
Towards a Human Factors Ontology  
for Cyber Security 

 

Alessandro Oltramari  
Carnegie Mellon University 

Pittsburgh, USA 

Diane Henshel & Mariana Cains 
Indiana University 
Bloomington, USA 

Blaine Hoffman 
Army Research Laboratory 

Aberdeen, USA  
 
 

Abstract— Traditional cybersecurity risk assessment is 
reactive and based on business risk assessment approach. The 
2014 NIST Cybersecurity Framework provides businesses with 
an organizational tool to catalog cybersecurity efforts and 
areas that need additional support. As part of an on-going 
effort to develop a holistic, predictive cyber security risk 
assessment model, the characterization of human factors, 
which includes human behavior, is needed to understand how 
the actions of users, defenders (IT personnel), and attackers 
affect cybersecurity risk. Trust has been found to be a crucial 
element affecting an individual’s role within a cyber system. 
The use of trust as a human factor in holistic cybersecurity risk 
assessment relies on an understanding how differing mental 
models, risk postures, and social biases impact the level trust 
given to an individual and the biases affecting the ability to 
give said trust. The Human Factors Ontology illustrates the 
individual characteristics, situational characteristics, and 
relationships that influence the trust given to an individual. 
Furthering the incorporation of ontologies into the science of 
cybersecurity will help decision-makers build the foundation 
needed for predictive and quantitative risk assessments. 

Keywords— cyber security, risk assessment, human factors, 
cyber operations 

I. INTRODUCTION 

A. The Holistic Cybersecurity Risk Framework  
The science of cybersecurity risk assessment has been 

reactive, narrow in focus, and based on a business risk 
assessment approach. More recently, the National Institute 
of Science and Technology (NIST) responded to the 2013 
“Improving Critical Infrastructure Cybersecurity” Executive 
Order with the development of the 2014 NIST 
Cybersecurity Framework [1,2]. The NIST framework aims 
to provide organizations and businesses with best risk 
management practices that can be implemented to improve 
the security and resilience of critical infrastructure. NIST 
recognizes that risk management is an iterative process of 
risk identification, risk assessment, and risk mitigation. 
While the NIST framework provides businesses and 
organizations with a neatly organized account of their 
cybersecurity efforts, the framework fails to capture the 
concept that humans are an inherent risk to any system in 
which they directly or indirectly participate.  

To go beyond the current risk framework promulgated 
by NIST [1,2], risk assessment needs to be more holistic. In 

order to enable cybersecurity risk assessment to become 
more predictive, the process and models need to incorporate 
humans and risk factors together in a single model and use 
metrics that go beyond the direct assessment of classical 
vulnerabilities (confidentiality, integrity, accessibility, or 
CIA).  

First, when considering CIA, the actual measurement or 
evaluation of these vulnerabilities will depend on the 
situation being modeled.  Situations requiring cybersecurity 
risk assessment can include baseline assessments of network 
protection, but must also include situations in which the 
network is being used actively. The actual metrics for, say, 
protection of an SQL database containing personal 
information (social security numbers, for example) may be 
very different than the metrics needed to be assessed when 
evaluating risk related to a field operation using radios, 
walkie talkies or cell phones to convey information.  

Second, other variables beyond CIA may be the relevant 
risk variables that need to be analyzed in a risk model.  
Take, for example, a situation in which information being 
used, generated in, or relayed by one network needs to be 
received in a specific time window either for another 
operation to begin or so that the information can be used 
maybe by the human who will receive the information. 
Within a military or other time critical context, the 
evaluation goes beyond time to access information; it must 
include time to act on the accessed information and can 
include time for completion of actions within a critical time 
window. In this example, time to completion of a task is the 
critical metric that must be tracked, and so must be 
incorporated into the risk model.  

