
Securing Scrum for VAHTI

Kalle Rindell, Sami Hyrynsalmi, Ville Leppänen

University of Turku, Department of Information Technology, Finland,
kakrind@utu.fi, sthyry@utu.fi, ville.leppanen@utu.fi

Abstract. Software security is a combination of security methods, techniques
and tools, aiming to promote data confidentiality, integrity, usability, availabil-
ity and privacy. In order to achieve concrete and measurable levels of software
security, several international, national and industry-level regulations have been
established. Finnish governmental security standard collection, VAHTI, is one of
the most extensive example of these standards. This paper presents a selection
of methods, tools, techniques and modifications to Scrum software development
method to achieve the levels of security compliant with VAHTI instructions for
software development. These comprise of security-specific modifications and
additions to Scrum roles, modifications to sprints, and inclusion of special hard-
ening sprints and spikes to implement the security items in the product backlog.
Security requirements are transformed to security stories, abuse cases and other
security-related tasks. Definition of done regarding the VAHTI requirements on
is established and the steps to achieve it are described.

Keywords: Scrum, agile, VAHTI, software security, security standards

1 Introduction

Software industry has always been under scrutiny by regulators, standardization orga-
nizations and a plethora of industry-specific and more or less general standards. The
purpose of all this has been to guarantee a certain level of evidence about certain quality
aspects or functionality of the software. Consequently, also software security is be-
coming increasingly regulated. Several security standards and audit criteria have been
established, and even more academic and commercial software development methods
have been suggested to meet the standards. A number of the development methods and
best practices have achieved a standardized status themselves. Main issue with the stan-
dardized methods is that while they provide the necessary security assurance required
for certain regulated environments and security audits, they in general do not adhere to
the agile values or ideology.

The term ‘agile’ reflects approaching the development of software using new focus,
ideology and values [3]. As opposed to the sequential waterfall model, which attempts
to maximize the efficiency by not allowing any change, and by locking down the output
of each development phase, the agile mindset anticipates change, and even welcomes it.
At the core of agile software development lies Scrum, one of the oldest, and the most
established and widely-used development approaches among agile methods [19].

The scopes of security standards can be divided into industry specific, national and
international regulations. Standardization types include standards for software safety and

SPLST'15

236



privacy, control andmanagement of data, software, assets, personnel and processes, and
any other aspects of information security. Consequently, these regulations also concern
the design and development of these aspects. The main subject of this study, software
development security, can further be divided into its components: security of the used
technologies, security of used processes and methods, and, consequently, the security
of the produced software. To control the security of its information systems, the Finnish
government has published its own public security requirements, VAHTI instructions
[10]. VAHTI is the de facto standard for the governmental information systems’ software
maintenance, use and development. VAHTI instructions for application development,
published in 2013, include definite requirements regarding the development of the
software and inherently the used development method itself [9].

VAHTI, however, is not directly compatible with the mainstream agile software de-
velopment methods. Therefore, this constructive paper presents modifications to Scrum
that are needed to complete with the governmental requirements. We have identified the
VAHTI requirements regarding the development method and the development phase,
and outline the necessary mechanisms and measures to be instantiated and integrated
into Scrum necessary to meet these requirements. These means include security-related
roles, processes and techniques, done at the three security levels defined in VAHTI:
basic, heightened and high. The security modifications to Scrum are selected by select-
ing applicable security measures from international standards and established security
frameworks and methodologies. While Scrum does not define security roles or pro-
cesses, we analyse the VAHTI requirements and translate these to concrete software
development concepts to be applied to Scrum.

This article consists of following sections: in Section 2, we discuss the background
and motivation of this article, as well as cover the related work done in the field of
introducing software security mechanisms in agile methods. In Section 3, we present
the Scrum method, its key terminology and how a software project is conducted using
Scrum. Section 4 introduces the VAHTI instructions for Application Development, the
process and reasoning in selecting the key requirements from VAHTI, which are then
grouped by their security level and assigned to Scrum roles. In Section 5, we provide the
modified Scrum process to meet the VAHTI requirements. The security compliance and
security assurance is achieved by importing specific elements of established security
frameworks into Scrum.An example project structure is also provided. Finally, in Section
6, we conclude the results and discuss avenues for future research.

