper presents model-based reuse
of APIs, which makes use of concern-driven development (CDD)
to raise the level of abstraction of APIs to the modelling level.
The interface (API) of a framework is modelled using a feature
model and design models for each feature enabling their reuse in
MDE. Additional information is embedded, such as impacts and
protocols, to assist the developer in the reuse process. We discuss
how this enables reuse at the modelling level, the required tool
support and future work.

I. INTRODUCTION

Model-Driven Engineering (MDE) has been around for
some time. Despite its promises to address challenges, such
as complexity, maintenance and productivity, no widespread
adoption has been observed in industry. The reasons are broad
and range from non-technical (cultural, social etc.) to technical
ones (e.g., lack of tool support) [1], [2].

Methodical reuse of software artifacts is essential in modern
software engineering [3], [4]. Reusable code artifacts, such
as class libraries and frameworks/APIs, which are abundantly
available and widespread on the web, are often well main-
tained and continuously improved. They are bundled with
extensive documentation, mostly textual in the form of API
documentation, tutorials etc., but also code examples (snippets
or runnable demos). However, API documentation can still
fall short in being ambiguous, outdated or incomplete [5].
Furthermore, in order for a developer to decide which reusable
artifact to choose over another to accomplish a specific task,
typically informal, textual documentation and question-and-
answer websites need to be consulted to discover their im-
pacts on high-level properties, such as performance, memory
footprint, and so on.

Reuse in the context of MDE is not very common. This
could be due to many factors, e.g., that with the current
available modelling technology it is difficult to make models
reusable, that model import and export between tools remains
non-trivial, and that there are not many model repositories with
available models for reuse [6]. But even if those challenges are

solved, it is very unlikely that functionality that is currently
offered through class libraries and frameworks at the code
level will become abundantly available in model-form in a
near future.

Hence, we popose in this paper to elevate reusable code
artifacts to the model level to enable their reuse in the MDE
context. We do this by augmenting reusable code artifacts
with models that describes their provided functionality, how
to customize and how to use them within a specific reuse
context using the appropriate modelling notations and level of
abstraction.

The remainder of the paper is structured as follows. Sec-
tion II introduces Concern-Oriented Development (CDD) [7],
a recent, reuse-focussed modelling approach, and the three
reuse interfaces it promotes. Section III illustrates our idea
based on an example framework called Minueto. Tool support
is essential in the context of MDE and especially CDD.
Therefore, Section IV explains the required tool support that
is necessary for model interfaces of APIs, and the last section
draws some conclusions and gives an overview of future work.

II. BACKGROUND

In contrast to the focus of classic Model-Driven Engineering
(MDE) on models, the main unit of abstraction, construc-
tion, and reasoning in Concern-Driven Software Development
(CDD) is the concern [7]. CDD seeks to address the challenge
of how to enable broad-scale, model-based reuse. A concern
is a unit of reuse that groups together software artifacts
describing properties and behaviour of a domain of interest
to a software engineer at different levels of abstraction. A
concern provides a three-part interface. The variation interface
describes required design decisions and their impact on high-
level system qualities, both explicitly expressed using a feature
model and impact models in the concern specification. The
customization interface allows the chosen variation to be
adapted to a specific reuse context, while the usage interface
defines how the functionality encapsulated by a concern may
eventually be used.

Building a concern is a non-trivial, time-consuming task,
typically done by or in consultation with a domain expert
(subsequently called the concern designer). On the other
hand, reusing an existing concern is extremely simple, and
essentially involves three steps for the concern user:



1) Selecting the feature(s) of the concern with the best
impact on relevant goals and system qualities from the
variation interface of the concern.

2) Adapting the general models of features of the concern
that were selected to the specific application context
based on the customization interface by mapping them.

3) Using the functionality provided by the selected concern
features as defined in the usage interface within the
application.

