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Abstract

We report a novel network reconstruc-
tion method, which combines constraint-
based and Bayesian frameworks to reli-
ably reconstruct graphical models despite
inherent sampling noise in finite observa-
tional datasets. The approach is based
on an information theory result tracing
back the existence of colliders in graphi-
cal models to negative conditional 3-point
information between observed variables.
In turn, this provides a confident assess-
ment of structural independencies in causal
graphs, based on the ranking of their
most likely contributing nodes with (sig-
nificantly) positive conditional 3-point in-
formation. Starting from a complete undi-
rected graph, dispensible edges are progres-
sively pruned by iteratively “taking o↵” the
most likely positive conditional 3-point in-
formation from the 2-point (mutual) infor-
mation between each pair of nodes. The
resulting network skeleton is then partially
directed by orienting and propagating edge
directions, based on the sign and magni-
tude of the conditional 3-point information
of unshielded triples. This “3o↵2” network
reconstruction approach is shown to out-
perform constraint-based, search-and-score
and earlier hybrid methods on a range of
benchmark networks.

1 INTRODUCTION

The prospect of learning the direction of causal depen-
dencies from mere correlations in observational data
has long defied practical implementations (Reichen-
bach, 1956). The fact that causal relationships can,
to some extent, be inferred from nontemporal statis-
tical data is now known to hinge on the unique sta-

tistical imprint of colliders in causal graphical models,
provided that certain assumptions are made about the
underlying process of data generation, such as its faith-
fulness to a tree structure (Rebane and Pearl, 1988) or
a directed acyclic graph model (Spirtes, Glymour, and
Scheines, 2000; Pearl, 2009).

These early findings led to the developments of two
types of network reconstruction approaches; on the
one hand, search and score methods (Cooper and
Herskovits, 1992; Heckerman, Geiger, and Chickering,
1995; Chickering, 2002) need heuristic strategies, such
as hill-climbing algorithms, to sample network space,
on the other hand, constraint-based methods, such as
the PC (Spirtes and Glymour, 1991) and IC (Pearl
and Verma, 1991) algorithms, rely on the identification
of structural independencies, that correspond to edges
to be removed from the underlying network (Spirtes,
Glymour, and Scheines, 2000; Pearl, 2009). Yet, early
errors in removing edges from the complete graph of-
ten lead to the accumulation of compensatory errors
later on in the pruning process. Hence, despite recent,
more stable implementations intending to overcome
order-dependency in the pruning process (Colombo
and Maathuis, 2014), constraint-based methods are
not robust to sampling noise in finite datasets.

In this paper, we present a more robust constrained-
based method and corresponding 3o↵2 algorithm. It
is directly inspired by the PC anc IC algorithms but
relies on a quantitative information theoretic frame-
work to reliably uncover conditional independencies in
finite datasets and subsequently orient and propagate
edge directions between connected variables.

2 RESULTS

2.1 UNCOVERING CAUSALITY FROM A
STABLE / FAITHFUL DISTRIBUTION

Consider a network G = (V,E) and a stable (or faith-
ful) distribution P (X) over V , implying that each
structural independency (i.e. missing edge XY in G)



corresponds to a vanishing conditional 2-point (mu-
tual) information and reciprocally as,

(X ?? Y |{Ui})G () (X ?? Y |{Ui})P (1)

() I(X;Y |{Ui}) = 0 (2)

Eq.1 assumes, in particular, that P (X) is a theoreti-
cal distribution, defined by a formal expression of its
variables X = {X,Y, U

1

, U
2

, . . .}. Note, however, that
no such expression is known a priori, in general, and
P (X) must typically be estimated from the available
data. In principle, an infinite amount of data would be
necessary to infer an ‘exact’ stable distribution P (X)
consistent with Eq.1. In the following, we will first
assume that such an infinite amount of data is avail-
able and distributed as a stable P (X) to establish how
causality can be inferred statistically from conditional
2-point and 3-point information. We will then con-
sider the more realistic situation for which P (X) is
not known exactly and must be estimated from a fi-
nite amount of data.

Let us first recall the generic decomposition of a con-
ditional 2-point (or mutual) information I(X;Y |{Ui})
by the introduction of a third node Z and the condi-
tional 3-point information I(X;Y ;Z|{Ui}),

I(X;Y |{Ui})=I(X;Y;Z|{Ui}) + I(X;Y |{Ui}, Z) (3)

This relation can be taken as the definition of condi-
tional 3-point information I(X;Y ;Z|{Ui}) which is in
fact symmetric in X, Y and Z,

I(X;Y ;Z|{Ui}) = I(X;Y |{Ui})� I(X;Y |{Ui}, Z)

= I(X;Z|{Ui})� I(X;Z|{Ui}, Y )

= I(Y ;Z|{Ui})� I(Y ;Z|{Ui}, X)

Note that Eq.3 is always valid, regardless of any as-
sumption on the underlying graphical model and of
the amount of data available to estimate conditional
2-point and 3-point information terms. Eq.3 will be
used to prove the following lemmas and propositions,
which trace back the origin of necessary causal rela-
tionships in a graphical model to the existence of a
negative conditional 3-point information between three
variables {X,Y, Z}, I(X;Y ;Z|{Ui}) < 0, where {Ui}
accounts for a structural independency between two of
them, e.g. I(X;Y |{Ui}) = 0 (see Theorem 4).

Lemma 1. Given a stable distribution P (X) on V ,
8X,Y 2 V not adjacent in G, 9{Ui} ✓ V\{X,Y }
s.t. I(X;Y |{Ui}) = 0 and 8Z 6= X,Y, {Ui},
I(X;Y ;Z|{Ui}) 6 0.

Proof. If X,Y 2 V are not adjacent in G, this cor-
responds to a structural independency, i.e. 9{Ui} ✓
V\{X,Y } s.t. I(X;Y |{Ui}) = 0. Then 8Z 6= X,Y, {Ui}
Eq.3 implies I(X;Y ;Z|{Ui}) =�I(X;Y |{Ui}, Z)6 0,
as conditional mutual information is always positive. ⇤

Corollary 2 (3-point contribution). 8X,Y, Z 2 V
and 8{Ui} ✓ V\{X,Y,Z} s.t. I(X;Y ;Z|{Ui}) > 0, then
I(X;Y |{Ui}) > 0 (as well as I(X;Z|{Ui}) > 0 and
I(Y ;Z|{Ui}) > 0 by symmetry of I(X;Y ;Z|{Ui})).

Corollary 2, which is a direct consequence of Eq.3
and the positivity of mutual information, will be the
basis of the 3o↵2 causal network reconstruction al-
gorithm, which iteratively “takes o↵” 3-point infor-
mation from 2-point information, as I(X;Y |{Ui}) �
I(X;Y ;Z|{Ui}) = I(X;Y |{Ui}, Z), and update
{Ui} {Ui}+Z as long as there remains some Z 2 V
with (significantly) positive conditional 3-point infor-
mation I(X;Y ;Z|{Ui}) > 0.

Lemma 3 (vanishing conditional 2-point and 3-
point information in undirected networks). If
G is an undirected (Markov) network, 8X,Y 2 V and
8{Ui} ✓ V\{X,Y } s.t. I(X;Y |{Ui}) = 0, then 8Z 6=
X,Y, {Ui}, I(X;Y ;Z|{Ui})=0.

