
Improving Ingredient Substitution using Formal
Concept Analysis and Adaptation of Ingredient
Quantities with Mixed Linear Optimization

Emmanuelle Gaillard, Jean Lieber, and Emmanuel Nauer

Université de Lorraine, LORIA — 54506 Vandœuvre-lès-Nancy, France
CNRS — 54506 Vandœuvre-lès-Nancy, France

Inria — 54602 Villers-lès-Nancy, France
firstname.lastname@loria.fr

Abstract. This paper presents the participation of the Taaable team
to the 2015 Computer Cooking Contest. The Taaable system addresses
the mixology and the sandwich challenges. For the mixology challenge,
the 2014 Taaable system was extended in two ways. First, a formal
concept analysis approach is used to improve the ingredient substitution,
which must take into account a limited set of available foods. Second, the
adaptation of the ingredient quantities has also been improved in order
to be more realistic with a real cooking setting. The adaptation of the
ingredient quantities is based on a mixed linear optimization. The team
also applied Taaable to the sandwich challenge.

Keywords: case-based reasoning, formal concept analysis, adaptation
of ingredient quantities, mixed linear optimization.

1 Introduction

This paper presents the participation of the Taaable team to the mixology and
to the sandwich challenges of the 2015 Computer Cooking Contest (CCC). The
Taaable system is based on many methods and techniques in the area of knowl-
edge representation, knowledge management and natural language processing [1].
Currently, it is built over Tuuurbine (http://tuuurbine.loria.fr), a generic
case-based reasoning (CBR) system over RDFS [2] which allows reasoning over
knowledge stored in a RDF store, as the one provided by the contest.

For this edition of the CCC, Taaable has been extended in order to improve
the ingredient substitution procedure which must manage unavailable foods. An
approach based on formal concept analysis (FCA) allows improving ingredient
substitutions. Moreover, the adaptation of the ingredient quantities has also
been improved in order to be more realistic with a real cooking setting. The
adaptation of the ingredient quantities is based on mixed linear optimization.
This adaptation takes into account the preference unit given in the source recipe
and proposes quantities which are usual. For example, when the ingredient is
a lemon, its quantity will take the form of a human easy understandable value
(i.e. a quarter, a half, etc. instead of 54 g, which corresponds to a half lemon).

Copyright © 2015 for this paper by its authors. Copying permitted for private and
academic purposes. In Proceedings of the ICCBR 2015 Workshops. Frankfurt, Germany.

209

Liquid

FruitJuice Syrup
Alcohol

Citrus
Fruit
Juice

Apple
Juice

Pineapple
Juice

Fruit
Syrup

SugarCane
Syrup

Vodka Whiskey Curacao

StrawberrySyrup GrenadineOrangeJuice LemonJuice

0.08 0.080.02 0.14 0.14
0.13 0.10 0.19

0.01 0.010.10 0.11

0.60 0.62
0.68

Fig. 1. The hierarchy forming the domain knowledge used in the running example with
the generalization costs used as retrieval knowledge.

Section 2 introduces the core of the Taaable system. Section 3 details the
new approaches developed specially for the mixology challenge. Section 4 ex-
plains the system submitted for the sandwich challenge.

2 The TAAABLE system
The challenges, proposed by the CCC since its first edition consists in proposing,
according to a set of initial recipes, one or more recipes matching a user query
composed of a set of wanted ingredients and a set of unwanted ingredients. The
Taaable system addresses this issue through an instantiation of the generic
CBR Tuuurbine system [3], which implements a generic CBR mechanism
in which adaptation consists in retrieving similar cases and in replacing some
features of these cases in order to adapt them as a solution to a query.

2.1 TUUURBINE founding principles

Tuuurbine is a generic CBR system over RDFS . The domain knowledge
is represented by an RDFS base DK consisting of a set of triples of the form
〈C subClassOf D〉 where C and D are classes which belong to a same hier-
archy (e.g, the food hierachy). Fig. 1 represents the domain knowledge for the

running examples by a hierarchy whose edges C
x−→ D represent the triples

〈C subClassOf D〉. The retrieval knowledge is encoded by a cost function:

cost(〈C subClassOf D〉) = x for an edge C
x−→ D. This cost can be under-

stood intuitively as the measure of “the generalization effort” from C to D. How
this cost is computed is detailed in [1].