2 Motivation, Research Questions and Related Work

Security in its various aspects has been a key topic in information technology since the
first computers. Perhaps it is the military background of the development of computing
devices, networks and the Internet which still molds the security procedures, aiming to
be well-structured, thoroughly documented and strictly regulated— even to the point of
being rigid and a hindrance to production. On the industry side, finance and bankingwere
among the earliest to introduce computers to their business processes, and financial data
is among the most conspicuously protected information assets in any organization. With
the emergence of personal computing and near-ubiquitous Internet services, privacy

SPLST'15

237



and identity protection issues have gained importance among security topics. On the
other end, security also concerns countries and governmental entities. These typically
have a special focus on the continuity of services, especially ones critical to running
the society. When comparing the compliance requirement the various security standards
and regulations are setting to the ideology presented in the agile manifesto, the task of
providing security assurance and complying with standards appears to be a non-agile,
or even an anti-agile task. Even the VAHTI instructions for application development
state that the ‘mandatory’ and ‘well-documented’ S-SDLC (Secure Software Develop-
ment Life-Cycle) should ‘define exit criteria for different development phases’, a clear
presumption that the waterfall model will be used. Against this background the key
questions in our research were:

– How to make an S-SDLC conforming with the agile mindset as much as possible?
– Selecting Scrum, the most widely-used software development method, as the refer-
ence method; how should it be modified to comply with VAHTI?

– If a requirement stated in VAHTI is considered an item in the backlog, what is the
definition of done for each of these items?

– How can the definition of done be achieved with the least security overhead?

To address these questions, we used a Conceptual-analytical research approach and
a constructive research strategy [13]. That is, in this study we analysed the integral
elements of two existing tools (i.e., Scrum and VAHTI). Based on the results of this
conceptual analysis, we present the needed modifications to Scrum that it will fulfill the
requirements set by VAHTI. This study presents only the result of conceptual analysis
and further works are needed to verify and validate the proposed model.

In extant literature, several secure software development methods have been intro-
duced. Some of these even claim to be agile, or at least use an agile method such as
Scrum or eXtreme Programming (XP) as a starting point. Fitzgerald et al. [8] have ap-
plied Microsoft Security Development Lifecycle (SDL) [14] to Scrum and created their
own version of the methodology to meet organization-specific security requirements. In
recent work done at the University of Oulu, Vähä-Sipilä, Ylimannela and Helenius (in
[15]) have gathered various additions and modifications to agile programming method-
ologies, such as an initial ‘sprint zero’ for security definition purposes, use of security
stories for communicating requirements, abuse cases for testing, hardening sprints and
overall modifications to Scrum’s basic structure, identifying control points crucial for
security activities. Additionally, to handle the measurably increased complexity the se-
curity requirements add to the software and the processes, even a change of paradigm
to aspect-oriented programming (AOP) has been suggested [5]. Typically the suggested
S-SDLC methods were instantiated only for a single project within a single company, if
instantiated at all.

Implementation of the security controls and tasks is a more clear-cut field: Microsoft
suggests its SDL, and even in its current published version 5.2 provides ‘SDL for Agile’
extension to their method. SDL may be considered a security framework offering a
full set of tools, methods and techniques to implement the security tasks they suggest.
Although not directly security-oriented, the Capability Maturity Model Integration for
Development (CMMI-DEV) was studied by e.g. Diaz et al. [7] regarding the relationship

SPLST'15

238



of heavy software processes of CMMI’s managed level 2 processes [2] to Scrum.
Similarly, our approach was to examine industry standards and best practices, such as
SSE-CMM [12], BSIMM-V [4] andMicrosoft SDL, andmodify Scrumwith a minimum
set of items that are necessary for VAHTI compliance. In our approach, the processes are
kept as lean as possible by not striving for formal ‘maturity levels’, and by minimizing
any security overhead deemed unnecessary.

3 Scrum

Scrum is an iterative and incremental project management framework, based on the
principle that customer requirements and other agents may change during the project’s
execution, and by working in iterations, allows the team to react to the change. Scrum
gives the organization quite a lot of freedom in how to organize and execute the project,
but certain key roles and concepts are defined. This section’s introduction to Scrum is
based on the Scrum Primer book [6].

Scrum is designed promote productivity and mitigate management and governance
overhead, by e.g. giving the developers as much freedom as possible in defining and
implementing their tasks (self-organizing teams) and all but eliminating the role of
the traditional project manager. The project may still require some project and product
management functions such as financial or other reporting, but the Scrum project does
not have or need a dedicated project manager. Scrum has an emphasis on intra-team
communication, favoring team co-location or at least tight online collaboration.

