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ABSTRACT
In biomedical applications where the size and complexity of

SNOMED CT are challenging, using a more compact subset that
can act as a reasonable substitute is often preferred (e.g., in problem
lists, using the CORE problem list subset of SNOMED CT, covering
95% of usage in less than 1% its size). Ontology modularization
is the area of research that studies how to extract such subsets,
also called modules or segments. In a special class of use cases
including ontology-based quality assurance, scaling experiments for
real-time performance, and developing scalable testbeds for software
tools, it is essential that modules are representative of SNOMED CT’s
sub-hierarchies in terms of concept distribution, therefore preserving
the original shape of SNOMED CT. How to extract such balanced
modules remains unclear, as most previous work on ontology
modularization has focused on the opposite problem: on extracting
a representative module for a specific domain. In this study, we
investigate to what extent extracting balanced modules that preserve
the original shape of SNOMED CT is possible by presenting and
evaluating an iterative algorithm.

1 INTRODUCTION
The size and complexity of SNOMED CT1 constitute a problem
in many biomedical applications (Pathak et al. (2009)). Studies
have shown that it is often enough to use a subset of interest
instead of the whole SNOMED CT. This is the case of problem
lists, where the 16 874 terms of CORE2 have been shown to cover
over 95% of usage (Fung et al. (2010)), when tagging medical
images (Wennerberg et al. (2011)), or when annotating texts from
cardiology (López-Garcı́a et al. (2012)).

How to extract such subsets is studied by the area of research of
ontology modularization (Stuckenschmidt et al. (2009)). Ontology
modularization techniques are generally focused on obtaining a
minimal subset (also called module or segment) that maximally
covers a specific domain or that is representative for a particular
application. This is the case of the problem list or annotation cases
mentioned above, or the study by Seidenberg and Rector (2006),
where they described how they extracted a representative segment
of the GALEN ontology (Rogers and Rector (1996)) for cardiology
using the seed concept ‘Heart’ as a signature.

A signature is an initial set of concepts (called seeds)
that bootstraps the modularization process, on which many
ontology modularization techniques rely, including graph-traversal
(Doran et al. (2007); d’Aquin et al. (2007); Noy and Musen
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(2004); Seidenberg and Rector (2006)) and logic-based techniques
(Cuenca Grau et al. (2008); Grau et al. (2009)).

Often, these modules are not balanced when it comes to
representing the original distribution or shape of sub-hierarchies
shown by the original ontology or terminology. For example, in the
CORE subset of SNOMED CT, most concepts belong to the Clinical
Finding, Procedure, Situation with Explicit Context, and Event sub-
hierarchies2. The opposite case is also possible: in a previous study,
we found out that especially when using graph-traversal techniques
resulting modules can excessively and uncontrollably grow and
spread across sub-hierarchies (López-Garcı́a et al. (2012)).

These results are not surprising, because most prior work
on ontology modularization has not focused on preserving the
representativity of the sub-hierarchies of the original ontology, so
the shape of the original ontology is inevitably lost in the modules.

There is a special class of use cases, however, where it is essential
that modules are representative of the sub-hierarchies of the original
ontology and therefore show a similar shape, such as:
• In ontology-based quality assurance, where small but

representative samples of a huge ontology are to be inspected
(Agrawal et al. (2012));

• for obtaining a demonstration version that is understandable for
users or facilitates visualization;

• for alignment with a highly constrained upper level ontology,
such as the Basic Formal Ontology (BFO) (Smith et al.
(2005)), especially the upcoming BFO 2.0 OWL version,
which includes relations, DOLCE (Gangemi et al. (2002)) or
BioTopLite (Schulz and Boeker (2013)), where reasoning has
to be tested on small subsets and in iterative debugging steps;

• for performing scaling experiments for real-time performance
of a large OWL DL ontology;

• for the description logics community, who welcomes scalable
testbeds for developing tools like editors and reasoners.

To the knowledge of the authors, little research on ontology
modularization has focused on extracting balanced modules for such
applications, where keeping the original shape of a large ontology
such as SNOMED CT regarding sub-hierarchies is a requirement.

In this paper, we study the concept distribution of SNOMED CT’s
sub-hierarchies and we propose an evaluate an iterative algorithm
for extracting balanced modules. Our main goal is to investigate to
what extent it is possible to obtain modules that preserve the original
shape of SNOMED CT in order to be used in our identified class of
use cases.