A Tuuurbine case case is described by a set of triples of the form
〈URIcase prop val〉, where URIcase is the URI of case, val is either a resource
representing a class of the ontology or a value and prop is an RDFproperty link-
ing case to a hierarchy class or to the value. For simplification, in this paper, we
represent a case by a conjunction of expressions only of the form prop : val. For
example, the “Rainbow” recipe is represented by the following index R, which
means that “Rainbow” is a cocktail recipe made from vodka, orange juice, grena-
dine and curacao (ing stands for ingredient).

R = dishType : CocktailDish

∧ ing : Vodka ∧ ing : OrangeJuice ∧ ing : Grenadine ∧ ing : Curacao
(1)

210

For instance, the first conjunct of this expression means that the triple
〈URIR dishType CocktailDish〉 belongs to the knowledge base.

2.2 TUUURBINE query
A Tuuurbine query is a conjunction of expressions of the form sign prop : val
where sign ∈ {ε,+, !,−}, val is a resource representing a class of the ontology
and prop is an RDF property belonging to the set of properties used to represent
cases. For example,

Q = +dishType : CocktailDish

∧ ing : Vodka ∧ ing : Grenadine ∧ !ing : Whiskey
(2)

is a query to search “a cocktail with vodka and grenadine syrup but without
whiskey”.

The signs ε (empty sign) and + are “positive signs”: they prefix features
that the requested case must have. + indicates that this feature must also occur
in the source case whereas ε indicates that the source case may not have this
feature, thus the adaptation phase has to make it appear in the final case.

The signs ! and − are “negative signs”: they prefix features that the requested
case must not have. − indicates that this feature must not occur in the source
case whereas ! indicates that the source case may have this feature, and, if so,
that the adaptation phase has to remove it.

2.3 TUUURBINE retrieval process
The retrieval process consists in searching for cases that best match the query.
If an exact match exists, the corresponding cases are returned. For the query Q

given in (2), the “Rainbow” recipe is retrieved without adaptation. Otherwise,
the query is relaxed using a generalization function composed of one-step gen-
eralizations, which transforms Q (with a minimal cost) until at least one recipe
of the case base matches Γ (Q).

A one step-generalization is denoted by γ = prop : A prop : B, where A

and B are classes belonging to the same hierarchy with A v B, and prop is a
property used in the case definition. This one step-generalization can be applied
only if A is prefixed by ε or ! in Q. If A is prefixed by !, thus B is necessarily
the top class of the hierarchy. For example, the generalization of !ing : Rum is
εing : Food, meaning that if rum is not wanted, it has to be replaced by some
other food. Classes of the query prefixed by + and − cannot be generalized.

Each one-step generalization is associated with a cost denoted by cost(A
B). The generalization Γ of Q is a composition of one-step generalizations γ1,
. . . γn: Γ = γn ◦ . . . ◦ γ1, with cost(Γ) =

∑n
i=1 cost(γi). For example, for:

Q = +dishType : CocktailDish

∧ ing : Vodka ∧ ing : PineappleJuice ∧ ing : Grenadine ∧ !ing : Whiskey
(3)

PineappleJuice is relaxed to FruitJuice according to the domain
knowledge of Fig. 1. At this first step of generalization, Γ (Q) =

211

dishType : CocktailDish∧ing : Vodka∧ing : FruitJuice∧!ing : Whiskey, which
matches the recipe described in (1), indexed by OrangeJuice, a FruitJuice.

2.4 TUUURBINE adaptation process

When the initial query does not match existing cases, the cases retrieved after
generalization have to be adapted. The adaptation consists of a specialization
of the generalized query produced by the retrieval step. According to Γ (Q),
to R, and to DK, the ingredient OrangeJuice is replaced with the ingredient
PineappleJuice in R because FruitJuice of Γ (Q) subsumes both OrangeJuice

and PineappleJuice. Tuuurbine implements also an adaptation based on
rules where some ingredients are replaced with others in a given context [4].
For example, in cocktail recipes, replacing OrangeJuice and StrawberrySyrup

with PineappleJuice and Grenadine is an example of an adaptation rule. This
rule-based adaptation is directly integrated in the retrieval process by search-
ing cases indexed by the substituted ingredients for a query about the replac-
ing ingredients, for example by searching recipes containing OrangeJuice and
StrawberrySyrup for a query about PineappleJuice and Grenadine.