1-4 weeks
No changes to 

goals

Product 
backlog 

refinement

Daily 
Scrum

Product Owner Scrum Master

Developers

Product 
Backlog

Sprint 
Backlog

Potentially Shippable
Product Increment

Sprint Review Retrospective

SPRINT

Fig. 1. The Scrum process (adapted from [6])

Figure 1 shows an overview of the Scrum process. This is a slightly modified version
of ‘pure’ Scrum, allowing redefining the product backlog during the sprints. The key
concepts of the methods are:
1. The Team consists of three core roles: Product Owner (PO), representing the cus-

tomer and stakeholders, Scrum Master, facilitating for the team and removing any
impediments, and (typically) 3-9 Developers, who as a cross-functional and self-
organizing team utilize their skills to create Potentially Shippable Product Incre-
ments.

SPLST'15

239



2. Stories are product requirements often written from the product owner’s perspective.
3. Product Backlog is the list of stories, use cases, requirements and other items that

require completion in order to deliver the product.
4. Tasks and Sub-tasks are concrete steps which the teammembers create and complete

based on the backlog items.
5. In Sprint Planning, the team selects from the product backlog items that can (and

should) be completed within the next sprint. The prioritisation of the items comes
ultimately from the stakeholders, i.e., the customer. In Sprint Planning, the items are
converted into completable tasks and sub-tasks, which added to the Sprint Backlog.

6. Sprints are the iterations in which the team completes items (i.e., tasks) in the sprint
backlog within a pre-scheduled time box (typically 7-28 days). During sprints the
product backlog items may be refined, added or deleted, while the sprint backlog
remains as unchanged as feasible.

7. In Daily Scrum meetings the team members brief each other in what they did
yesterday to complete the product, what they plan to do today, and whether there
are any impediments to the work.

8. TheDefinition of Done is a set of consistent criteria to determine when an item in the
product backlog is considered ’ready’, typically after regression testing. Determined
by the Scrum master with input from the stakeholders through the product owner.

9. Sprint Review is held at the end of each sprint. In this event, the team reviews the
completed work, and also the incomplete items on the sprint backlog.

10. Sprint Retrospective is for the team to review the sprint itself and the work done
in it. It aims for continual improvement of the process, and allows for reflection on
what was done well, and what needs improvement.

As any software project, a Scrum project starts with pre-planning and requirement
gathering. The requirements are either functional or non-functional, and may come in
as user stories, regulations, or other requested features that must be implemented in the
product. These items are added into the product backlog. One key point in Scrum is
to ‘deliver value to business’ as effectively as possible. In order to do so, the product
owner, as customer’s voice, prioritizes the items that are selected into each sprint’s
backlog at sprint planning event. This way it is at least theoretically possible, that after
a few sprints (or even one) the ‘potentially shippable product increment’ can already be
utilized despite some less important features being still under development. This way
the value can be realized earlier and, as a bonus, user feedback and bug reports can be
utilized to make the end product better. In each sprint, the developers pull items into
their own work flow from the sprint backlog, entitling the term ’self-organizing team’.

In addition to sprints, research and prototype work may be done in ‘spikes’. Similar
to sprints, spikes are time-boxed efforts to produce something that contributes towards a
completion of a complex backlog item or work as a proof of concept, without necessarily
aiming to complete the item and delivering shippable features.

During sprints, environmental and requirement changes can be taken flexibly into
account, in which case the product backlog is adjusted accordingly – typically the sprint
backlog remains unchanged. After each sprint the results of the work (the potentially
shippable product increment) is evaluated, the definition of done for the product backlog
items is verified. The definition of done is an important concept in Scrum, as it is the
only way items can be removed from the backlog.

SPLST'15

240



For measuring the progress of the project, agile methods utilize a number of tech-
niques. Probably the single most important technique is story points: product owner
prioritizes some items in the product backlog over others due to their business value,
and the developers evaluate them by the estimated development effort. The story points
are not directly translatable to work hours. To emphasize this, a non-linear scale such
as Fibonacci-like sequence is used. Sometimes the work estimates include an option
to declare items too complex to implement in the current sprint. Thus the story points
represent the team’s view of the required effort, subjective to their current skill set.