Proof. If G is a Markov network, 8X,Y 2 V and
8{Ui} ✓ V\{X,Y } s.t. I(X;Y |{Ui}) = 0, then 8Z 6=
X,Y, {Ui}, I(X;Y |{Ui}, Z) = 0 as conditioning ob-
servation cannot induce correlations in Markov net-
works (Koller and Friedman, 2009). This implies that
I(X;Y ;Z|{Ui}) = 0 through Eq.3. ⇤
Note, however, that the converse of Lemma 3 is not
true. Namely, (partially) directed networks can also
have vanishing conditional 3-point information asso-
ciated to all their structural independencies. In par-
ticular, tree-like bayesian networks without colliders
(i.e. without v-structures, X ! Z  Y ) present
only vanishing 3-point information associated to their
structural independencies, i.e. I(X;Y ;Z|{Ui}) = 0,
8X,Y, Z, {Ui} 2 V s.t. I(X;Y |{Ui}) = 0. How-
ever, such a directed network must be Markov equiv-
alent to an undirected network corresponding to the
same structural independencies but lacking any trace
of causal relationships (i.e. no directed edges). The
probability distributions faithful to such directed net-
works do not contain evidence of obligate causality;
i.e. no directed edges can be unambiguously oriented.

The following Theorem 4 establishes the existence of
negative conditional 3-point information as statistical
evidence of obligate causality in graphical models. For
the purpose of generality in this section, we do not
exclude the possibility that unobserved ‘latent’ vari-
ables might mediate the causal relationships among
observed variables. However, this requires dissociat-
ing the labelling of the two endpoints of each edges.
Let us first introduce three di↵erent endpoint marks
associated to such edges in mixed graphs: they are the
tail (�), the head (>) and the unspecified (�) endpoint
marks. In addition, we will use the asterisk symbol (⇤)
as a wild card denoting any of the three marks.



Theorem 4 (negative conditional 3-point in-
formation as statistical evidence of causal-
ity). If 9X,Y, Z 2 V and {Ui} ✓ V\{X,Y,Z} s.t.
I(X;Y |{Ui}) = 0 and I(X;Y ;Z|{Ui}) < 0 then, G
is (partially) directed, i.e. some variables in G are
causally linked, either directly or indirectly through
other variables, including possibly unknown, ‘latent’
variables unobserved in G.

Proof. Theorem 4 is the contrapositive of Lemma 3,
with the additional use of Lemma 1. ⇤
Proposition 5 (origin of causality at unshielded
triples with negative conditional 3-point infor-
mation). for all unshielded triple, X ⇤�� Z ��⇤ Y ,
9{Ui} ✓ V\{X,Y } s.t. I(X;Y |{Ui}) = 0, if Z /2 {Ui}
then I(X;Y ;Z|{Ui}) < 0 and the unshielded triple
should be oriented as X ⇤! Z  ⇤ Y .

Proof. if I(X;Y |{Ui})=0 with Z /2{Ui}, the unshiel-
ded triple has to be a collider and I(X;Y |{Ui}, Z)>0,
by faithfulness, hence, I(X;Y ;Z|{Ui})<0 by Eq.3. ⇤
Hence, the origin of causality manifests itself in the
form of colliders or v-structures in graphical models
which reveal ‘genuine’ causations (X! Z or Y!Z) or,
alternatively, ‘possible’ causations (X�! Z or Y �!
Z), provided that the corresponding correlations are
not due to unobserved ‘latent’ variables L or L0 as,
X L99 L 99K Z or Y L99 L0 99K Z.

Following the rationale of constraint-based ap-
proaches, it is then possible to ‘propagate’ further the
orientations downstream of colliders, through positive
(conditional) 3-point information, if one assumes that
the underlying distribution P (X) is faithful to an an-
cestral graph G on V . An ancestral graph is a mixed
graph, that is, with three types of edges, undirected
(�), directed ( or!) or bidirectional ($), but with
i.) no directed cycle, ii.) no almost directed cycle (in-
cluding one bidirectional edge) and iii.) no undirected
edge with incoming arrowhead (such as X ⇤! Z�Y ).
In particular, Directed Acyclic Graphs (DAG) are sub-
classes of ancestral graphs (i.e. without undirected nor
bidirectional edges).

Proposition 6 (‘propagation’ of causality
at unshielded triples with positive condi-
tional 3-pt information). Given a distribu-
tion P (X) faithful to an ancestral graph G on V ,
for all unshielded triple with already one converg-
ing orientation, X ⇤! Z ��⇤ Y , 9{Ui} ✓ V\{X,Y }
s.t. I(X;Y |{Ui}) = 0, if Z 2 {Ui} then
I(X;Y ;Z|{Ui}\Z) > 0 and the first orientation should
be ‘propagated’ to the second edge as X ⇤! Z ! Y .

Proof. if I(X;Y |{Ui}) = 0 with Z 2 {Ui}, the un-
shielded triple cannot be a collider and, since G is as-
sumed to be an ancestral graph, the edge Z�Y cannot

be an undirected edge either. Hence, it has to be a
directed edge, Z! Y and I(X;Y ;Z|{Ui}\Z) > 0 by
faithfulness and Eq.3. ⇤
Note that the propagation rule of Proposition 6 can
be applied iteratively to successive unshielded triples
corresponding to positive conditional 3-point informa-
tion. Yet, all arrowhead orientations can be ultimately
traced back to a negative conditional 3-point informa-
tion, Theorem 4 and Proposition 5.

2.2 ROBUST RECONSTRUCTION OF
CAUSAL GRAPHS FROM FINITE
DATASETS

We now turn to the more practically relevant situa-
tion of finite datasets consisting ofN independent data
points. The associated sampling noise will instrinsi-
cally limit the accuracy of causal network reconstruc-
tion. In particular, conditional independencies cannot
be exactly achieved (I(X;Y |{Ui}) = 0) but can be re-
liably established using statistical criteria that depend
on the number of data points N .

Given N independent datapoints from the available
data D, let us introduce the maximum likelihood,
LD|G , that they might have been generated by the
graphical model G (Sanov, 1957),

LD|G =
e�NH(G,D)

Z(G,D)
=

eN
P

{x
i

} p({x
i

}) log(q({x
i

}))

Z(G,D)
(4)

where H(G,D) = �
P

{x
i

} p({xi}) log(q({xi})) is the
cross entropy between the “true” probability distribu-
tion p({xi}) of the data D and the theoretical proba-
bility distribution q({xi}) of the model G and Z(G,D)
is a data- and model-dependent factor ensuring proper
normalization condition. The structural constraints of
the model G can be included a priori in the factoriza-
tion form of the theoretical probability distribution,
q({xi}). In particular, if we assume a Bayesian net-
work as underlying graphical model, q({xi}) factorizes
as q({xi}) =

Q
i p(xi|{pax

i

}), where {pax
i

} denote the
values of the parents of node Xi, {PaX

i

}, and leads to
the following maximum likelihood expression,

LD|G =
e�N

P
i

H(X
i

|{Pa
X

i

})

Z(G,D)
(5)

The model G can then be compared to the alternative
model G\X!Y with one additional missing edge X !
Y using the maximum likelihood ratio,

LD|G\X!Y

LD|G
= e�NI(X;Y |{Pa

Y

}\X)

Z(G,D)