The feature model’s features are organized within a tree
structure, where a relationship between the parent and child
feature determines constraints for valid selection. A feature can
be mandatory or optional, or all child features can be within
an XOR or OR relationship. Different models at different levels
of abstraction can provide a realization model for each feature.
For instance, the design of a concern can be provided by
design models that entail class, sequence and state diagrams.
Each feature provides the functionality for just that feature,
contributing to the design of the parent feature’s realization
model. In order to accomplish this, aspect-oriented techniques
are used.

In general, MDE approaches rely heavily on tool support.
Tool support is even more important in the context of CDD,
in particular for the concern user. The tool needs to guide
the user for selecting variations (making valid selections) and
evaluating impacts (allowing the user to perform trade-off
analysis between different selections). In addition, the tool
needs to hide the complexity of the composition of models and
provide validation to ensure proper customization and usage.

III. CONCERN-ORIENTED INTERFACES FOR APIS

This section provides an overview of our approach to raise
the level of abstraction for APIs to the modelling level and
is illustrated using an example framework called Minueto [8],
[9]. Minueto is a Java framework, which provides an abstrac-
tion layer on top of Java 2D to simplify the creation of 2D
multi-platform games. It takes care of the difficult technical
parts of game programming in order to allow a developer
(the user of the framework) to focus on the game logic.
The framework provides different window modes, shapes and
event handling and is shipped with different documentation,
such as API documentation (based on Javadoc), How To
and Frequently Asked Questions (FAQ) and several runnable
code examples that showcase how to accomplish specific
functionality.

A. Concernification
Concernification is the process of creating a concern inter-

face for an existing reusable artifact (API) in order to facilitate
its use within MDE [10]. The concern interface provides the
variations and other aspects of this artifact from the user’s
perspective, i.e., for a user that reuses that artifact. Therefore,
the user-perceived features of the API need to be determined
and organized using their relationships within a feature model.
Each feature covers a specific subset of the API that is required
to successfully use that particular feature. We concernified

the Minueto framework by hand using the provided runnable
code examples. Each example covers at least one use case.
However, only a subset of the complete API is covered, which
in addition required us to consider the API documentation in
order to identify and place them appropriately. Figure 1 shows
the feature model of Minueto, which was obtained through
several iterations.

This confirms what we described in the previous section,
that in order to create a concern, thorough knowledge is
required. In the ideal case, this is done by a domain expert,
for instance one or several framework developers, who have
deep knowledge of the reusable artifact. Considerable effort is
required, but we deem this acceptable, if the API is reused a
lot. Furthermore, the concern interface can evolve over time.
Adding one additional feature requires a lot less effort. This
also supports the use case of open source development, where
anyone can contribute.

B. Designing an API Subset
In order to facilitate tailoring of the API to the user’s needs,

the API needs to be decomposed into the determined features.
This allows that the user is presented with a subset of the API
based on the desired features, which the user selected when
reusing the API through the concern interface. Based on the
user’s selection, each subset of the API located in the design
models of selected features is combined.

In the previous section, when the features were determined,
a mapping between the used API classes and its corresponding
feature was established. Based on this, the API is split across
the features, which means that a feature can contain more
than one class. However, more fine-grained separation might
be desired, for instance, when a specific operation of a class
belongs to a different feature. Then, the operation can be
moved out of that class and the class with just that operation
is added to another design model of a different feature. When
combining design models, classes with the same name will be
merged.

Figure 2 shows the Minueto feature Windowed, which
provides the ability to create a game in windowed mode.
Windowed extends the design realization model of Surface
by only contributing this functionality, i.e., the interface
MinuetoWindow is already defined in Surface including all
its operations.

Similarly, the feature Keyboard (sub-feature of Interactive)
illustrated in Figure 3 provides a keyboard handler. In addition,
it provides the required operations to register and unregister
the handler from a window, which is not present in the
MinuetoWindow interface of the visual feature group. These
operations were separated from that interface and the interface
class with just those operations added to the Keyboard feature.