2.5 TAAABLE as a TUUURBINE instantiation

The Taaable knowledge base is WikiTaaable (http://wikitaaable.loria.
fr/), the knowledge base made available for this CCC edition. WikiTaaable is
composed of the four classical knowledge containers: (1) the domain knowledge
contains an ontology of the cooking domain which includes several hierarchies
(about food, dish types, etc.), (2) the case base contains recipes described by
their titles, the dish type they produce, the ingredients that are required, the
preparation steps, etc., (3) the adaptation knowledge takes the form of adap-
tation rules as introduced previously, and (4) the retrieval knowledge, which is
stored as cost values on subclass-of relations and adaptation rules.

In WikiTaaable, all the knowledge (cases, domain knowledge, costs, adap-
tation rules) is encoded in a triple store, because WikiTaaable uses Semantic
Media Wiki, where semantic data is stored into a triple store. So, plugging Tu-
uurbine over the WikiTaaable triple store is quite easy because it requires
only to configure Tuuurbine by giving the case base root URI, the ontology
root URI and the set of properties on which reasoning may be applied.

3 Mixology challenge
The mixology challenge consists in retrieving a cocktail that matches a user
query according to a set of available foods given by the CCC organizers (white
rum, whiskey, vodka, orange juice, pineapple juice, sparkling water, coca-cola,
beer grenadine syrup, lemon juice, mint leaves, lime, ice cube, brown sugar, salt,
and pepper). Tuuurbine queries can express this kind of request using the ε
and ! prefixes. Section 3.1 explains how the user query is transformed to take
into account only the available foods, before being submitted to Tuuurbine .
Two additionnal processes have been implemented to improve the Tuuurbine
adaptation result. The first process searches, when some ingredients of the source

212

recipe are not available, the best way to replace them, or in some cases, to remove
them (see Section 3.2). The second process uses Revisor/CLC (see Section 3.4)
to adapt quantities. A new formalization of the quantity adaptation problem is
proposed to obtain more realistic quantity values, taking into account the type
of unit given in the source case (see Section 3.4).

3.1 Query building

For the mixology challenge, where an answer must only contain the available
food, the query may be built by adding to the initial user query the minimal
set of classes of the food hierarchy that subsume the set of foods which are not
available, each class being negatively prefixed by !. For example, let us assume
that OrangeJuice and PineappleJuice are the only available fruit juices, that
Vodka and Whiskey are the only available alcohols, that SugarCaneSyrup and
Grenadine are the only available syrups, and that the user wants a cocktail
recipe with Vodka but without SugarCaneSyrup. The initial user query will be
Q = +dishType : CocktailDish ∧ εing : Vodka ∧ !ing : SugarCane. According to
Fig. 1, LemonJuice, AppleJuice, Curacao, and StrawberrySyrup will be added
to this initial query with a ! for expressing that the result cannot contain one of
these non available classes of food, which includes their descendant classes. The
extended query EQ submitted to Tuuurbine will be:

EQ = Q ∧ !ing : LemonJuice ∧ !ing : AppleJuice

∧ !ing : StrawberrySyrup ∧ !ing : Curacao

For this example, Tuuurbine retrieves the “Rainbow” recipe with the adap-
tation “replace Curacao with Food”, due to !ing : Curacao.

In order to replace Curacao by something more specific than Food, a new
approach based on FCA is proposed.

3.2 Using FCA to search the best ingredient substitution

When ingredients of the source case must be replaced because these pieces of
food are not available, we choose FCA to exploit ingredient combination in
cocktail recipes in order to search which ingredient(s) is/are the most used with
the ones already used in the recipe that must be adapted. FCA is a classification
method allowing object grouping according to the properties they share [5]. FCA
takes as input a binary context, i.e. a table in which objects are described by
properties. Table 1 shows an example of binary context with 7 objects (which
are cocktails), described by two kinds of properties: the ingredients they use,
and some more generic ingredient classes: Alcohol, the generic class of recipes
with at least one alcohol, and Sugar, the generic class of recipes with at least
one sweet ingredient, like sugar or syrup. These generic classes are prefixed by

to be distinguished from the concrete ingredients. For example, the object
Screwdriver has the properties Vodka and Orange juice (the ingredients used
in this cocktail), and Alcohol, because Vodka is an alcohol.