Z(G\X!Y ,D)
(6)

where I(X;Y |{PaY }\X) = H(Y |{PaY }\X) �
H(Y |{PaY }). However, Eq.6 cannot be used as such



to learn the underlying graphical model, as it assumes
that the order between the nodes and their parents is
already known (see however (de Campos, 2006)). Yet,
following the rationale of constraint-based approaches,
Eq.6 can be reformulated by replacing the parent
nodes with an unknown separation set {Ui} to be
learnt simultaneously with the missing edge candidate
XY ,

LG\XY |{U
i

}

LG
= e�NI(X;Y |{U

i

})+k
X;Y |{U

i

} (7)

kX;Y |{U
i

} = log
�
Z(G,D)/Z(G\XY |{U

i

},D)
�

where the factor kX;Y |{U
i

} > 0 tends to limit the
complexity of the models by favoring fewer edges.
Namely, the condition, I(X;Y |{Ui}) < kX;Y |{U

i

}/N ,
implies that simpler models compatible with the struc-
tural independency, X??Y |{Ui}, are more likely than
model G, given the finite available dataset. This re-
places the ‘perfect’ conditional independency condi-
tion, I(X;Y |{Ui}) = 0, valid in the limit of an infinite
dataset, N ! 1. A common complexity criteria in
model selection is the Bayesian Information Criteria
(BIC) or Minimal Description Length (MDL) criteria
(Rissanen, 1978; Hansen and Yu, 2001),

k
MDL

X;Y |{U
i

} =
1

2
(rx � 1)(ry � 1)

Y

i

ru
i

logN (8)

where rx, ry and ru
i

are the number of levels of the
corresponding variables. The MDL complexity, Eq.8,
is simply related to the normalisation constant of the
normal distribution reached in the asymptotic limit
of a large dataset N ! 1 (Central Limit Theo-
rem). However, such a central limit distribution is
only reached for very large datasets in practice. Alter-
natively, the normalisation of the maximum likelihood
can also be done over all possible datasets including
the same number of data points to yield a (univer-
sal) Normalized Maximum Likelihood (NML) crite-
ria (Shtarkov, 1987; Rissanen and Tabus, 2005) and its
decomposable (Kontkanen and Myllymäki, 2007; Roos

et al., 2008) andXY -symmetric version, k
NML

X;Y |{U
i

}, de-
fined in the Supplementary Methods.

Then, instead of exploring the combinatorics of sepset
composition {Ui} for each missing edge candidate XY
as in traditional constraint-based approaches, we pro-
pose that Eq.7 can be used to iteratively extend a
likely sepset using the maximum likelihood ratios be-
tween two successive sepset candidates, i.e. between
the already ascertained {Ui} and the possible extended
{Ui}+ Z, as,

LD|G\XY |{U
i

},Z

LD|G\XY |{U
i

}

= eNI(X;Y ;Z|{U
i

})+k
X;Y ;Z|{U

i

} (9)

using Eq.3 for I(X;Y ;Z|{Ui}) and introducing a sim-
ilar 3-point complexity conditioned on {Ui} as,

kX;Y ;Z|{U
i

} = kX;Y |{U
i

},Z � kX;Y |{U
i

} (10)

where kX;Y ;Z|{U
i

} > 0, unlike 3-point information,
I(X;Y ;Z|{Ui}) which can be positive or negative.

Introducing also the shifted 2-point and 3-point infor-
mation for finite datasets as,

I 0(X;Y |{Ui}) = I(X;Y |{Ui})�
kX;Y |{U

i

}

N

I 0(X;Y ;Z|{Ui}) = I(X;Y ;Z|{Ui}) +
kX;Y ;Z|{U

i

}

N

leads to maximum likelihood ratios equivalent to Eqs.7
and 9,

LD|G\XY |{U
i

}

LD|G
= e�NI0

(X;Y |{U
i

}) (11)

LD|G\XY |{U
i

},Z

LD|G\XY |{U
i

}

= eNI0
(X;Y ;Z|{U

i

}) (12)

As will become apparent in the following discussion,
learning, iteratively, the most likely edge to be re-
moved XY and its corresponding separation set {Ui}
will imply to simultaneously minimize 2-point infor-
mation (Eq.11) while maximizing 3-point information
(Eq.12).

We start the discussion with 3-point information,
Eq.12. The sign and magnitude of shifted condi-
tional 3-point information I 0(X;Y ;Z|{Ui}) determine
the probability that Z should be included in or ex-
cluded from the sepset candidate {Ui},

• If I 0(X;Y ;Z|{Ui}) > 0, Z is more likely to be in-
cluded in {Ui} with probability,

Pnv(X;Y ;Z|{Ui}) =
LD|G\XY |{U

i

},Z

LD|G\XY |{U
i

}
+ LD|G\XY |{U

i

},Z

=
1

1 + e�NI0
(X;Y ;Z|{U

i

}) (13)

• If I 0(X;Y ;Z|{Ui}) < 0, Z is more likely to be ex-
cluded from {Ui}, suggesting obligatory causal rela-
tionships in the form of a v-structure or collider be-
tween X,Y, Z with probability,

Pv(X;Y ;Z|{Ui}) = 1� Pnv(X;Y ;Z|{Ui})

=
1

1 + eNI0
(X;Y ;Z|{U

i

}) (14)

But, in the case I 0(X;Y ;Z|{Ui}) > 0, Eq.12 can
also be interpreted as quantifying the likelihood



increase that the edge XY should be removed
from the model by extending the candidate sepset
from {Ui} to {Ui} + Z, i.e. LD|G\XY |{U

i

},Z
=

LD|G\XY |{U
i

}
⇥ exp(NI 0(X;Y ;Z|{Ui})), with

exp(NI 0(X;Y ;Z|{Ui})) > 1. Yet, as the 3-point
information, I 0(X;Y ;Z|{Ui}), is actually symmetric
with respect to the variables, X, Y and Z, the factor
exp(NI 0(X;Y ;Z|{Ui})) > 1 provides in fact the same
likelihood increase for the removal of the three edges
XY , XZ and ZY , conditioned on the same initial set
of nodes {Ui}, namely,

LD|G\XY |{U
i

},Z

LD|G\XY |{U
i

}

=
LD|G\XZ|{U

i

},y

LD|G\XZ|{U
i

}

=
LD|G\ZY |{U

i

},x

LD|G\ZY |{U
i

}

= eNI0
(X;Y ;Z|{U

i

})

However, despite this symmetry of 3-point informa-
tion, I 0(X;Y ;Z|{Ui}), the likelihoods that the edges
XY , XZ and ZY should be removed are not the
same, as they depend on di↵erent 2-point informa-
tion, I 0(X;Y |{Ui}), I 0(X;Z|{Ui}) and I 0(Z;Y |{Ui}),
Eq.11. In particular, the likelihood ratio between the
removals of the alternative edges XY and XZ is given
by,

LD|G\XY |{U
i

},Z

LD|G\XZ|{U
i

},Y

=
LD|G\XY |{U

i

}

LD|G\XZ|{U
i

}

=
e�NI0

(X;Y |{U
i

})

e�NI0
(X;Z|{U

i

})

(15)

and similarly between edges XY and ZY .