When a user selects Windowed and Keyboard, both those
features and their parents are part of the selection and their
design realization models will be combined. Figure 4 shows
the resulting composed model, which presents the subset of the
API based on the user’s desired selection. It was obtained by
combining the models of Windowed, Surface, Visual, Keyboard



Minueto

Utilities

Stopwatch Platform

Visual

WindowMouseWheel

Interactive

Keyboard Mouse SwingIntegrationWindowFocus

Windowed Fullscreen SwingIntegration

Surface DisplaySizeAcceleration

Transparency RectangleCircleText Image

File

Line

GraphicalElement

Legend
mandatory optional

or xor (alternative) 

Figure 1. Hand-Made Minueto Feature Model–(features with white background contain parts of the interface, in contrast to those with a grey one that only
provide a logical grouping of child features)

structural view
aspect Minueto.Windowed realizes Windowed extends Surface

+ MinuetoFrame(int arg0, int arg1, boolean arg2)
 

<<impl>>
MinuetoFrame

 

<<impl interface>>
MinuetoWindow

Figure 2. The Interface of the Feature Windowed

structural view
aspect Minueto.Keyboard realizes Keyboard extends Interactive

+ void handleKeyPress(int arg0)
+ void handleKeyRelease(int arg0)
+ void handleKeyType(char arg0)

 

<<impl interface>>
MinuetoKeyboardHandler

+ void registerKeyboardHandler(MinuetoKeyboardHandler arg0, MinuetoEventQueue arg1)
+ void unregisterKeyboardHandler(MinuetoKeyboardHandler arg0, MinuetoEventQueue arg1)

<<impl interface>>
MinuetoWindow

+ int KEY_A
+ int KEY_B
...
+ int KEY_SHIFT
...

<<impl>>
MinuetoKeyboard

 

<<impl>>
MinuetoEventQueue

Figure 3. The Interface of the Feature Keyboard

and Interactive. Classes with the same name are merged by
combining their operations and attributes. For instance, the
MinuetoWindow class now also contains the operations for
keyboard handler registration. The user can then use these
classes and operations within the application model.

structural view
Composed model: Minueto<Windowed, Keyboard>

+ void handleKeyPress(int arg0)
+ void handleKeyRelease(int arg0)
+ void handleKeyType(char arg0)

 

<<impl interface>>
MinuetoKeyboardHandler

+ void close()
+ void setVisible(boolean arg0)
+ void render()
...
+ void registerKeyboardHandler(MinuetoKeyboardHandler arg0, MinuetoEventQueue arg1)
+ void unregisterKeyboardHandler(MinuetoKeyboardHandler arg0, MinuetoEventQueue arg1)

<<impl interface>>
MinuetoWindow

+ int KEY_A
+ int KEY_B
...

<<impl>>
MinuetoKeyboard

+ MinuetoEventQueue()
+ boolean hasNext()
+ void handle()

 

<<impl>>
MinuetoEventQueue

+ MinuetoFrame(int arg0, int arg1, boolean arg2)
 

<<impl>>
MinuetoFrame

+ MinuetoColor(int arg0, int arg1, int arg2)
...

 

<<impl>>
MinuetoColor

+ void clear(MinuetoColor arg0)
+ draw(MinuetoImage arg0, int arg1, int arg2)
+ drawLine(MinuetoColor arg0, int arg1, int arg2, int arg3, int arg4)
...

<<impl interface>>
MinuetoDrawingSurface

 

<<impl>>
MinuetoImage

Figure 4. Generated Interface of the Selected Features Windowed and
Keyboard

C. Benefits

The previous section described how the variations of an API
can be modelled and decomposed in order to provide only the
interface of interest to the user. It also provides a compact and
organized view of the user-perceivable features provided by an
API. However, a concern interface can provide the following
additional benefits:

• Traceability can be provided, which allows the user to see
which elements belong to which feature in the composed
model of the API.

• Impacts on high-level system qualities can be incorpo-
rated to give guidance to the user when selecting features
on how they impact non-functional properties.

• Usage protocols can be incorporated to formally specify
the protocol of different classes on how they can be used.
Correct use of the framework can then be ensured in the
application models.