1Copyright c© 2015 for this paper by its authors. Copying permitted for private and academic purposes



2 SUB-HIERARCHIES OVERVIEW
Table 1 shows the main 18 sub-hierarchies of SNOMED CT and
their concept distribution. As can be seen, there are four sub-
hierarchies that each contain over 10% of SNOMED CT concepts
(Clinical Finding, Procedure, Organism, and Body Structure),
adding up to over 70% of the concepts. We used the July 2014
International Release of SNOMED CT, and we omitted the metadata
concepts sub-hierarchy (SNOMED CT model).

Subhierarchy (Abbreviation) Concepts Distribution
Clinical Finding (CF) 100 893 33.57%
Procedure (PR) 53 914 17.94%
Organism (OR) 33 273 11.07%
Body Structure (BS) 30 685 10.21%
Substance (SU) 24 021 7.99%
Pharmaceutical / Biologic Product 16 881 5.62%
Qualifier Value (QV) 9 055 3.01%
Observable Entity (OE) 8 307 2.76%
Social Context (SO) 4 703 1.56%
Physical Object (PO) 4 522 1.50%
Situation with Explicit Context (SI) 3 695 1.23%
Event (EV) 3 673 1.22%
Environment or Geogr. Location (EG) 1 814 0.60%
Specimen (SN) 1 447 0.48%
Staging and Scales (ST) 1 309 0.44%
Special concept (SP) 649 0.44%
Record Artifact (RA) 227 0.22%
Physical Force (PF) 171 0.08%

Table 1. Main sub-hierarchies of SNOMED CT. The metadata
concepts sub-hierarchy (SNOMED CT model) was not considered.

As a useful way of visualizing concept distribution and for
comparative purposes (see Section 4), the same information is
displayed in form of a treemap in Figure 1. The treemap represents
SNOMED CT’s hierarchical information as a set of rectangles,
where the area of each rectangle is proportional to the number of
concepts in the sub-hierarchy.

Fig. 1: SNOMED CT’s shape represented with a treemap. Sub-
hierarchies containing less than 10% of SNOMED CT concepts are
shown in acronyms (see Table 1).

3 EXTRACTION OF BALANCED MODULES
As remarked by d’Aquin et al. (2009), the process of extracting
ontology modules should be guided by each domain or application.
In this section we present our definition of ontology modules, and
the methodology followed to obtain them.

3.1 Balanced SNOMED CT Modules
As input, we used the OWL-EL version of SNOMED CT obtained
using the Perl script included in the distribution as input (SCT ). For
our purposes, presented in the introduction, we define a balanced
SNOMED CT module (M ) as a minimal collection of classes from
SCT that conform to the following requirements:

(a) All classes in M are hierarchically connected to SNOMED CT’s
root concept in the same way as in SCT .

(b) All classes in M share the same axiomatical class definition as
in SCT .

(c) Sub-hierarchies in M are distributed (approximately) in the
same proportion as in SCT . In practical terms, when visualized
using a treemap, M should look similar to the treemap of
SNOMED CT shown in Figure 1.

(d) Our model is restricted to classes. SNOMED CT metadata
concepts are not subject to modularization.

3.2 Module Construction from Seeds
To create our module M , we followed a similar approach to
Seidenberg and Rector (2006). Using their terminology, concepts
(in our case, classes) are represented as nodes in a graph, and
seed concepts are called target nodes. The strategy consists in
iteratively adding classes appearing in the right-hand expressions of
their definitions, starting from seeds in a initial signature. Figure 2
shows an example of a resulting module, where it can be seen that
(a) all classes are hierarchically connected to the root concept in the
same way as in the original ontology (Figure 3), and (b) all classes
share the same axiomatical class definition as the original ontology.
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Fig. 2: Strategy followed to build our module M , starting from the
seed concept (target node) 10. Figure 3 shows the original ontology
from which it was extracted.
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Fig. 3: Sample ontology, starting with a signature containing the seed node (target node) 10.

3.3 Seed Adjustment: An Iterative Algorithm
The strategy to build a module using seeds presented in the previous
section guarantees requirements (a) and (b) from our definition of
M , but does not guarantee requirement (c), i.e., that sub-hierarchies
in M will be distributed (approximately) in the same proportion as
in SCT . The reason is that there is no control over classes from
other sub-hierarchies that are added in the process when following
the right-hand expressions of the seeds.

Therefore, in order not to conflict with requirements (a) and
(b) when creating M , the only possibility is to carefully select
the initial signature that bootstraps the modularization algorithm.
For that purpose, we investigated an iterative algorithm that
dynamically adjusts the distribution of classes used as seeds in the
initial signature. Before presenting the algorithm, we introduce the
following notation:

• As introduced before, SCT represents the OWL EL version of
SNOMED CT used as input. Sub-hierarchies are termed SHk.