Scrum is an empiric method: it readily admits and submits to the fact that not
everything is known or understood, and that things will change. In security engineering,
defined methods would be preferred: a process is started and allowed to complete,
producing invariably the same results each time [20]. The waterfall model aims to this
goal, but by being excessively rigid, it introduces a very concrete risk of failure to
meet the stakeholder’s and environment’s changing requirements. Traditional old school
security engineers tend to scold the agile methods’ iterative approach as ‘trial-and-error’.
Despite this lack of acceptance, Scrum is far from unstructured: it just gives the team
more freedom in deciding the order in which the items are implemented, and possibility
to iterate on the initial requirements, much based on assumptions. At certain point
the definition of done criteria will be met, security compliance achieved and security
assurance provided. In the process of doing so, the quality of the produced software may
actually be higher than those made using sequential methods [17].

4 VAHTI instructions for application development

VAHTI instructions is a wide collection of governmental security regulations, published
by Finnish Governmental Steering Group for Information Security (Valtionhallinnon
tietoturvallisuuden johtoryhmä, VAHTI). First publications in the VAHTI collection
are dated 2001, and they exist to support the data security legislation and Finland’s
strategies for National Knowledge or Information Society1 and Information Security2.
The instructions for application development were published in 2013. Compliance with
VAHTI has been mandatory for state agencies, partners and suppliers since 2014.

VAHTI requirements for software development [9] consist of 120 individual re-
quirements, divided into 15 categories. The categories span the whole life cycle of the
application or information system, ranging from strategy and resourcing to the eventual
end of life and ramp-down of the system. Of this requirement set, only the ones most
relevant to the development process were selected for this study. The candidates for
inclusion were directly involved with either the tasks during development process, such
as security design, audits or reviews; candidates for exclusion considered organizational
issues, strategies, policies, method-independent techniques, IT environment, or issues
related to the post-development phases of the application’s life cycle such as continuity
management or system ramp-down. The result set comprises of 23 requirements consid-
ered to affect the development method directly. Table 1 shows the final selected VAHTI

1 http://www.tietoyhteiskuntaohjelma.fi/esittely/en_GB/introduction/index.html
2 http://www.lvm.fi/c/document_library/get_file?folderId=339549&name=DLFE-
10210.pdf&title=Julkaisuja%2051-2009

SPLST'15

241



requirement grouped by the security level. For each requirement, the expected frequency
of the task is projected, and the role(s) responsible or affected by the task are displayed.
The only requirement directly concerning the development method, SKM-001, states
that the development process itself is required to be a Secure Software Development
Life Cycle process. The method is to be documented, development personnel trained in
its use, utilized at all times, and comply with all the security requirements.

Table 1. VAHTI requirements for development method per security level

Code Requirement name Frequency Dev SM PO
OSK-001 Security Training 1 x x
OSK-008 Additional security training after change 0 or 1 x x
VTM-005 Application Risk Analysis 1 or more x x x
TST-002 Test Plan Review 1 x
VTM-008 Threat Modeling - recommended 1 x x
VTM-010 Threat Modeling updates - recommended 1 or more x x
ESI-001 Goal and Criticality Definition 1 x x x
ESI-002 Business Impact Analysis 1 x
VTM-001 Documentation of Security Solutions 1 x
VTM-006 App. Security Requirement Definition 1 or more x x x
TST-007 Security Auditing 1 x x x
TST-009 Security Testing - recommended Every-sprint x
KTY-002 Application Security Settings Definition 1 x x
TSK-001 Architecture and Development Guidelines 1 x x
SNT-004 External Interfaces Review 1 or more x x x
SNT-006 Attack Surface Recognition and Reduction Every-sprint x x x
VTM-009 Architectural Security Requirements 1 x x
SNT-016 Internal Communication Security - if applicable Every-sprint x x
TST-001 Security Test Cases Review 1 or more x x x
TST-004 Test Phase Code Review 1 x
TST-006 Use of Automated Testing Tools Every-sprint x
TST-008 Security Mechanism Review 1 x
TST-010 Development-time Auditing 1 x x x
Dev = Developers, SM = Scrum Master, PO = Product Owner

The included compliance requirementswere selected based on their effect to development-
time activities, and grouped into following categories:

1. Prerequisites
2. Documentation
3. Code, interface and test case reviews
4. Development-time and product audits
5. Security testing

VAHTI instructions define three security levels: basic, heightened, and high, each
with cumulative security requirements. In a Scrum project, the product owner will
specify the target level, preferably using tools specified in VAHTI instructions 3/2012

SPLST'15

242



‘Instructions for determining the security level of the technical ICT environment’ [1],
the state office’s own instructions, and any applicable legislation. In the next sections,
we go analyze each requirement, suggest a means to comply with it and then present the
whole VAHTI-compliant Scrum structure for all defined security levels. The security
levels are separated by horizontal lines: the first section covers the requirements for basic
level, and the heightened and high levels are below that, respectively.