• Partial structure and behaviour can be integrated, which
forces the user to provide mappings to application-
specific elements using the customization interface. For
instance the fact that a certain interface needs to be
implemented.

• Other artifacts that usually are shipped with an API or
are relevant for reuse could be integrated in the future (as
a different kind of model).

These help decrease the risk of a user making mistakes when
reusing an API, which can often lead to bugs or vulnerabilities
in software systems.

IV. TOOL SUPPORT

As described in Section II, tool support is crucial for
concern-orientation. It is important for both concern designer
and user to be provided with proper tool support. Especially
for the latter it is essential to hide the complexity of CDD
and provide guidance throughout the reuse process following
the three steps outlined in Section II. In addition, support
to model existing API elements (classes, operations etc.) in
order to differentiate them from application-specific elements
is required.

We use TouchCORE [11], a multi-touch enabled, concern-
oriented software design modelling tool that supports feature
and impact models, as well as class, sequence and state
diagrams. TouchCORE has recently been extended to support



Figure 5. Example of Structure and Behaviour in TouchCORE

concern-orientation [12], [13] and has been further extended to
add support for impact models and their evaluations, as well as
improvements to the concern reuse support. Therefore, using
TouchCORE, it is possible to do the full concernification as
described in the previous section. TouchRAM, the predecessor
of TouchCORE, already provided support to create design
models using class, sequence and state diagrams, and support
to use aspect-oriented techniques to address separation of
concerns [14], [15].

In order to be able to import implementation classes that
are defined by a programming language class library (such as
those provided by Java) or a framework, it is possible to import
them into a design model [16]. The modeller can choose,
which implementation class to import. At first, the class is
empty. We decided to only show the ones used by the user,
since it might have a large amount of operations. The modeller
can then import those operations that are needed. Whenever
an operation uses another class from the same framework or
programming language (e.g., as a return or parameter type),
it is automatically imported. In addition, the hierarchy (both
extends and interface implementations) of implementation
classes is now supported, which wasn’t possible until recently.
This means that on import, if the imported class is a super or
sub class of an existing implementation class within the class
diagram, the hierarchy is shown accordingly. An example, as
seen in TouchCORE, is shown in the top part of Figure 5.

The structure illustrated in Figure 5 presents an example of
the partial structure and behaviour mentioned as one of the
benefits in the previous section. In this case, the modeller
needs to provide a mapping for |Application and its
constructor to corresponding elements of the model. This class
will then have the associations to the implementation classes.
Furthermore, using aspect-oriented techniques, we advice the
constructor. An event queue is instantiated before the actual
behaviour (represented by the box containing the asterisk) of
an application’s constructor as shown in the bottom part of
Figure 5, because it is required to provide interactivity.

V. CONCLUSION AND FUTURE WORK

This paper presented an overview of concern interfaces for
APIs in order to facilitate the reuse of reusable code artifacts
on the modelling level by raising their level of abstraction to it.
The variations of an API are presented to the user in a concise
way, showing the user-perceived features, from which the user
can choose. When selecting, the user is able to do a trade-off
analysis using impacts on high-level system qualities. Once a
selection is made, the customized API (a subset of the API)
is presented to the user showing only the relevant parts of the
interface required for the desired features. Concernification of
an API allows to incorporate additional information, which
supports the user upon reuse using the concern interface. This
also helps to reduce mistakes by the user during reuse, for
instance, not calling a certain operation.

In the future, we plan to concernify a larger, more relevant
framework, such as the Android SDK, in order to ensure the
feasibility of the approach. Ideally, the concern interface is
bundled along with the API’s code. Because of this, and the
fact that it is more difficult to concernify a larger framework
with thousands of classes by hand, we intend to perform this
(semi-)automatically. This way, a feature model can be pre-
sented to the user, which, if necessary, can then be adjusted. To
validate the automated concernification, we plan to empirically
evaluate it to gather evidence on whether (i) the automated
detection works well and (ii) this actually helps users. We
believe that even more information/artifacts than those de-
scribed in this paper can be incorporated more formally into
a concern interface of APIs, which would improve API reuse
and distribution as a whole.