Hence, for XY to be the most likely edge to be re-
moved conditioned on the sepset {Ui} + Z, not only
Z should contribute through I 0(X;Y ;Z|{Ui}) > 0
with probability Pnv(X;Y ;Z|{Ui}) (Eq.13), but XY
must also correspond to the ‘weakest’ edge of XY ,
XZ and ZY conditioned on {Ui}, as given by the
lowest conditioned 2-point information, Eq.15. Note
that removing the edge XY with the lowest condi-
tional 2-point information is consistent, as expected,
with the Data Processing Inequality, I(X;Y |{Ui}) 6
min(I(X;Z|{Ui}), I(Z;Y |{Ui})), in the limit of large
datasets. However, quite frequently, XZ or ZY might
also have low conditional 2-point information, so that
the edge removal associated with the symmetric con-
tribution I(X;Y ;Z|{Ui}) will only be consistent with
the Data Processing Inequality (DPI) with probability,

Pdpi(XY ;Z|{Ui}) =

=
LD|G\XY |{U

i

}

LD|G\XY |{U
i

}
+ LD|G\XZ|{U

i

}
+ LD|G\ZY |{U

i

}

=
1

1 + e�NI

0(X;Z|{U
i

})

e�NI

0(X;Y |{U
i

}) +
e�NI

0(Z;Y |{U
i

})

e�NI

0(X;Y |{U
i

})

(16)

In practice, taking into account this DPI-consistency
probability Pdpi(XY ;Z|{Ui}), as detailed below, sig-

nificantly improves the results obtained by re-
lying solely on the ‘non-v-structure’ probability
Pnv(X;Y ;Z|{Ui}). Conversely, the DPI-consistency
probability Pdpi(XY ;Z|{Ui}) is not su�cient on its
own to uncover causal relationships between vari-
ables, which require to compute 3-point information
I(X;Y ;Z|{Ui}) and the probability Pnv(X;Y ;Z|{Ui})
(see Proposition 7 and Proposition 8, below).

To optimize the likelihood that the edge XY can be
accounted for by the additional contribution of Z con-
ditioned on previously selected {Ui}, we propose to
combine the maximum of 3-point information (Eq.13)
and the minimum of 2-point information (Eq.16) by
defining the score S lb(Z;XY |{Ui}) as the lower bound
of Pnv(X;Y ;Z|{Ui}) and Pdpi(XY ;Z|{Ui}), since both
conditions need to be fulfilled to warrant that edge
XY is likely to be absent from the model G,

S lb(Z;XY |{Ui}) =

= min
h
Pnv(X;Y ;Z|{Ui}), Pdpi(XY ;Z|{Ui})

i

Hence, the pair of nodes XY with the most likely con-
tribution from a third node Z and likely to be absent
from the model can be ordered according to their rank
R(XY ;Z|{Ui}) defined as,

R(XY ;Z|{Ui}) = max
Z

�
S lb(Z;XY |{Ui})

�
(17)

Then, Z can be iteratively added to the set of con-
tributing nodes (i.e. {Ui} {Ui}+Z) of the top edge
XY = argmaxXY R(XY ;Z|{Ui}) to progressively re-
cover the most significant indirect contributions to all
pairwise mutual information in a causal graph.

Implementing this local optimization scheme, the 3o↵2
algorithm eventually learns the network skeleton by
collecting the nodes of the separation sets one-by-one,
instead of exploring the full combinatorics of sepset
composition without any likelihood guidance. Indeed,
the 3o↵2 scheme amounts to identify {Ui} by “taking
o↵” iteratively the “most likely” conditional 3-point
information from each 2-point information as,

I(X;Y |{Ui}n) = I(X;Y )� I(X;Y ;U
1

)

� I(X;Y ;U
2

|U
1

)� · · ·
� I(X;Y ;Un|{Ui}n�1)

or equivalently between the shifted 2-point and 3-point
information terms,

I 0(X;Y |{Ui}n) = I 0(X;Y )� I 0(X;Y ;U
1

)

� I 0(X;Y ;U
2

|U
1

)� · · ·
� I 0(X;Y ;Un|{Ui}n�1)

This leads to the following Algorithm 1 for the recon-
struction of the graph skeleton using the 3o↵2 scheme.



Note, in particular, that the 3o↵2 scheme to recon-
struct graph skeleton is solely based on identifying
structural independencies, which can also be applied
to graphical models for undirected Markov networks.

Algorithm 1: 3o↵2 Skeleton Reconstruction

In: observational data of finite size N

Out: skeleton of causal graph G

Initiation

Start with complete undirected graph

forall edges XY do

if I 0(X;Y )<0 then

XY edge is non-essential and removed

separation set of XY : SepXY = ;

else

find the most contributing node Z
neighbor of X or Y and compute 3o↵2 rank,
R(XY ;Z|;)

end
end

Iteration

while 9 XY edge with R(XY ;Z|{Ui}) > 1/2 do

for edge XY with highest rank R(XY ;Z|{Ui}) do
expand contributing set {Ui} {Ui}+ Z

if I 0(X;Y |{Ui})<0 then

XY edge is non-essential and removed

separation set of XY : SepXY = {Ui}

else

find next most contributing node Z
neighbor of X or Y and compute new
3o↵2 rank: R(XY ;Z|{Ui})

end

sort the 3o↵2 rank list R(XY ;Z|{Ui})

end
end

Then, given the skeleton obtained from Algorithm 1,
Eqs.13 and 14 lead to the following Proposition 7 and
Proposition 8 for the orientation and propagation rules
of unshielded triples, which are equivalent to Propo-
sition 5 and Proposition 6 but for underlying DAG
models (assuming no latent variables) and for finite
datasets with the corresponding probabilities for the
initiation/propagation of orientations.

Proposition 7 (Significantly negative condi-

tional 3-point information as robust statistical
evidence of causality in finite datasets).
Assuming that the underlying graphical model is
a DAG G on V , 8X,Y, Z 2 V and 8{Ui} ✓
V\{X,Y,Z} s.t. I 0(X;Y |{Ui}) < 0 (i.e. no XY edge)
and I 0(X;Y ;Z|{Ui}) < 0 then,

i. if X,Y, Z form an unshielded triple, X ���Z ���Y ,
then it should be oriented as X ! Z  Y , with
probabilities,

P �X!Z = P �Y!Z =
1 + eNI0

(X;Y ;Z|{U
i

})

1 + 3eNI0
(X;Y ;Z|{U

i

})

ii. similarly, if X,Y, Z form an unshielded triple,
with one already known converging arrow,
X ! Z ��� Y , with probability PX!Z > P �X!Z ,
then the second edge should be oriented to form a
v-structure, X ! Z  Y , with probability,

PY!Z = PX!Z

✓
1

1 + eNI0
(X;Y ;Z|{U

i

}) �
1

2

◆
+

1

2

Proof. The implications (i.) and (ii.) rely on Eq.14
to estimate the probability that the two edges form a
collider. We start proving (ii.) using the probability
decomposition formula:

PY!Z = PX!Z
PX!Z Y

PX!Z Y + PX!Z!Y

+ (1� PX!Z)
PX Z Y

PX Z Y + PX Z!Y

= PX!Z

✓
1

1 + eNI0
(X;Y ;Z|{U

i

}) �
1

2

◆
+

1

2

which also leads to (i.) if one assumes PX!Z = PY!Z

by symmetry in absence of prior information on these
orientations. ⇤
Following the rationale of constraint-based ap-
proaches, it is then possible to ‘propagate’ further the
orientations downstream of colliders, using Eq.13 for
positive (conditional) 3-point information. For sim-
plicity and consistency, we only implement the propa-
gation of orientation based on likelihood ratios, which
can be quantified for finite datasets as proposed in
the following Proposition 8. In particular, we do not
extend the propagation rules (Meek, 1995) to inforce
acyclic constraints that are necessary to have a com-
plete reconstruction of the Markov equivalent class of
the underlying DAG model.