Third, humans are a part of virtually all networks, 
whether as users, defenders (and IT personnel) or attackers. 
All humans can introduce risk into the network, not just 
attackers, a consideration acknowledged when users are 
asked how they use the system (and system components) as 
part of the NIST risk management and risk assessment 
process. Defenders or IT personnel can also increase cyber 
risk if they are, for example, less skilled, or tired, or inside 
threats.  Humans can also reduce risk in a cybersecurity 
system. Defenders put in place baseline protections, and 
then track attacks on the system to assess whether the 
protections have been breached and what needs to be done 
to increase system hardening (protections), counteract 
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malware that may have introduced access to the system (or 
otherwise compromised the system and system assets), and 
repair damage to the system. Users can decrease risk by 
being aware of (and not being hooked by) spam or phishing 
efforts, ensuring their personal system assets are 
appropriately protected, and by not downloading infected 
files or accessing malware-linked websites. Therefore, 
human-dependent metrics must be included in a holistic risk 
analysis of cyber security. 

A fully predictive cyber security risk assessment model 
will take into account humans as risk factors, and as risk 
mitigators, and will enable the incorporation of metrics that 
go beyond the classic CIA vulnerabilities. In order to 
develop such a model, we have been characterizing the 
universe of cybersecurity by framing the characteristics, 
attributes and, ultimately, metrics that can be use to describe 
the risks associated with any cyber network. The framework 
has multiple pieces, and metrics that are assessed at different 
levels.  

Three main parts to the Cybersecurity Risk Framework 
identifies system level metrics, policy related metrics, and 
asset related metrics. System level metrics are evaluated at 
the full system level, such as probability of completion of a 
mission or a system level task. Policy level metrics evaluate 
the risks associated with the policies that govern the 
network and network assets. Asset level metrics are 
evaluated at the asset level, such as metrics to assess risks 
associated with specific machines, a virtual network, or an 
operating system. One piece of the asset level framework 
characterizes the Human Factors that introduce or mitigate 
risk in a cyber network [3], which is then being incorporated 
into an ontology. One goal of this framework and ontology 
is to identify the factors that contribute to a key aspect of 
human-related cyber risk, trust. 

 

B. An ontological approach to risk modeling 
A recent report on quantification of cyber threats 

highlights the intrinsic complexity of the cyber domain [4]: 
in this document experts pinpoint the bottleneck of cyber 
threat assessment on the lack of “standardization and 
benchmarking of input variables”, as conversely 
accomplished – they add – “by the car insurance industry” 
(p.16). But if agreeing on the meaning of notions like ‘age’ 
and ‘gender’ of drivers, ‘weight’ and ‘year of built’ of cars, 
‘claims history’, etc. seems mostly straightforward, 
specifying the semantics of concepts like ‘system 
vulnerability’, ‘software usability’, ‘trust’, ‘password 
strength’, etc. requires advanced technical knowledge, fine-
grained modeling primitives, and non-trivial metrics.  

Little effort has been put into this standardization 
process. For instance, Fenz and Ekelhart propose an ontology 
based on four parts, i.e. security and dependability 
taxonomy, the underlying risk analysis methodology, the 
concepts of the IT infrastructure domain and a simulation 
enabling enterprises to analyze various policy scenarios [5]. 
Notwithstanding the comprehensive investigation, the work 
presented in [5] is affected by an underspecified notion of 

risk, conceived as “the probability that a successful attack 
occurs”, which clearly fails to account for the mutual 
dependence between profiles of attackers, system 
vulnerabilities, level of expertise of the defenders, 
monetization of information loss resulting from data 
breaches, etc. In general, a too-coarse representation of risk 
is a pervasive problem in the state of the art on ontologies of 
cyber security: it’s the case of [6] and [7] where the in-depth 
conceptual distinctions adopted to model cyber attacks are 
not matched by a corresponding level of detail in defining 
cyber threats and risk assessment procedures.  