FCA produces formal concepts as output. A formal concept is a pair (I, E)
where I is a set of properties, E is a set of objects, respectively called the intent

213

Al
co
ho
l

Vo
dk
a

Wh
it
e
ru
m

Te
qu
il
a

Ca
ch
a c
a

Bl
ue

cu
ca
ca
o

Or
an
ge

ju
ic
e

Co
ca
-c
ol
a

Li
me Su

ga
r

Wh
it
e
su
ga
r

Ca
ne

su
ga
r
sy
ru
p

Gr
en
ad
in
e

Screwdriver × × ×
Rainbow × × × × × ×
Tequila sunrise × × × × ×
Ti′Punch × × × × ×
Daiquiri × × × × ×
Caipirinha × × × × ×
Cuba libre × × × ×

Table 1. A binary context for cocktails, described by their ingredients and two generic
food classes (Alcohol and Sugar).

Fig. 2. Concept lattice organizing cocktails according to their ingredients.

and the extent of the formal concept, such that (1) I is the set of all properties
shared by the objects of E and (2) E is the set of all objects sharing proper-
ties in I. The formal concepts can be ordered by extent inclusion, also called
specialisation between concepts, into what is called a concept lattice. Fig. 2 illus-
trates the lattice corresponding to the binary context given in Table 1. On this
figure, the extents E are given through a reduced form (noted Er): the objects
appear in the most specific concepts, the complete extent can be computed by
the union of objects belonging to the subconcepts. So, the top concept (#1, in
the figure) contains all the objects. In our example, its intent is Alcohol, a
property shared by all the objects. By contrast, the bottom concept is defined
by the set of all properties. In our example, its extent is empty as none of the
objects are described by all the properties.

To search a replacing ingredient in a given recipe or in a recipe according to
pieces of food that will be kept, the idea is to exploit the lattice which captures
concept similarities and organization. For example, concept #7, which intent is
{ Alcohol, Lime, Sugar}, allows an access to 3 cocktails containing at least one
alcohol, at least one sugar, and lime. Adapting a cocktail can be based on the
closeness between concepts. For example, when a replacing ingredient is searched

214

Fig. 3. Part of the concept lattice built from recipes using PineappleJuice, Vodka,
and Grenadine (the ingredients that will be used in the resulting cocktail).

for Cachaça in the Caipirinha cocktail (in the intent of concept #11), some
similar concepts (i.e. sharing a same super-concept) can be used. In the lattice
given in example, concept #11 can be generalized to concept number #7, which
extent contains cocktails with some alcohol, lime and some sugar. The cocktails
in the extent of concept #12 are similar to the one of concept #11, because they
share the Alcohol, Lime, and Sugar properties. When removing“Cachaça”
from the Caipirinha, a possible ingredient for substitution, given by the lattice,
could be White rum.

The approach exploiting the link between the concepts is used in many works
using FCA for information retrieval. In Carpineto and Romano [6], the docu-
ments which are good answers to a query are searched in the lattice built from
the document properties and from the query, around the concept representing
the query. The same authors use this neighbour relation between concepts in a
lattice for ordering documents returned by an information retrieval system [7].

Let CR be the formal concept such that Er(CR) = {R}. A formal concept
C close to CR is searched according the following procedure. C is such that
its intent I(C) does not contain the substituting ingredient (Curacao in the
example) and maximizes |Er(C)|. First, C is searched in the ascendants of CR,
then in its siblings, and finally in the descendants of the siblings. The ingredient
to be substituted is replaced by I(C) \ I(CR).

3.3 Real example of food substitution using FCA

To implement our approach, data about ingredient combinations in cocktail
recipes has been collected. For this, we queried Yummly (http://www.yummly.
com/). 16 queries were submitted; each query was composed of one ingredient
(one available food) and was parametered to return all the Yummly cocktails
and beverage recipes containing this ingredient. 9791 recipes have been collected.
Unfortunately, the Yummly search engine does not necessarily return answers
satisfying the query. So, the results are filtered, only to keep recipes that use
at least one available food. Afterwards, the remaining recipes are deduplicated.
After filtering and deduplicating, 6114 recipes are available, but only 1327 of
them combine at least 2 available foods.

215

We show now, with query (3), how, after proposing to replace OrangeJuice

with PineappleJuice and StrawberrySyrup with Grenadine in R, Taaable
searches to replace Curacao which is not in the set of available foods. A
part of the lattice resulting from the binary table containing recipes with
PineappleJuice, Grenadine and Vodka is given in Fig. 3. Concept #6 corre-
sponds to R, the recipe that must be adapted, and which has been added in the
binary table to appear in the lattice. The most similar ingredient combination
which includes PineappleJuice, Grenadine and Vodka is given by concept #7.
Indeed, concept #8 cannot be used to produce a substitution because its intent
contains Amaretto which is not an available food. Concept #5 intent contains
OrangeJuice, an available food, but concept #5 is less close to concept #6 than
concept #7, according to the selection procedure based on the maximal number
of objects of Er.