Generic technical requirements, such as ‘the application design must follow secure
design patterns’, and architectural requirements, were considered external to the devel-
opment method. Also, while technology-specific training for the project personnel is
included, any organizational security awareness-type training and general risk manage-
ment activities were also considered to be out of a single development project. Also,
technical or programming technique specific requirements were excluded. These are
considered to be part of design patterns and individual developer’s proficiency and abil-
ity to recognize and utilize them. Moreover, they are depending on the characteristics of
the software under implementation. As an exception to the principle of doing only least
amount of work, the optional Threat Modeling tasks (VTM-008 and 010) were included
already to basic level - although they remain optional. For some reason, VAHTI does not
require threat modeling at all. At highest security level, this can be covered byAttack sur-
face recognition and reduction task (SNT-006), or even included in creation of secure
patterns and architecture (TSK-001, VTM-009). Similarly, a clearly implementation-
dependent requirement for Internal Communication Security (SNT-016) was included,
applicable in case of n-tier applications. It is conceivable that a vast majority of soft-
ware developed for the VAHTI high-security tier is deployed using a secure multi-tier
architecture (i.e., separate database, application, and web server components), so the
inclusion of this requirement was deemed necessary.

Majority of the tasks fall on the developers; it is conceivable that establishing a role
of dedicated security developer would benefit the team, allowing the developers to con-
centrate on their main vocation. Scrummaster, as the ‘servant-manager’, is also involved
in most tasks, albeit indirectly by facilitating the team’s work. The Scrum Master is
also directly involved in all modeling and planning tasks, reviews, and audits. Following
the agile philosophy, the product owner is engaged in development wherever deemed
beneficial: as customer’s and stakeholders’ representative, they have the best knowledge
of the software’s purpose, use and impact. In addition to the Business Impact Analysis,
which is direct input from the stakeholders via the product owner, they participate in
external interface and security testing definition tasks, as well as all the audits. These
are, after all, done to the customer’s benefit. In the next section, we execute these tasks
using Scrum.

5 VAHTI-Scrum

Scrum, as a flexible and relatively adaptable framework, defines only the very rudimen-
tary structure for software development. To achieve compliance with VAHTI, additions
and modifications are required to the requirement gathering, sprint planning and the
sprint structure themselves. Some security activities justify having a dedicated secu-
rity or ‘hardening’ sprints. These may prove especially useful just before auditions and

SPLST'15

243



planned releases, if the organization has decided to use those. It is also recommendable
to arrange a security sprint, ‘sprint zero’, before commencing the actual implementa-
tion; alternatively, some security work may be completed as security spikes. Spikes
could occur at any time - mainly in the early phases of the project, so they do not have
even approximate placement on the project time line. In similar fashion, the hardening
sprints may be inserted between the implementation sprints, to prepare for audits or just
enhance security. Especially on heightened and high levels the amount of security work
can be so big that a separate sprint is justified. It is important, though, that security
elements become integral part of all the team’s work: all tasks should include some
security considerations, at least in the form of risk analysis, just as all sprints contain
security tasks.
Figure 2 presents the modified Scrum process with the additional requirement sources,
roles, security related actions during the sprints and the artifact types produced by the
security processes.

1-4 weeks
No changes to 

goals

Product 
backlog 

refinement

Daily 
Scrum

Product Owner Scrum Master

Developers and 
Security Developer(s)

Product 
Backlog

Sprint 
Backlog

Potentially Shippable 
Product Increment

Sprint Review
with security

Retrospective
with security

Sprint

R
eq

uirem
en

ts

Security 
regulations

R
eq

u
ir

em
en

ts

Security
testing

Reviews
&

Audits

Review 
documentation

Audit 
reports

Security 
test 

reports

Technical 
security 

documentation

Training 
Certificates

Training 
Certificate

Training 
Certificate

Fig. 2. VAHTI compliant Scrum process

The modifications to standard Scrum are listed below:

– The security regulation, although working for the benefit of the stakeholders, is
considered a separate source of security requirements. The items, or tasks, added
by to the backlog by the regulation are:

1. Creating security-related documentation artefacts: application risk analysis,
threat models, security architecture, goal and criticality definition, business im-
pact analysis, security solutions documentation, application security require-
ments definition, security settings definition, and architecture and development
guidelines.