The most popular modeling solution in risk-related 
ontology research seems to be the reification of risk-
assessment and threat-quantification into the process of 
‘rating’, whose attributes are expressed either qualitatively 
(e.g., by means of high, medium and low dimensions in the 
Likert scale) or quantitatively (measuring the probability of a 
risk). Note that in ontology modeling, reification of 
properties is commonly adopted as a method to bypass 
language expressivity limits: in RDF, for instance, a relation 
with arity n > 2 can be represented with a statement about 
those n entities. Thus, for instance, we could represent the 
fact that a set of n cyber vulnerabilities exposes a system to a 
certain risk factor, by asserting a risk-rating statement about 
those known n vulnerabilities [8]. An alternative approach 
comes from Enterprise Risk Management (ERM), an area 
that concerns the identification, assessment and mitigation of 
operational risk: for instance, Lykourentzou and colleagues 
focus on seven subclasses of events, i.e. ‘Failure’, 
‘Infrastructure disruption’, ‘Occupational incident’, ‘Fraud’, 
‘Disaster’, ‘Attack’, binding each of these event types to a 
wide spectrum of ‘Root causes’ and ‘Treatment plans’ to 
address risk factors [9]. ERM’s approaches can be effective 
not only to identify risk-related event patterns, but also to 
elicit the behavioral patterns in the adoption of risk 
management practices. In this context, ontologies supply an 
axiomatic infrastructure to mental models of risk-related 
patterns.  

The rest of the paper is organized as follows: Section II 
makes the case for a holistic approach to risk in cyber 
security, introducing the role of trust ontologies; Section III 
focuses on the Human Factors Ontology (HUFO); finally, 
Section IV draws preliminary conclusions and sets an agenda 
for future research. 

 

II. RELATED WORK 

A. Ontologies of cyber security 
The U.S faces cyber attacks by rogue states and terrorist 

organizations on a daily basis. While greatly increased use 
of information systems has contributed enormously to 
economic growth, it has also made the U.S. vulnerable to a 
variety of cyber threats that are difficult to contrast and 
prevent. There are numerous factors that make cyber 
defense, and cyber security in general, especially 
problematic. The kinds of threats are diverse and span a 
wide spectrum of private and public interests: destruction or 
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theft of data, interference with computer networks and 
information systems, disruption of the power grid and 
telecommunications, denial of services, etc. The legal and 
ethical status of cyber attacks or counterattacks by states are 
also unclear, at least when deaths or permanent destruction 
of physical objects does not result. It is still an open 
question what U.S. policy is or should be, and how cyber 
threats are analogous to traditional threats and policies—for 
example whether “first use” deterrence, and in-kind 
responses apply, and whether a policy of pure cyber defense 
does not put the far greater burden on attacked rather than 
attacking nations [10].  

As these arguments suggest, untangling the complexity 
of cyber security does not solely depend on pinning down 
the computational elements into play, but demands a 
thorough analysis of the human factors involved. In this 
regard, cyber security must be studied in the context of 
“sociotechnical systems” [11], where the interaction 
between people and technology in workplace is central. 
Ontology analysis has recently proved to be an effective tool 
for investigating the defining aspects of that interaction [12]. 

Informed decisions emerge when a cyber analyst 
projects her observations into a broad context that factors in 
threat and attack types, space of defensive maneuvers, 
system vulnerabilities, risk assessment and mitigation under 
time constraints. Obrst and colleagues [13] provide the most 
systematic description of a wide-ranging ontology of cyber 
security, but only a small portion of this large-scale project 
is devoted to the human component. Various agencies and 
corporations (NIST [1,2], MITRE [14], and Verizon [15]) 
have formulated enumerations of types of malware, 
vulnerabilities, and exploitations: MITRE, which has been 
very active in this field, maintains two dictionaries, namely 
CVE (Common Vulnerabilities and Exposure1) and CWE 
(Common Weakness Enumeration2) and a classification of 
attack patterns (CAPEC - Common Attack Pattern 
Enumeration and Classification 3 ). Regardless of the 
important issues covered by these initiatives, they have two 
major problems: 1) machine-readability is not supported, 
making them ineffectual as computational models of cyber 
security; 2) the human component is mostly overlooked, 
making the resulting models partial in scope. 

In order to overcome these problems, in the context of 
the Cyber Collaborative Research Alliance we are 
developing CRATELO, a three-level modular ontology of 
cyber security. In the next section we are going to describe 
the general features of CRATELO, focusing on the Human 
Factors Trust Ontology module (HUFO). 
 