3.4 Adaptation of quantities with mixed integer linear optimization

Let us consider the following adaptation problem:

Source =
Recipe “Eggnog” (10 glasses)
10 c` of armagnac, 25 c` of rum, half a liter of milk,
5 eggs, 125 g of granulated sugar, 25 c` of fresh cream

Q = “I want a cocktail recipe with cream but without egg or armagnac.”

for which Tuuurbine produces the following ingredient substitution:

substitute egg and armagnac with banana and kirsch (4)

It must be noticed that this example does not comply with the constraints of
the cocktail challenge (banana is not an available food), but has been chosen in
order to illustrate various ideas related to adaptation of quantities. The approach
to ingredient quantity adaptation is based on belief revision [8], applied to a
formalization suited to adaptation of quantities. First, the adaptation problem
(Source, Q) and the domain knowledge DK are formalized. Then, this adaptation
process is described.

Formalization. Numerical variables are introduced to represent the ingredient
quantities in a recipe. For the example, the following variables are introduced,
for each food class C: alcoholC, massC, numberC, sugarC and volumeC, which
represent, respectively, the quantity (in grams) of alcohol in the ingredient C of
the recipe, its mass (in grams), its number, its quantity (in grams) of sugar and
its volume (in centiliters).1 Therefore, the retrieved recipe can be expressed in
this formalism by:

Source = (volumeArmagnac = 10) ∧ (volumeRum = 25) ∧ (volumeMilk = 50)

∧ (numberEgg = 5) ∧ (massGranulatedSugar = 125)

∧ (volumeFreshCream = 25)

(5)

1 One could consider other variables, e.g., the calories of ingredients, which would
make possible to add constraints on the total number of calories in a dish.

216

In theory, all the variables could be continuous (represented by floating-point
numbers). However, this can lead to adapted cases with, e.g., numberEgg = 1.7,
which is avoided in most recipe books! For this reason, some variables v are
declared as integer (denoted by τ(v) = integer), the other ones as real numbers
(denoted by τ(v) = real).

The domain knowledge DK consists of a conjunction of conversion equations,
conservation equations and sign constraints. The following conversion equations
state that one egg without its shell has (on the average) a mass of 50 g, a volume
of 5.2 c`, a quantity of sugar of 0.77 g and no alcohol:

massEgg = 50× numberEgg volumeEgg = 5.2× numberEgg
sugarEgg = 0.77× numberEgg alcoholEgg = 0.

(6)

with τ(massEgg) = τ(volumeEgg) = τ(sugarEgg) = τ(alcoholEgg) = real and
τ(numberEgg) = integer.

The following equations are also conjuncts of DK and represent the conserva-
tion of masses, volumes, etc.:

massEggOrEquivalent = massEgg + massBanana (7)

volumeFood = volumeLiquid + volumeSolidFood

volumeLiquid = volumeBrandy + volumeRum + volumeFreshCream + . . .

volumeBrandy = volumeArmagnac + volumeKirsch + . . .

where Food is the class of the food (any ingredient of a recipe is an instance
of Food) and, e.g., alcoholRum is related to volumeRum thanks to the conversion
equation alcoholRum = 0.4 × volumeRum. Actually, equation (7) corresponds to
the substitution of eggs by bananas.

Such conservation equations can be acquired using parts of the food hierar-
chy, thanks to some additional information. For instance, if C is a class of the
hierarchy and {D1, D2, . . . , Dp} is a set of subclasses of C forming a partition
of C (i.e., for each individual x of C, there is exactly one i ∈ {1, 2, . . . , p} such
that x belongs to Di), then massC (resp., volumeC , numberC , etc.) is equal to
the sum of the massDi

’s (resp., of the volumeDi
’s, of the numberDi

’s, etc.).
Finally, each variable v is assumed to satisfy the sign constraint v > 0.
The substitution (4) indicates that there should be neither egg nor armagnac

in the adapted recipe. By contrast, there should be some bananas and kirsch
but this piece of information can be entailed by the conservation equations.
Therefore, the query is simply modeled by:

Q = (massEgg = 0) ∧ (massArmagnac = 0) (8)

The adaptation problem is now formalized: the source case is formalized
by (5); the query is formalized by (8) and the domain knowledge is given by
the conversion and conservation equations, and the sign constraints. Since the
source case and the query are to be understood wrt the domain knowledge, the
formulas for them are, respectively, DK ∧ Source and DK ∧ Q. The result of the
adaptation will be denoted by AdaptedCase.