SPLST'15

244



2. Security training regarding the selected platforms and technologies, such as
operating systems, database engines, programming languages and frameworks.

3. Code, test case and interface reviews
4. Security testing
5. Development time and security audits

– There should be at least one dedicated security developer in the team, preferably the
same person nominated to be responsible for the organization’s software security.
This results in separation of duties, which enhances security by reducing the amount
of group think: also somebody else than the developers themselves should design
security tests, risk analyses, threat models and attack surface analysis.

– On heightened and high security levels, all sprints contain certain amount of specif-
ically security-related work and security testing.

– Audits are performed at a predetermined point in the project. These are set after
completing the corresponding items in the product backlog. The development-time
audits on the high security level are suggested to be held at control points, which in
agile projects map to product backlog items.

– The team/organization must have nominated a person responsible for the security.

This the following subsections provide a breakdown of security roles, tasks and
artefacts on each of the VAHTI security levels.

5.1 Roles

The roles in security-centric Scrum have certain modifications to the standard, plus a
new one: the security developer. In VAHTI-Scrum, the team has at least one person in
the role of security developer. While still a developer in the Scrum terminology, this
role is responsible for security reviews, security test cases and such. It may be beneficial
to have more than just the one security developer in a project. The Scrum Master will
need a substantial amount of security knowledge and practice, or at least they need to
be versatile in adapting to the changing security requirements. Security is an on-or-off
deal: there is no middle ground in testing or auditions, and ignoring security problems
cannot be considered a sustainable idea.

Similarly to the other roles, also the Product Owner has new responsibilities. As
the stakeholder’s representative, they need to be aware of the security regulations,
legislature, customs and other rules, in addition to the normal duties. Being a product
owner in a Scrum project may very well become a full-day job on the higher levels.

5.2 Tasks

For each task, we identify the role(s) responsible for its execution (see also Table 1), and
the artefacts produced by the task.

SPLST'15

245



Basic level

Security Training (OSK-001).
- The Scrum Master facilitates for (preferably certified) internal or external training and
participates when necessary. This is likely to be performed as a spike as it does not
directly contribute to the product increment.
Additional security training after change (OSK-008).
- The Scrum Master facilitates for internal or external training after the need has been
identified, and participates when necessary.
Application Risk Analysis (VTM-005).
- The team identifies the security concerns, and technology and environment specific
risks. Sources such as OWASP Top 103, Tsipenyuk et al. [18] or Howard et al. [11] in
addition to VAHTI’s own recommendations should be used to identify software risks.
The result of the analysis is used as input for threat modeling. Input mainly from the
developers, producing a risk analysis document.
Test Plan Review (TST-002)
- The person nominated to be responsible for the security reviews the test plan. The
produced review report is part of the security evidence to prove the software and process
is VAHTI compliant.
Threat Modeling (VTM-008)
- Although optional, it is recommended that a formal threat model is created based on
the application risk analysis. Done by the developers, results a threat model document.
Threat Modeling updates (VTM-010)
- Optional. When the requirements or environment changes and a new risk analysis is
performed, the threat model should be updated.

Heightened level

Goal and Criticality Definition (ESI-001)
- In practice the same requirement as Business Impact Analysis, although from the
VAHTI perspective and done by the whole team: the impact and business use of the
software is analyzed and its data confidentiality assessed. The resulting document is
used as input for security requirement definition.
Business Impact Analysis (ESI-002)
- Similar as above, but concentrates on the software’s criticality and impact on the cus-
tomer’s business. Analysis is provided mainly via the product owner.
Documentation of Security Solutions (VTM-001)
- Component level security documentation produced by the developers.
Application Security Requirement Definition (VTM-006)
- Security requirement uses the goal and criticality definition and risk analyses (op-
tionally, also threat models) as an input to define the security requirements. This is a
formalization of work that has already been done: the software is already determined
to belong to the heightened security level. Done by the whole team, involving also PO.

3 http://owasptop10.googlecode.com/files/OWASP%20Top%2010%20-%202013.pdf

SPLST'15

246



The resulting document is used as input for the maintenance phase.
Security Auditing (TST-007)
- Performed by an external and independent auditor, facilitated by the Scrum master.
Mandatory parts include automated penetration testing; administrative audit to verify
the software’s maintenance processes (post development phase - does not concern de-
velopment); architectural audit from security point of view.
Security Testing - recommended (TST-009)
- While a dedicated set of security tests is not mandatory, it is our recommendation
to perform such tests to help passing the security audit. Security test case review is
mandatory on the High security level. Inconsistently, actual security testing remains
non-mandatory in VAHTI!
Application Security Settings Definition (KTY-002)
- At the end of implementation and before deployment the software settings are docu-
mented and a maintenance guide with hardening instructions is written.