B. Trust ontologies 
Ontology-based models of trust have been studied in 

various domains [16]. In [17], the authors propose an 
intelligent and dynamic Service Level Agreement (SLA) 

                                                             
1 https://cve.mitre.org/  
2 https://cwe.mitre.org/  2 https://cwe.mitre.org/  
3 https://capec.mitre.org/  

based on a probabilistic ontology that detects warnings in a 
cloud computing environment. A generic service-oriented 
framework of trust ontologies is described in [18]. A trust 
ontology aiming at improving the semantic specification of 
trust networks in the context of social institutions and 
ecosystems is discussed in [19]. In [20], the author focuses 
on six general areas to derive trust for a system, namely 
user, hardware, software, network, machines, and the 
applications, mapping trust associated with each area to 
specific attributes. An ontology-based approach to integrate 
semantic web based trust networks with provenance 
information to evaluate and filter a set of assertions is 
presented in [21]. In [22], a reference ontology to develop 
privacy preserving negotiation systems is delineated.  

 

III. THE HUMAN FACTORS TRUST ONTOLOGY 

A. The Human Factors Trust Ontology  
Adopting a standard understanding and definition of 

terms and concepts is a foundational requirement for good 
cyber security practice, owing to the nature of the space and 
the need for rapid, efficient decision-making. Cyber security 
is an adversarial space, where defenders must project 
possibilities and be ahead of their opposition in order to be 
successful. Enacting strategies favors selecting a suitable 
course of action in minimal time over exhaustively 
searching [23,24]. Furthermore, the data available is not 
always straightforward, requiring collection and parsing in 
order to construct an understanding of the situation(s) at 
hand. Numerous sources of relevant information are often 
applicable, including network monitoring tools, logs, system 
statuses, and hardware monitors. Analysts are situated at the 
center of a large-scale data fusion process, identifying and 
defining information through patterns and relationships to 
perceive the ground truth of the cyber systems and assets 
they are defending and monitoring [25,26,27]. Once 
collected, the information must be appropriately combined, 
categorized, and communicated in order to provide a useful 
and accurate picture of the world on which future strategies 
can be based. Simply stated, cyber defense is heavily 
focused on the human analysts and agents involved in a data 
fusion and situation awareness process. 

Through processing of data, defenders can draw 
conclusions and decide how to respond to evolving 
scenarios. Implicit within the workload is a desire and 
preference for information that can be trusted, a concept that 
requires a lot of unpacking to properly understand. In fact, 
conceptualizing trust in order to evaluate its role and 
presence within a system is itself a difficult problem; there 
are literally hundreds of definitions of trust covering 
interpersonal trust, trust in automation (system trust), and 
human-machine interaction [28]. However, that variety only 
strengthens the argument for constructing and supporting an 
ontological representation of cyber security. The core 
similarities of cyber security and the tasks involved are 
essentially the same [29], which also supports the creation
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of a standard ontology. Thus we should be able to describe 
the human factors that influence trust in a way that can be 
applicable regardless of the specific cyber environment or 
organization involved and that will help explicate the role of 
trust in risk assessment and evaluation.  

Assessing cyber security risks is a multi-component, 
multi-tiered problem that involves hardware, software, 
environmental, and human factors. Effective and successful 
efforts must consider impacts beyond the computer assets 
and network, taking a more holistic approach that considers 
the users, defenders, and attackers involved [3]. Exploring 
the differences among human roles and human factors 
includes exploring how trust permeates risk assessment, 
such as trust in information, in people, or in security 
policies. Information is not uniformly trusted and 
incorporated into situation awareness and defender 
responses automatically, but it is built over time as those 
involved develop relationships, progress through training, 
and gain experience [30]. Individuals grow trust in one 
another through working together, and people gain trust in 
systems as they continue to demonstrate consistent behavior. 
Previous definitions of trust aggregate characteristics into a 
whole sum, including concepts such as competence, 
benevolence, integrity, predictability, attitude, intention, 
behavior, reliability, dependability, and faith [31] [32] [20]. 
The human factors trust ontology aims to map these 
concepts into understood and explicit relationships that tie 
together risk assessment across the human and human-
system interactions within the cyber security space. 