REFERENCES

[1] J. Hutchinson, J. Whittle, M. Rouncefield, and S. Kristoffersen, “Em-
pirical Assessment of MDE in Industry,” in Proceedings of the 33rd
International Conference on Software Engineering, ICSE ’11, (New
York, NY, USA), pp. 471–480, ACM, 2011.

[2] B. Selic, “What will it take? a view on adoption of model-based methods
in practice,” Software & Systems Modeling, vol. 11, no. 4, pp. 513–526,
2012.

[3] C. W. Krueger, “Software Reuse,” ACM Comput. Surv., vol. 24, pp. 131–
183, June 1992.

[4] P. Mohagheghi and R. Conradi, “Quality, productivity and economic
benefits of software reuse: a review of industrial studies,” Empirical
Software Engineering, vol. 12, no. 5, pp. 471–516, 2007.

[5] G. Uddin and M. P. Robillard, “How API Documentation Fails,”
Software, IEEE, vol. 32, pp. 68–75, July 2015.

[6] J. Cabot, “One (virtual) model repository to rule them all.” http:
//modeling-languages.com/one-virtual-model-repository-rule/, 2014.

[7] O. Alam, J. Kienzle, and G. Mussbacher, “Concern-Oriented Software
Design,” in MODELS 2013, pp. 604–621, Springer, 2013.

[8] “Official Minueto Website.” http://minueto.cs.mcgill.ca/.
[9] A. Denault and J. Kienzle, “Minueto, a Game Development Framework

for Teaching Object-Oriented Software Design Techniques,” in Future-
Play 2006, 2006.

[10] M. Schöttle and J. Kienzle, “Concern-Oriented Interfaces for Model-
Based Reuse of APIs,” in Proceedings of the ACM/IEEE 18th Interna-
tional Conference on Model Driven Engineering Languages and Systems
(MoDELS), pp. 286–291, IEEE, 2015.

[11] “TouchCORE Website.” http://touchcore.cs.mcgill.ca.
[12] N. Thimmegowda, O. Alam, M. Schöttle, W. A. Abed, T. Di’Meco,

L. Martellotto, G. Mussbacher, and J. Kienzle, “Concern-Driven Soft-
ware Development with jUCMNav and TouchRAM,” in Demonstration
at MODELS, 2014.

http://modeling-languages.com/one-virtual-model-repository-rule/
http://modeling-languages.com/one-virtual-model-repository-rule/
http://minueto.cs.mcgill.ca/
http://touchcore.cs.mcgill.ca


[13] M. Schöttle, N. Thimmegowda, O. Alam, J. Kienzle, and G. Muss-
bacher, “Feature Modelling and Traceability for Concern-Driven Soft-
ware Development with TouchCORE,” in Companion Proceedings of
MODULARITY 2015, pp. 11–14, ACM, 2015.

[14] W. Al Abed, V. Bonnet, M. Schöttle, O. Alam, and J. Kienzle,
“TouchRAM: A multitouch-enabled tool for aspect-oriented software
design,” in SLE 2012, no. 7745 in LNCS, pp. 275 – 285, Springer,
2012.

[15] M. Schöttle, “Aspect-Oriented Behavior Modeling In Practice,” M.Sc.
Thesis, Department of Computer Science, Karlsruhe University of
Applied Sciences, September 2012.

[16] M. Schöttle, O. Alam, F.-P. Garcia, G. Mussbacher, and J. Kienzle,
“TouchRAM: A Multitouch-enabled Software Design Tool Supporting
Concern-oriented Reuse,” in Companion of Modularity:2014, pp. 25–28,
ACM, 2014.


	Introduction
	Background
	Concern-Oriented Interfaces for APIs
	Concernification
	Designing an API Subset
	Benefits

	Tool Support
	Conclusion and Future Work
	References