High level

Architecture and Development Guidelines (TSK-001)
- This is an organizational document that defines also some coding practices, such as
exception handling. If this document does not exist, it will have to be created before
security audit. Input from the organization’s developers and Scrum masters (if several)
can be done in e.g. Scrum of Scrums, a process of synchronizing the Scrums.
External Interfaces Review (SNT-004)
- The external interfaces of the software are reviewed against the architectural guidelines.
Input from the developers, review is facilitated by the Scrum master.
Attack Surface Recognition and Reduction (SNT-006)
- All attack vectors are to be identified and security mechanisms planned accordingly.
In practice just different approach to threat modeling; formalization of the work done at
architectural planning by the developers.
Architectural Security Requirements (VTM-009)
- Based on the attack surface recognition (and threat modeling), the architecture is
analyzed against recognized attack vectors by the developers.
Internal Communication Security – if applicable (SNT-016)
- The developers should be aware of the technical environment of the software for this
one. For example, if a web application uses separate database or application servers, the
communication interfaces must be hardened.
Security Test Cases Review (TST-001)
- Review the quality of the security test cases. The cases should be derived from other
documentation and their validity and comprehensiveness is verified (i.e., sanity-checked)
. Main responsible is with the security developer.
Test Phase Code Review (TST-004)
- Dubbed informal and performed by the person nominated to be responsible for security.
Review findings are documented. Developer task.
Use of Automated Testing Tools (TST-006)
- Partially organizational requirement, as acquiring the tools may cause administrative

SPLST'15

247



overhead. VAHTI specifically mentions e.g. fuzzers and code analyzers. This task is
performed by the developers; the Scrum master facilitates acquiring the tools.
Security Mechanism Review (TST-008)
- Code level review of securitymechanisms. Check list is to be derived from architectural
level documents and other relevant documentation produced during the VAHTI-Scrum
development process. Done by the developers and the security developer.
Development time Auditing (TST-010)
- One or more external audits to be performed at different phases of development.
VAHTI only states that the software’s security is to be audited, so it is to be agreed with
the stakeholders how to handle this. A good baseline would be architecture, interfaces,
security mechanisms and/or the review documentation. Involves all roles

5.3 Artifacts

Software security assurance is provided by evidence, and in most cases this means doc-
umentation: reports, plans, technical documents, memos and other document artifacts
considered relevant for security. VAHTI is not an exception to that, and pragmatically
speaking, producing the required artifacts fulfills the VAHTI Definition of Done. The se-
curity documentation reflects a significant part of work. However, the figurative security
burn down chart does not reach zero even when the last document has been finalized:
security tasks will remain a part of every sprint even after that.

The produced artifacts in a VAHTI-Scrum and their dependencies are outlined in
Figure 3.

Figure 3 is a matrix with the security levels on the x-axis and development phases
on the y-axis. Arrows indicate input; the document is a result of a process of the same
name. It should be noted that if the project is operating on high security level, the
Architectural and Development Guidelines document may and should be used as input
for other documentation. For clarity, the arrows do not cross the security level barriers
from higher level to a lower one. Items with dashed lines are optional, yet recommended.
On the bottom row, we have the external documents on higher levels: audition reports,
and input for the deployment and maintenance phases of the software’s life cycle.

6 Conclusions and future research

Software security and security regulation aim at a defined process, producing a mea-
surable, evidence-backed result. This result is called security assurance or security
compliance. In Finland, the state agencies have formalized their security requirements
into the form of collection of VAHTI instructions; these instructions also concern appli-
cation development. Standardized secure software developmentmethods have deep roots
in the waterfall era, but ‘agile’ is not the antithesis for defined processes or structured
way of working.