As part of an ongoing development of holistic cyber 
security risk assessment, we have been creating a 
framework that enables predictive and proactive defenses 
[33,34,35]. A critical component of this process has been the 
characterization of human factors, such as trust, and 
mapping the relevant risk attributes to the risk spaces 
involved in cyber security. Overall, this is a process of 
creating, enumerating, and solidifying risk characteristics 
and factors, and in many cases refining them and relating 
them to the human factors. The latter are broken into three 
main categories of attacker, defender, and user with a shared 
core of spaces (their behavioral characteristics, knowledge 
and skill characteristics, situational characteristics, and 
traits that influence behavior) that create the definition of 
each [3]. The framework (see Figure 1) can be navigated 
from top to bottom, the lower tiers breaking out into the 
more specific metrics and concepts that, collectively, 
describe and detail these core spaces, which allows for the 
mapping of attributes to measures and data that can be used 
to create risk evaluations.   

Situational Characteristics focus on where in the 
system/network the individual is positioned and the level of 

insider access they possess, denoting when this access is 
authorized or unauthorized. A person’s situational 
characteristics also influence the knowledge they can access 
and may influence the attention they bring to a situation. For 
example, a user who is an executive of a company may have 
significant authorized access to assets but lack the same 
level of attentiveness to security concerns and information 
that a network analyst possesses. Knowledge and skill 
characteristics call to attention the experience, expertise, 
and situational awareness capabilities of the individual, 
including demographics such as years working in a position 
and training as well as their proficiency with relevant tools 
and techniques. Behavioral Characteristics are split into 
spaces such as motivation, rationality, malevolence vs. 
benevolence, and integrity. For example, a defender who is 
rational, benevolent, and has a record of following through 
with work and being accountable for his or her 
responsibilities will likely exhibit persistence in defending 
assets and building appropriate situational awareness. We 
have expanded the framework to include traits that influence 
the behavioral characteristics, including ideology, ethical 
attributes, risk averseness, and personality traits. Each of 
these may scale the behavioral characteristics in some 
fashion or serve as the driving force behind a person’s 
integrity, benevolence, or rational approach to cyber 
security situations. Collectively, these characteristics and 
traits impact the individual’s interactions with mission 
assets and play a role in determining risk. For example, 
defender with poor motivation and integrity, insufficient 
knowledge, and appropriate insider access can present a 
higher risk, whereas an attacker with high motivation and 
knowledge despite limited insider access also poses higher 
risk. 

Trust also comes through across these spaces. The 
predictability and reliability of an individual generates a 
sense of trust in his or her actions and creates a reputation 
for that individual. The expertise and knowledge possessed 
can instill a faith or confidence in the work a defender will 
do, and users with sufficient integrity will be trusted to 
follow security policy and not act maliciously within the 
network. In effect, the human factors of trust directly 
associates with risk evaluation of cyber situations, and we 
can explore the relationships across the human factors of 
cyber security to discover where risk manifests and how 
trust is generated and influenced. Integrating the human 
factors framework into a cyber security ontology provides a 
logical means to explicate relationships both obvious and 
unintuitive, follow their connections, and evaluate trust’s 
presence and impact on the risk present within a given 
network. 
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Figure 1 – Trust Framework of Human Factors in Cyber Security. 

 

 
Figure 2 – A visualization of HUFO. 

 

B. HUFO and Trust: an overview 
HUFO (see Figure 2 above) is part of CRATELO [36], a 
suite of integrated ontologies of cyber security, designed on 
the basis of DOLCE top level [37], extended with a 
security-related middle ontology. These top, middle and 
domain level ontologies currently add up to 330 classes, 
connected by 162 relationships (132 object properties and 
30 datatype properties) and encoded in OWL-DL. The 
logical expressivity of CRATELO is SRIQ, a decidable 
extension of the description logic SHIN (for more details 
see [38]). 