Proposition 8 (robust ‘propagation’ of causal-
ity at unshielded triples with significantly pos-
itive conditional 3-pt information). Assum-
ing that the underlying graphical model is a DAG
G on V , 8X,Y, Z 2 V and 8{Ui} ✓ V\{X,Y,Z}



s.t. I 0(X;Y |{Ui}, Z) < 0 (i.e. no XY edge) and
I 0(X;Y ;Z|{Ui}) > 0, then if X,Y, Z form an un-
shielded triple with one already known converging ori-
entation, X! Z ��⇤ Y , with probability PX!Z > 1/2,
this orientation should be ‘propagated’ to the second
edge as X! Z! Y , with probability,

PZ!Y = PX!Z

✓
1

1 + e�NI0
(X;Y ;Z|{U

i

}) �
1

2

◆
+

1

2

Proof. This results is shown using the probability
decomposition formula,

PZ!Y = PX!Z
PX!Z!Y

PX!Z Y + PX!Z!Y

+ (1� PX!Z)
PX Z!Y

PX Z Y + PX Z!Y

= PX!Z

✓
1

1 + e�NI0
(X;Y ;Z|{U

i

}) �
1

2

◆
+

1

2

⇤

Proposition 7 and Proposition 8 lead to the following
Algorithm 2 for the orientation of unshielded triples of
the graph skeleton obtained from Algorithm 1.

2.3 APPLICATIONS TO CAUSAL GRAPH
BENCHMARKS

We have tested the 3o↵2 method on a range of
benchmark networks of 50 nodes with up to 160
edges generated with the causal modeling tool Tetrad
IV (http://www.phil.cmu.edu/tetrad). The aver-
age connectivity hki of these benchmark networks
ranges between 1.6 to 6.4, and the average max-
imal in/out-degree between 3.2 to 8.8 (see Ta-
ble S1 for a detailed description). The evalua-
tion metrics are the Precision, Prec = TP/(TP +
FP ), the Recall, Rec = TP/(TP + FN) and
the F�score = 2Prec.Rec/(Prec+Rec). However,
in order to take into account the orientation/non-
orientation of edges in the predicted networks and
compare them with the CPDAG of the benchmark
graphs, we define orientation-dependent counts as,
TP 0 = TP � TP

misorient

and FP 0 = FP + TP
misorient

,
where TP

misorient

corresponds to all true positive
edges of the skeleton with di↵erent orientation/non-
orientation status as in the CPDAG reference.

The first methods used for comparison with 3o↵2

are the PC-stable algorithm (Colombo and Maathuis,
2014) with conservative (Ramsey et al, 2006) or major-
ity orientation rules, implemented in the pcalg pack-
age (Kalisch et al., 2012; Kalisch and Bühlmann, 2008)
and the hybrid method MMHC combining constraint-
based skeleton and Bayesian orientation (Tsamardi-
nos, Brown, and Aliferis, 2006), implemented in the

Algorithm 2: 3o↵2 Orientation / Propagation Step

In: Graph skeleton from Algorithm 1 and correspond-
ing conditional 3-point information I 0(X;Y ;Z|{Ui}).

Out: Partially oriented causal graph G with edge
orientation probabilities.

3o↵2 Orientation / Propagation Step

sort list of unshielded triples, Lc = {hX,Z, Y iX 6 Y },
in decreasing order of their orientation/propagation

probability initialized at 1/2 and computed from:
- (i.) Proposition 7, if I 0(X;Y ;Z|{Ui})<0, or
- (ii.) Proposition 8, if I 0(X;Y ;Z|{Ui})>0

repeat

Take hX,Z, Y iX 6 Y 2 Lc with highest orientation
/ propagation probability > 1/2.

if I 0(X;Y ;Z|{Ui}) < 0 then

Orient/propagate edge direction(s) to form a
v-structure X!Z Y with probabilities
PX!Z and PY!Z given by Proposition 7.

else

Propagate second edge direction to form a
non-v-structure X!Z!Y assigning
probability PZ!Y from Proposition 8.

end

Apply new orientation(s) and sort remaining list
of unshielded triples Lc  Lc\hX,Z, Y iX 6 Y after
updating propagation probabilities.

until no additional orient./propa. probability >1/2 ;

bnlearn package (Scutari, 2010). Figs. 1-5 give the
average CPDAG comparison results over 100 dataset
replicates from 5 di↵erent benchmark networks (Ta-
ble S1). The causal graphical models predicted by the
3o↵2 method are obtained using either the MDL/BIC
or the NML complexities (see Supplementary Meth-
ods). Figs. S1-S6 provide additional results on the pre-
diction of the network skeletons and execution times.
The PC and MMHC results are shown, Figs. 1-5, for
an independence test parameter ↵ = 0.1, as reduc-
ing ↵ tends to worsen the CPDAG F-score for bench-
mark networks with hki > 1.6 (Figs. S7-S18). All in
all, we found that the 3o↵2 method outperforms both
PC-stable and MMHC methods on all tested datasets,
Figs. 1-5.

Additional comparisons were obtained with Bayesian
inference implemented in the bnlearn package (Scu-
tari, 2010), using AIC, BDe and BIC/MDL scores



and hill-climbing heuristics with 30 to 100 random
restarts, Figs. S19-S30. 3o↵2 reaches equivalent or sig-
nificantly better F-scores than Bayesian hill-climbing
for all dataset sizes on benchmark networks up to 120
edges (hki 6 4.8). In particular, 3o↵2 with MDL
scores reaches excellent F-scores on sparse networks
(Figs. S19 & S20) and keeps one of the best F-scores
over all sample sizes for less sparse networks when com-
bined to NML complexity (Figs. S21 & S22). For
somewhat denser networks (hki ' 5), the 3o↵2 F-
score appears slightly lower than for Bayesian infer-
ence methods, Fig. S23, although it eventually be-
comes equivalent for large datasets (N > 1000).

On denser networks (hki > 5 � 6), Bayesian inference
exhibits better F-scores than 3o↵2, in particular with
AIC score, Fig. S24. However, the good performance
with AIC strongly relies on its high Recall (but low
Precision), due to its very small penalty term on large
datasets, which makes it favor more complex networks
(Figs. S24) but perform very poorly on sparse graphs
(Figs. S19-S21). By contrast, the reconstruction of
dense networks is impeded with the 3o↵2 scheme, as it
is not always possible to uncover structural indepen-
dencies, I(X;Y |{Ui}n)'0, in dense graphs through an
ordered set {Ui}n with only positive conditional 3-point
information, I 0(X;Y ;Uk|{Ui}k�1) > 0. Indeed in com-
plex graphs, there are typically many indirect paths
X ! Uj ! Y between unconnected node pairs (X,Y ).
At the beginning of the pruning process, this is prone
to suggest likely v-structures X ! Y  Uj , instead
of the correct non-v-structures, X ! Uj ! Y (for in-
stance if I(X;Uj) ⌧ I(X;Y ), I(X;Uj) ⌧ I(Uj ;Y )
and I(X;Uj)� I(X;Uj |Y ) = I(X;Y ;Uj) < 0, for all
j). Such elimination of FN edge X ! Uj and con-
servation of FP X ! Y tend to decrease both Pre-
cision and Recall, although 3o↵2 remains significantly
more robust than PC and MMHC, Fig. 5. Besides,
for most practical applications on real life data, inter-
pretable causal models should remain relatively sparse
and avoid to display multiple indirected paths between
unconnected nodes.