• M represents, the output module, whose sub-hierarchy
distribution (Table 1) should match SCT ’s as much as
possible.

• SIGN , is the input signature, consisting of classes from SCT ,
that is used to boostrap the modularization process described in
Subsection 3.2.

• Error(SHk) = Size(MSHk ) − Size(SCTSHk ) indicates
the error on a per sub-hierarchy basis. Errors are calculated in
percentage terms (see distribution in Table 1).

• RSS = 1
18

∑18
k=1 Error(SHk)

2, where RSS represents
the residual sum of squares. Convergence of the algorithm is
defined when RSS < 1.

The algorithm, at each iteration i is the following:

1. A random signature SIGNi consisting of 2000 classes from
SCT is selected, following the same class sub-hierarchy
distribution as SCT , and ensuring at all sub-hierarchies in the
signature contains at least one class.

2. A module Mi is computed following the principles described in
Subsection 3.2. Its sub-hierarchy distribution is calculated.

3. Convergence is checked. If RSS >= 1, Steps 1 to 3 are repeated
after adjusting the scaling factor for the sub-hierarchy distribution
of the signatures in the next iteration i+ 1:
f(SIGNi+1SHk

) = f(SIGNiSHk
) × f(SCTSHk

)

f(MiSHk
)

with

f(MiSHk
) being the relative frequency of sub-hierarchy SHk

measured in the resulting module in iteration i, Mi.

4 RESULTS
In our experiments, the algorithm converged after 7 iterations,
extracting a module M with 10 834 classes. Figure 4 (Page 4) shows
the error after each iteration for sub-hierarchies with more than 1%
error, as well as the residual sum of squares.

As can be seen in the table below the graph, the sub-hierarchies
Clinical Finding, Procedure, and Organism were under-represented
in M , while Body Structure and Substance were over-represented.
The same results can be confirmed graphically in the treemaps
shown in Figure 5, at iterations 1, 3, and 7.
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Fig. 4: Execution of the algorithm, showing convergence in iteration 7.

(a) Module Shape - Iteration 1 (b) Module Shape - Iteration 3

(c) Module Shape - Iteration 7 (convergence) (d) Full SNOMED CT Shape (target)

Fig. 5: Visual comparison of the shape between the modules and SNOMED CT (d) in iterations 1 (a), 3 (b), and 7 (convergence, c). Clinical
Finding, Procedure, and Organism were under-represented, while Body Structure and Substance were over-represented.
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5 DISCUSSION
Our results suggest that it is difficult for ontology modules to meet
all of our modularization criteria without relaxing the constraints
of how concepts in the modules are distributed by sub-hierarchies,
because modularization criteria are conflicting. In our experiments,
all obtained modules over-represented or under-represented some of
SNOMED CT’s sub-hierarchies in different degrees. These results
were partly expected, due to the nature of the modularization
approach that uncontrollably adds class definitions to preserve
SNOMED CT’s hierarchy and class definitions.

The error figures that we obtained after convergence, however,
never reached 8% for any sub-hierarchy and all our modules
contained a fair representation of all of them. Furthermore,
convergence was reached after only 7 iterations. Such modules
might be sufficient in many of the use cases that motivated their
creation, i.e., extracting modules that show an (approximately)
concept distribution to the one shown in SNOMED CT.

6 CONCLUSIONS AND FUTURE WORK
In this study, we have studied SNOMED CT sub-hierarchies
and proposed and evaluated an iterative algorithm for extracting
compact modules that preserve the shape of SNOMED CT that we
termed balanced modules. Extracting such modules has generally
been neglected by work on ontology modularization, even though
there are many use cases where balanced modules constitute
an extremely valuable tool, such as in ontology-based quality
assurance, scaling experiments for real-time performance, or
developing scalable testbeds for software tools. Our proposed
algorithm and our resulting modules show that graph-traversal
ontology modularization techniques can effectively be used to create
balanced modules, if the concept distribution of the input signature
is dynamically and iteratively adjusted.

It is important to note that our algorithm and experiments are still
at an initial stage and some aspects need to be further explored and
more carefully evaluated. As future work, we plan to further (a)
analyze how to select a minimal signature, (b) study how signature
size influences the final size of the modules, and (c) improve the
randomization process of the signature selection, e.g., by stratifying
the randomization by node depth.

Our current results, however, show that SNOMED CT can indeed
be squeezed without losing its shape, provided that we accept a
moderate (up to 8%) under- and over-representation of some of its
hierarchies.
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