The relation holding between the human factors and the 
metrics used to assess them is captured by the semantic 
characterization of ‘qualities’ and ‘quality spaces’, which 

has been originally formulated by [39] and subsequently 
formalized in DOLCE ontology [37]. Intuitively, a quality 
corresponds to an individual attribute of a specific entity, as 
‘predictability’ or ‘reliability’ can be considered attributes 
of ‘trust’; a quality space is the abstract representation of an 
attribute’s semantics, e.g. a boolean space that denotes the 
‘reliable/unreliable’ dichotomy. An important topological 
property of quality spaces is that their dimensional structure 
can vary. For instance, the ‘reliability space’ can be more 
complex than a bidimensional configuration: in particular, 
this is the case when reliability is conceptualized as 
probabilistic distribution between maximum reliability 
(100%) and complete unrealibility (0%). The atomic parts of 
a quality space, which collectively denote the range of 
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values used to specify an attribute’s semantics, are called 
‘quality regions’. Note that quality regions of a linear space 
reduce to points.  

As mentioned above, ‘predictability’ and ‘reliability’ are 
conceived in HUFO as components of ‘trust’, a complex 
factor that is influenced by inherent and external 
characteristics, in combination with measures of human 
performance in a given situation. Hence, trust is not only 
associated to human characteristics, but emerges as an 
essential aspect of sociotechnical systems: the hybrid nature 
of trust is particularly evident in the cyber security domain, 
where a trustworthy interaction with computer network 
systems is the ‘conditio sine qua non’ for a 
defender/attacker to accomplish a mission in cyberspace4. 

Figure 2 represents an overview of HUFO generated 
using OWLGrEd5: the purple links represent subsumption 
relationship between classes, whereas the dotted arrows 
indicate either the ‘component-of’ or the ‘influenced-by’ 
property (textual labels in the figure disambiguate the 
equivalent graphical notations); classes are depicted as 
yellow boxes, instances as green boxes. The object property 
‘component of’, holding between attributes and qualities, is 
modeled as a generic ‘part-of’ relation [40], whereas the 
‘influenced-by’ relation reflects DOLCE’s characterization 
of general dependence, to highlight the strong connection 
between the assessment (existence) of proper internal and 
external characteristics and the computation of the derived 
trust level. Note that objective, subjective, and objective-
subjective designate the sorts of metrics that can be 
predicated to each human factor (represented in Figure 1). 
An objective metric represents characteristics that are based 
in quantifiable and unbiased facts such as highest level of 
education completed. A subjective metric represents 
characteristics based in human decision-making and 
assumptions such as political rationality. An objective-
subjective metric represents characteristics that are based in 
fact while also influenced by human decision-making such 
as emotional state. These metrics types are modeled as 
instances in HUFO: the use of meta-classes would have 
required OWL-Full, which is the undecidable fragment of 
OWL, and therefore unfit for reasoning. Consequently, we 
opted for modeling the three types of metrics as a collection 
of individual instances (range) associated to human factors 
classes (domain) through the object property ‘has metric’.  
 

IV. CONCLUSIONS AND FUTURE WORK 
In this paper we examined the effort of building a human 

factors ontology (HUFO) as part of a broader ontology of 
cyber security (CRATELO). In particular, we focused on the 
notion of trust, showing its ties with the inherent and 
external characteristics of humans interacting with computer 
networks. In the long term, we envision to apply HUFO in 

                                                             
4 This is the case, for instance, when a cyber analyst uses a network-based 
intrusion prevention system (or NIPS) to monitor and protect a given 
network environment from cyber attacks. 
5 http://owlgred.lumii.lv/  

support of risk assessment and risk prioritazion in cyber 
operations. 

The semantic model outlined in this paper is only a first, 
preliminary step in the process of porting a larger model of 
the cyber security ecosystem into a computational ontology. 
The holistic nature of our approach makes the task 
exceptionally challenging and, to the best of our knowledge, 
uniquely systematic in cyber security research. Despite the 
complex problems we are trying to solve, we’re also 
convinced that, in the forward-looking vision of the ARL 
Cyber Security Collaborative Research Alliance, our 
approach sets a realistic and crucial milestone toward the 
foundation of a science of cyber security.  
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