217

Description of the adaptation process. Let {v1, v2, . . . , vn} be the set of
the variables used in Source, Q and DK. In the representation space based on
the formalism used above, a particular recipe is represented by a tuple x =
(x1, x2, . . . , xn) ∈ Ω, where Ω = Ω1×Ω2× . . .×Ωn such that Ωi = Z if τ(vi) =
integer and Ωi = R otherwise (R: set of real numbers, Z: set of integers). Given
ϕ, a conjunction of linear constraints, let M(ϕ) be the set of x ∈ Ω such that
x verifies all the constraints of ϕ. The function ϕ 7→ M(ϕ) provides a model-
theoretical semantics to the logic of the conjunction of linear constraints: ϕ1

entails ϕ2 if M(ϕ1) ⊆M(ϕ2).
The principle of revision-based adaptation consists in a minimal modifica-

tion of DK ∧ Source so that it becomes consistent with DK ∧ Q. Such a minimal
modification can be computed thanks to a belief revision operator based on a
distance function d on Ω, meaning that the modification from an x ∈ Ω to an
y ∈ Ω is measured by d(x, y). Let S =M(DK∧Source) and Q =M(DK∧Q). The
minimal modification from the source case to the query is therefore measured
by d∗ = d(S,Q) = infx∈S,y∈Q d(x, y). Thus, AdaptedCase is such that

M(AdaptedCase) = {y ∈ Q | d(S, y) = d∗}

where d(S, y) = infx∈S d(x, y).
Now, d is assumed to be a Manhattan distance function:

d(x, y) =

n∑
i=1

wi|yi − xi|

where wi > 0 is a weight associated to the variable vi. Such a weight captures the
effort of change for this variable. For example, if vi = volumeLemonJuice and vj =
volumeVodka, then wi < wj means that the adaptation process is less “reluctant”
to change the volume of lemon juice than to change the volume of vodka.

Under this assumption, M(AdaptedCase) is the solution of the following
optimization problem in y:

x ∈M(DK ∧ Source) y ∈M(DK ∧ Q) (9)

minimize d(x, y) (10)

The conjunctions of constraints (9) are linear but the objective function (10) is
not. Now, it can be shown that the set of solutions to this problem coincides
with the set of solutions to the following optimization problem in y:

x ∈M(DK ∧ Source) y ∈M(DK ∧ Q)
n∧

i=1

zi ≥ yi − xi
n∧

i=1

zi ≥ xi − yi

minimize

n∑
i=1

wizi

218

which is linear, and thus can be solved with classical operational research tech-
niques. It is noteworthy that if every variable is continuous, then this optimiza-
tion problem is polynomial, otherwise, it is a mixed integer linear optimization,
known to be an NP-hard problem. In practice, the more variables are integers,
the more it will require computing time; thus, if a variable range is big enough,
it may be more appropriate to consider it as real. The heuristic we have chosen
is as follows. If, for a type of food F , it appears in all the recipes of the case base
as units, then τ(numberF) = integer.

When this linear problem is solved, this gives a solution to the query, ex-
pressed with all the n variables. From a human-interface viewpoint, some of
these variables should not be displayed. For example, if an ingredient is given
by its volume in the source recipe, then it should not be given as a mass in the
adapted case. Since DK relates masses to volumes, there is no loss of information.

With the example presented above, the result is as follows:

AdaptedCase ≡ DK

∧ (volumeKirsch = 9) ∧ (volumeRum = 25) ∧ (volumeMilk = 50)

∧ (numberBanana = 2) ∧ (massGranulatedSugar = 96)

∧ (volumeFreshCream = 290)

It can be noticed that AdaptedCase entails DK∧ Q, which was expected. For this
example, the following weights have been chosen assuming that more a variable
correponds to a general concept more its associated weight has to be large:

wvolumeFood = 100 wsugarFood
= 50 walcoholFood = 50

wvolumeBrandy = 5 wmassEggOrEquivalent = 10

and wv = 1 for any other variable v

Translated back in an informal way, this gives:

AdaptedCase =
Recipe “Eggnog” (10 glasses) after adaptation
9 c` of kirsch, 25 c` of rum, half a liter of milk,
2 bananas, 96 g of sugar, 290 c` of fresh cream

This result illustrates the quantity compensations done by the adaptation: the
quantity of sugar has been lowered because bananas are sweeter than eggs and
the volume of kirsch is higher than the volume of armagnac in the source recipe,
because the degree of alcohol is lower for armagnac than for kirsch.