Finally, 3o↵2 running times on these benchmark net-
works are similar to MMHC and Bayesian hill-climbing
heuristic methods (with 100 restarts) and 10 to 100
times faster than PC for large datasets, Figs. S1-S30.

3 DISCUSSION

In this paper, we propose to combine constraint-based
and score-based frameworks to improve network recon-
struction. Earlier hybrid methods, including MMHC,
have also attempted to exploit the best of these two
types of inference approaches by combining the ro-
bustness of Bayesian scores with the attractive con-
ceptual features of constraint-based approaches (Dash
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Figure 1: CPDAG comparison between 3o↵2, PC-stable
and MMHC. 50 node, 40 edge benchmark networks gener-

ated using Tetrad. hki = 1.6, hkin

max

i = 3.2, hkout

max

i = 3.6.
PC-stable benchmarks were tested up to N=10,000 due to

their sharp increase in execution time, see Figs. S7-S12.
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Figure 2: CPDAG comparison between 3o↵2, PC-stable
and MMHC. 50 node, 60 edge benchmark networks gener-

ated using Tetrad. hki = 2.4, hkin

max

i = 4.6, hkout

max

i = 3.6.
PC-stable benchmarks were tested up to N=10,000 due to

their sharp increase in execution time, see Figs. S7-S12.
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Figure 3: CPDAG comparison between 3o↵2, PC-stable
and MMHC. 50 node, 80 edge benchmark networks gener-

ated using Tetrad. hki = 3.2, hkin

max

i = 4.8, hkout

max

i = 5.6.
PC-stable benchmarks were tested up to N=10,000 due to

their sharp increase in execution time, see Figs. S7-S12.
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Figure 4: CPDAG comparison between 3o↵2, PC-stable
and MMHC. 50 node, 120 edge benchmark networks gen-

erated using Tetrad. hki = 4.8, hkin

max

i = 8.8, hkout

max

i = 7.2.
PC-stable benchmarks were tested up to N=10,000 due to

their sharp increase in execution time, see Figs. S7-S12.
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Figure 5: CPDAG comparison between 3o↵2, PC-stable
and MMHC. 50 node, 160 edge benchmark networks gen-

erated using Tetrad. hki = 6.4, hkin

max

i = 8.6, hkout

max

i = 8.6.

and Druzdzel, 1999; Tsamardinos, Brown, and Alif-
eris, 2006; Cano, Gomez-Olmedo, and Moral, 2008;
Claassen and Heskes, 2012). In particular, (Dash
and Druzdzel, 1999) have proposed to exploit an in-
trinsic weakness of the PC algorithm, its sensitivity
to the order in which conditional independencies are
tested on finite data, to rank these di↵erent order-
dependent PC predictions with Bayesian scores. More
recently, (Claassen and Heskes, 2012) have also com-
bined constraint-based and Bayesian approaches to im-
prove the reliability of causal inference. They proposed
to use Bayesian scores to directly assess the reliability
of conditional independencies by summing the likeli-
hoods over compatible graphs. By contrast, we pro-
pose to use Bayesian scores to progressively uncover
the best supported conditional independencies, by it-
eratively “taking o↵” the most likely indirect contri-
butions of conditional 3-point information from every
2-point (mutual) information of the causal graph. In
addition, using likelihood ratios (Eqs.11 & 12) instead
of likelihood sums (Claassen and Heskes, 2012) circum-
vents the need to score conditional independencies over
a potentially intractable number of compatible graphs.

All in all, we found that 3o↵2 outperforms constraint-
based, search-and-score and earlier hybrid methods on
a range of benchmark networks, while displaying sim-
ilar running times as hill-climbing heuristic methods.
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SUPPLEMENTARY METHODS

Complexity of graphical models

The complexity kG,D of a graphical model is related to
the normalization constant Z(G,D) of its maximum
likelihood as kG,D = logZ(G,D),

LG =
e�NH(G,D)

Z(G,D)
= e�NH(G,D)�kG,D (1)

For Bayesian networks with decomposable entropy,
i.e. H(G,D) =

P
i H(Xi|{PaX

i

}), it is convenient to
use decomposable complexities, kG,D =

P
i kXi

|{Pa
X

i

},

LG = e
�N
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H(X
i

|{Pa
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i

})�
P

i
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X

i
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X
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} (2)

such that the comparison between alternative models
G and G\X!Y (i.e. G with one missing edge X ! Y )
leads to a simple local increment of the score,

LG\X!Y

LG
= e

�NI(X;Y |{Pa
Y

}\X)+�k
Y |{Pa

Y

}\X

(3)

I(X;Y |{PaY }\X) = H(Y |{PaY }\X)�H(Y |{PaY }) > 0

�kY |{Pa
Y

}\X = kY |{Pa
Y

} � kY |{Pa
Y

}\X > 0

A common complexity criteria in model selection is
the Bayesian Information Criteria (BIC) or Minimal
Description Length (MDL) criteria (Rissanen, 1978;
Hansen and Yu, 2001),

k
MDL

Y |{Pa
Y

} =
1

2
(ry � 1)

Pa

YY

j

rj logN (4)

�k
MDL

Y |{Pa
Y

}\X
=

1

2
(rx � 1)(ry � 1)

Pa

y\XY

j

rj logN (5)

where rx, ry and rj are the number of levels of each
variable, x, y and j. The MDL complexity, Eq.4, is
simply related to the normalisation constant of the

normal distribution reached in the asymptotic limit of
a large dataset N ! 1 (Central Limit Theorem). The
MDL complexity can also be derived from the Stir-
ling approximation on the Bayesian measure (Schwarz,
1978; Bouckaert, 1993). Yet, in practice, this cen-
tral limit distribution is only reached for very large
datasets, as some of the least-likely (ry�1)

Q
j rj com-

binations of states of variables are in fact rarely (if
ever) sampled in typical finite datasets. As a result,
the MDL complexity criteria tends to underestimate
the relevance of edges connecting variables with many
levels, ri, leading to the removal of false negative edges.

To avoid such biases with finite datasets, the normal-
isation of the maximum likelihood can be done over
all possible datasets with the same number N of data
points. This corresponds to the (universal) Normal-
ized Maximum Likelihood (NML) criteria (Shtarkov,
1987; Rissanen and Tabus, 2005; Kontkanen and Myl-
lymäki, 2007; Roos et al., 2008),

LG =
e�NH(G,D)

P
|D0|=N e�NH(G,D0

)

= e�NH(G,D)�k
NML

G,D (6)

We introduce here the factorized version of the NML
criteria (Kontkanen and Myllymäki, 2007; Roos et
al., 2008) which corresponds to a decomposable NML

score, k
NML

G,D =
P
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where Nyj is the number of data points correspond-
ing to the jth state of the parents of Y , {PaY }, and
Nyj0 the number of data points corresponding to the
j0th state of the parents of Y , excluding X, {PaY }\X .
Hence, the factorized NML score for each node Xi cor-
responds to a separate normalisation for each state



j = 1, ..., qi of its parents and involving exactly Nij

data points of the finite dataset,
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where Nijk corresponds to the number of data points
for which the ith node is in its kth state and its parents
in their jth state, with Nij =

Pr
i

k Nijk. The universal
normalization constant Cr

n is then obtained by aver-
aging over all possible partitions of the n data points
into a maximum of r subsets, `

1

+ `
2

+ · · · + `r = n
with `k > 0,
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which can in fact be computed in linear-time using the
following recursion (Kontkanen and Myllymäki, 2007),

Cr
n = Cr�1

n +
n

r � 2
Cr�2

n (13)

with Cr
0

= 1 for all r, C1

n = 1 for all n and applying the
general formula Eq.12 for r = 2,
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or its Szpankowski approximation for large n (needed
for n > 1000 in practice) (Szpankowski, 2001; Kontka-
nen et al., 2003; Kontkanen, 2009),
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Then, following the rationale of constraint-based ap-
proaches, we can reformulate the likelihood ratio of
Eq. 3 by replacing the parent nodes {PaY }\X in the
conditional mutual information, I(X;Y |{PaY }\X),
with an unknown separation set {Ui} to be learnt si-
multaneously with the missing edge candidate XY ,

LG\XY |{U
i

}

LG
= e�NI(X;Y |{U

i

})+k
X;Y |{U

i

} (17)

where we have also transformed the asymmetric
parent-dependent complexity di↵erence, �kY |{Pa

Y

}\X ,

into a {Ui}-dependent complexity term, kX;Y |{U
i

},
with the same XY -symmetry as I(X;Y |{Ui}),

k
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Note, in particular, that the MDL complexity term
in Eq.18 is readily obtained from Eq.5 due to the
Markov equivalence of the MDL score, corresponding
to its XY -symmetry whenever {PaY }\X = {PaX}\Y .
By contrast, the factorized NML score, Eq.7, is
not a Markov-equivalent score (although its non-
factorized version, Eq.6, is Markov equivalent by defi-
nition). To circumvent this non-equivalence of factor-
ized NML score, we propose to recover the expected
XY -symmetry of k

NML

X;Y |{U
i

} through the simple XY -
symmetrization of Eq.8, leading to Eq.19.
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nodes edges hki Model hk
max

i hkin
max

i hkout
max

i N Replicates
50 20 0.8 1 4 2 3 [50� 50, 000] 20

2 4 2 2 [50� 50, 000] 20
3 3 3 2 [50� 50, 000] 20
4 3 3 2 [50� 50, 000] 20
5 3 2 2 [50� 50, 000] 20

Avg. 3.4 2.4 2.2
50 40 1.6 1 5 3 5 [50� 50, 000] 20

2 6 3 3 [50� 50, 000] 20
3 5 3 3 [50� 50, 000] 20
4 4 4 4 [50� 50, 000] 20
5 5 3 3 [50� 50, 000] 20

Avg. 5 3.2 3.6
50 60 2.4 1 7 5 3 [50� 50, 000] 20

2 6 6 3 [50� 50, 000] 20
3 6 4 4 [50� 50, 000] 20
4 6 5 3 [50� 50, 000] 20
5 7 3 5 [50� 50, 000] 20

Avg. 6.4 4.6 3.6
50 80 3.2 1 7 5 7 [50� 50, 000] 20

2 7 5 5 [50� 50, 000] 20
3 6 5 5 [50� 50, 000] 20
4 6 5 6 [50� 50, 000] 20
5 6 4 5 [50� 50, 000] 20

Avg. 6.4 4.8 5.6
50 120 4.8 1 10 10 7 [50� 50, 000] 20

2 13 10 7 [50� 50, 000] 20
3 9 6 8 [50� 50, 000] 20
4 13 9 7 [50� 50, 000] 20
5 12 9 7 [50� 50, 000] 20

Avg. 11.4 8.8 7.2
50 160 6.4 1 12 10 9 [50� 50, 000] 20

2 13 9 9 [50� 50, 000] 20
3 14 7 9 [50� 50, 000] 20
4 11 7 8 [50� 50, 000] 20
5 11 10 8 [50� 50, 000] 20

Avg. 12.2 8.6 8.6

Table S1: Description summary of the 30 benchmark networks used to evaluate the reconstruction methods. The 30
benchmark networks of 50 nodes, and 20 to 160 edges, have been instantiated with the causal modeling tool Tetrad IV
(http://www.phil.cmu.edu/tetrad/). For each model, 20 dataset replicates of size ranging between 50 and 50,000 were
generated with Tetrad IV.
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Figure S1: 3o↵2 reconstruction, e↵ect of complexity MDL and NML. 50 node, 20 edge benchmark networks generated
using Tetrad. hki = 0.8, hkin

max

i = 2.4 and hkout

max

i = 2.2. The change of slop in execution time at sample size N=1000 for
NML corresponds to the use of the Szpankowski approximation (see Supplementary Methods).

100 1000 10000 50000
0.0

0.2

0.4

0.6

0.8

1.0

MDL skeleton
NML skeleton
MDL cpdag

NML cpdag

                                                    3off2

50n. 40e.  Precision  TP/(TP+FP)

100 1000 10000 50000
0.0

0.2

0.4

0.6

0.8

1.0

Fscore  2.Prec.Rec./(Prec.+Rec.)

100 1000 10000 50000
0.0

0.2

0.4

0.6

0.8

1.0

50n. 40e.  Recall  TP/(TP+FN)

100 1000 10000 50000
1e-1

1

1e1

1e2

1e3

Execution time (sec.)

Figure S2: 3o↵2 reconstruction, e↵ect of complexity MDL and NML. 50 node, 40 edge benchmark networks generated
using Tetrad. hki = 1.6, hkin

max

i = 3.2 and hkout

max

i = 3.6. The change of slop in execution time at sample size N=1000 for
NML corresponds to the use of the Szpankowski approximation (see Supplementary Methods).
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Figure S3: 3o↵2 reconstruction, e↵ect of complexity MDL and NML. 50 node, 60 edge benchmark networks generated
using Tetrad. hki = 2.4, hkin

max

i = 4.6 and hkout

max

i = 3.6. The change of slop in execution time at sample size N=1000 for
NML corresponds to the use of the Szpankowski approximation (see Supplementary Methods).
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Figure S4: 3o↵2 reconstruction, e↵ect of complexity MDL and NML. 50 node, 80 edge benchmark networks generated
using Tetrad. hki = 3.2, hkin

max

i = 4.8 and hkout

max

i = 5.6. The change of slop in execution time at sample size N=1000 for
NML corresponds to the use of the Szpankowski approximation (see Supplementary Methods).



100 1000 10000 50000
0.0

0.2

0.4

0.6

0.8

1.0

MDL skeleton
NML skeleton
MDL cpdag

NML cpdag

                                                    3off2

50n. 120e.  Precision  TP/(TP+FP)

100 1000 10000 50000
0.0

0.2

0.4

0.6

0.8

1.0

Fscore  2.Prec.Rec./(Prec.+Rec.)

100 1000 10000 50000
0.0

0.2

0.4

0.6

0.8

1.0

50n. 120e.  Recall  TP/(TP+FN)

100 1000 10000 50000
1e-1

1

1e1

1e2

1e3

Execution time (sec.)