4 Sandwich challenge
The sandwich challenge is addressed with the 2014 Taaable system [9], which
is efficient for the ingredient susbtitution step. The preparation procedure of
the adapted recipe uses, in the same order, the steps used in the source recipe,
because the ontology-based substitution procedure of Taaable favors the sub-
stitution of ingredients of the same type (e.g., a sauce by a sauce). So, the order
of the ingredients in the adapted recipe will be the same as in the source recipe.

219

To adapt the textual preparation of the recipe, the text occurrences of the re-
placed ingredients are substituted with the replacing ingredients. A set of rules
allows to identify plurals of the removed ingredient in the text, and replace them
with the plural form of the replacing ingredients. For example, when replacing
mayo with mustard, “Apply mayo on one slice, tomato sauce on the other.” is
adapted to “Apply mustard on one slice, tomato sauce on the other.”

5 Conclusion
This paper has presented the two systems developed by the Taaable team for
its participation to the 2015 CCC. The two systems are based on the previ-
ous version of Taaable, extended with two new approaches: a FCA approach
to guide ingredient substitution, and an adaptation of the ingredient quantities
based on a mixed linear optimization. The work presented here still needs a thor-
ough evaluation: ongoing work addresses this issue, following the methodology
introduced in [2].

References

1. A. Cordier, V. Dufour-Lussier, J. Lieber, E. Nauer, F. Badra, J. Cojan, E. Gaillard,
L. Infante-Blanco, P. Molli, A. Napoli, and H. Skaf-Molli. Taaable: a Case-Based
System for personalized Cooking. In S. Montani and L. C. Jain, editors, Success-
ful Case-based Reasoning Applications-2, volume 494 of Studies in Computational
Intelligence, pages 121–162. Springer, 2014.

2. E. Gaillard, J. Lieber, E. Nauer, and A. Cordier. How Case-Based Reasoning on
e-Community Knowledge Can Be Improved Thanks to Knowledge Reliability. In
Case-Based Reasoning Research and Development, volume 8765, pages 155 – 169,
Cork, Ireland, Ireland, September 2014. L. Lamontagne and E. Plaza.

3. E. Gaillard, L. Infante-Blanco, J. Lieber, and E. Nauer. Tuuurbine: A Generic CBR
Engine over RDFS. In Case-Based Reasoning Research and Development, volume
8765, pages 140 – 154, Cork, Ireland, September 2014.

4. E. Gaillard, J. Lieber, and E. Nauer. Adaptation knowledge discovery for cooking
using closed itemset extraction. In The Eighth International Conference on Concept
Lattices and their Applications - CLA 2011, pages 87–99, 2011.

5. B. Ganter and R. Wille. Formal Concept Analysis: Mathematical Foundations.
Springer, Berlin, 1999.

6. C. Carpineto and G. Romano. Effective Reformulation of Boolean Queries with
Concept Lattices. In T. Andreasen, H. Christiansen, and H. Legind Larsen, editors,
Flexible Query Answering Systems, Third International Conference (FQAS’98), vol-
ume 1495 of LNCS, pages 83–94. Springer, 1998.

7. C. Carpineto and G. Romano. Order-Theoretical Ranking. Journal of the American
Society for Information Science, 51(7):587–601, 2000.

8. J. Cojan and J. Lieber. Applying Belief Revision to Case-Based Reasoning. In
H. Prade and G. Richard, editors, Computational Approaches to Analogical Rea-
soning: Current Trends, volume 548 of Studies in Computational Intelligence, pages
133 – 161. Springer, 2014.

9. E. Gaillard, J. Lieber, and E. Nauer. Case-Based Cooking with Generic Computer
Utensils: Taaable Next Generation. In Proceedings of the ICCBR 2014 Workshops,
number pp 89-100, page 254, Cork, Ireland, 2014. D. B. Leake and J. Lieber.

220