Figure S5: 3o↵2 reconstruction, e↵ect of complexity MDL and NML. 50 node, 120 edge benchmark networks generated
using Tetrad. hki = 4.8, hkin

max

i = 8.8 and hkout

max

i = 7.2. The change of slop in execution time at sample size N=1000 for
NML corresponds to the use of the Szpankowski approximation (see Supplementary Methods).
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Figure S6: 3o↵2 reconstruction, e↵ect of complexity MDL and NML. 50 node, 160 edge benchmark networks generated
using Tetrad. hki = 6.4, hkin

max

i = 8.6 and hkout

max

i = 8.6. The change of slop in execution time at sample size N=1000 for
NML corresponds to the use of the Szpankowski approximation (see Supplementary Methods).
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Figure S7: PC, e↵ect of independence test parameter ↵. 50 node, 20 edge benchmark networks generated using Tetrad.
hki = 0.8, hkin

max

i = 2.4 and hkout

max

i = 2.2. G2 independence test; PC-stable, majority rule (Colombo and Maathuis, 2014).
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Figure S8: PC, e↵ect of independence test parameter ↵. 50 node, 40 edge benchmark networks generated using Tetrad.
hki = 1.6, hkin

max

i = 3.2 and hkout

max

i = 3.6. G2 independence test; PC-stable, majority rule (Colombo and Maathuis, 2014).
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Figure S9: PC, e↵ect of independence test parameter ↵. 50 node, 60 edge benchmark networks generated using Tetrad.
hki = 2.4, hkin

max

i = 4.6 and hkout

max

i = 3.6. G2 independence test; PC-stable, majority rule (Colombo and Maathuis, 2014).
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Figure S10: PC, e↵ect of independence test parameter ↵. 50 node, 80 edge benchmark networks generated using Tetrad.
hki = 3.2, hkin

max

i = 4.8 and hkout

max

i = 5.6. G2 independence test; PC-stable, majority rule (Colombo and Maathuis, 2014).
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Figure S11: PC, e↵ect of independence test parameter ↵. 50 node, 120 edge benchmark networks generated using
Tetrad. hki = 4.8, hkin

max

i = 8.8 and hkout

max

i = 7.2. G2 independence test; PC-stable, majority rule (Colombo and
Maathuis, 2014).
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Figure S12: PC, e↵ect of independence test parameter ↵. 50 node, 160 edge benchmark networks generated using
Tetrad. hki = 6.4, hkin

max

i = 8.6 and hkout

max

i = 8.6. G2 independence test; PC-stable, majority rule (Colombo and
Maathuis, 2014).
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Figure S13: MMHC, e↵ect of independence test parameter ↵. 50 node, 20 edge benchmark networks generated using
Tetrad. hki = 0.8, hkin

max

i = 2.4 and hkout

max

i = 2.2. G2 independence test; MMHC, BDe score (Tsamardinos, Brown, and
Aliferis, 2006).
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Figure S14: MMHC, e↵ect of independence test parameter ↵. 50 node, 40 edge benchmark networks generated using
Tetrad. hki = 1.6, hkin

max

i = 3.2 and hkout

max

i = 3.6. G2 independence test; MMHC, BDe score (Tsamardinos, Brown, and
Aliferis, 2006).
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Figure S15: MMHC, e↵ect of independence test parameter ↵. 50 node, 60 edge benchmark networks generated using
Tetrad. hki = 2.4, hkin

max

i = 4.6 and hkout

max

i = 3.6. G2 independence test; MMHC, BDe score (Tsamardinos, Brown, and
Aliferis, 2006).
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Figure S16: MMHC, e↵ect of independence test parameter ↵. 50 node, 80 edge benchmark networks generated using
Tetrad. hki = 3.2, hkin

max

i = 4.8 and hkout

max

i = 5.6. G2 independence test; MMHC, BDe score (Tsamardinos, Brown, and
Aliferis, 2006).
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Figure S17: MMHC, e↵ect of independence test parameter ↵. 50 node, 120 edge benchmark networks generated using
Tetrad. hki = 4.8, hkin

max

i = 8.8 and hkout

max

i = 7.2. G2 independence test; MMHC, BDe score (Tsamardinos, Brown, and
Aliferis, 2006).
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Figure S18: MMHC, e↵ect of independence test parameter ↵. 50 node, 160 edge benchmark networks generated using
Tetrad. hki = 6.4, hkin

max

i = 8.6 and hkout

max

i = 8.6. G2 independence test; MMHC, BDe score (Tsamardinos, Brown, and
Aliferis, 2006).
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Figure S19: CPDAG comparison between 3o↵2, PC and Bayesian hill climbing. 50 node, 20 edge benchmark networks
generated using Tetrad. hki = 0.8, hkin

max

i = 2.4 and hkout

max

i = 2.2. Bayesian scores: AIC, BDe and BIC.
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Figure S20: CPDAG comparison between 3o↵2, PC and Bayesian hill climbing. 50 node, 40 edge benchmark networks
generated using Tetrad. hki = 1.6, hkin

max

i = 3.2 and hkout

max

i = 3.6. Bayesian scores: AIC, BDe and BIC.
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Figure S21: CPDAG comparison between 3o↵2, PC and Bayesian hill climbing. 50 node, 60 edge benchmark networks
generated using Tetrad. hki = 2.4, hkin

max

i = 4.6 and hkout

max

i = 3.6. Bayesian scores: AIC, BDe and BIC.
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Figure S22: CPDAG comparison between 3o↵2, PC and Bayesian hill climbing. 50 node, 80 edge benchmark networks
generated using Tetrad. hki = 3.2, hkin

max

i = 4.8 and hkout

max

i = 5.6. Bayesian scores: AIC, BDe and BIC.
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Figure S23: CPDAG comparison between 3o↵2, PC and Bayesian hill climbing. 50 node, 120 edge benchmark networks
generated using Tetrad. hki = 4.8, hkin

max

i = 8.8 and hkout

max

i = 7.2. Bayesian scores: AIC, BDe and BIC.
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Figure S24: CPDAG comparison between 3o↵2, PC and Bayesian hill climbing. 50 node, 160 edge benchmark networks
generated using Tetrad. hki = 6.4, hkin

max

i = 8.6 and hkout

max

i = 8.6. Bayesian scores: AIC, BDe and BIC.
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Figure S25: Bayesian Hill-Climbing, e↵ect of Bayesian score AIC, BDe and BIC. 50 node, 20 edge benchmark networks
generated using Tetrad. hki = 0.8, hkin

max

i = 2.4 and hkout

max

i = 2.2.
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Figure S26: Bayesian Hill-Climbing, e↵ect of Bayesian score AIC, BDe and BIC. 50 node, 40 edge benchmark networks
generated using Tetrad. hki = 1.6, hkin

max

i = 3.2 and hkout

max

i = 3.6.
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Figure S27: Bayesian Hill-Climbing, e↵ect of Bayesian score AIC, BDe and BIC. 50 node, 60 edge benchmark networks
generated using Tetrad. hki = 2.4, hkin

max

i = 4.6 and hkout

max

i = 3.6.
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Figure S28: Bayesian Hill-Climbing, e↵ect of Bayesian score AIC, BDe and BIC. 50 node, 80 edge benchmark networks
generated using Tetrad. hki = 3.2, hkin

max

i = 4.8 and hkout

max

i = 5.6.
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Figure S29: Bayesian Hill-Climbing, e↵ect of Bayesian score AIC, BDe and BIC. 50 node, 120 edge benchmark networks
generated using Tetrad. hki = 4.8, hkin

max

i = 8.8 and hkout

max

i = 7.2.
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Figure S30: Bayesian Hill-Climbing, e↵ect of Bayesian score AIC, BDe and BIC. 50 node, 160 edge benchmark networks
generated using Tetrad. hki = 6.4, hkin

max

i = 8.6 and hkout

max

i = 8.6.