In our earlier work, we were interested about the adaptability of the agile methods
to the software development in general [16]: this study further utilized the findings and
analysis, and provided an example how and with what mechanisms the Scrum method
can be adapted to provide compliance with VAHTI instructions. This answers to our two

SPLST'15

248



Test phase 
code review 

report

Security test 
case review 

report

Security 
audit report

Architectural & 
development 

guidelines

External 
interface 

review report

Business 
Impact 

Analysis

Threat 
models

Security 
mechanism 

review report

Goal and 
criticality 
definition

Security
Test Plan

Application 
risk analysis

Documentation 
of security 
solutions

Training 
certificates

Security 
testing 
report

Application security 
settings definition 
for maintenance

Architecture security 
requirement analysis

Internal 
communication 
security review

Development-time 
audit report

Attack 
surface 
analysis

Basic Heightened High

In
it

ia
l

D
e

ve
lo

pm
e

nt
-t

im
e

Ex
te

rn
al

Fig. 3. VAHTI documentation artifacts

first guiding research questions. The Definition of Done in security context is twofold:
the formal requirements may be fulfilled, and contribute to the actual DOD; security
may be considered ‘done’ only when the project finishes - or, even when the software
life cycle ends.

Naturally, this study has limitations. The presented model is based on a conceptual-
analytical approach and it has not been empirically evaluated. While we have carefully
addressed the two studied concepts and created the new model based these results, it
is possible that some of the proposed modifications can be improved. Thus, further
work is needed to validate and verify the model with, e.g., a case study conducted in an
university’ course with students or in an industrial setting.

The research field offers several complex and interesting opportunities for future
study:whilewe presented amethod to fulfillVAHTI’s requirementwith agile approach, it
would be fruitful to understand how industry is currently working with the requirements.
A qualitative case study with selected companies is planned to help identify the best
practices and methods to use.

Furthermore, benefits and drawbacks introduced to security and safety development
by agile methods should be studied. While in a quick glance, it seems that agility in
development and security of the product are competing objects that cannot be easily
achieved in the same project, an analysis of advantages and disadvantages of using agile
in secure software development should be performed. This would, furthermore, bring
an answer to the question, what are the reasons to adopt agile in the an environment
which is not the best for it?

SPLST'15

249



References

1. Teknisen ympäristön tietoturvataso-ohje, https://www.vahtiohje.fi/web/guest/3/2012-
teknisen-ympariston-tietoturvataso-ohje, ref. 18th August 2015

2. Cmmi for development, version 1.3 (2010), http://www.sei.cmu.edu/reports/10tr033.pdf, ref.
18th August 2015

3. Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M.,
Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin, R.C., Merllor,
S., Schwaber, K., Sutherland, J., Thomas, D.: Manifesto for agile software development
(2001)

4. BSIMM: The Building Security In Maturity Model, ref. 2015.08.20
5. De Win, B., Vanhaute, B., De Decker, B.: Security through aspect-oriented programming.

In: De Decker, B., Piessens, F., Smits, J., Van Herreweghen, E. (eds.) Advances in Network
and Distributed Systems Security, IFIP International Federation for Information Processing,
vol. 78, pp. 125–138. Springer US (2002), http://dx.doi.org/10.1007/0-306-46958-8_9

6. Deemer, P., Benefield, G., Larman, C., Vodde, B.: The Scrum Primer: The ligthweight guide
to the theory and practice of Scrum. InfoQ, version 2.0 edn. (2012)

7. Diaz, J., Garbajosa, J., Calvo-Manzano, J.: Mapping cmmi level 2 to scrum practices: An
experience report. In: O’Connor, R., Baddoo, N., Cuadrago Gallego, J., Rejas Muslera,
R., Smolander, K., Messnarz, R. (eds.) Software Process Improvement, Communications in
Computer and Information Science, vol. 42, pp. 93–104. Springer Berlin Heidelberg (2009),
http://dx.doi.org/10.1007/978-3-642-04133-4_8

8. Fitzgerald, B., Stol, K.J., O’Sullivan, R., O’Brien, D.: Scaling agile methods to regulated
environments: An industry case study. In: Proceedings of the 2013 International Conference
on Software Engineering. pp. 863–872. ICSE ’13 (2013)

9. FMoF: Sovelluskehityksen tietoturvaohje (2013), https://www.vahtiohje.fi/web/guest/vahti-
1/2013-sovelluskehityksen-tietoturvaohje, ref. 17th March 2015

10. FMoF: Vahti-ohje (2015), http://www.vahtiohje.fi, http://www.vahtiohje.fi, Referenced 17th
March 2015

11. Howard, M., LeBlanc, D., Viega, J.: 19 Deadly Sins of Software Security. McGraw-Hill, Inc.,
New York, NY, USA, 1 edn. (2006)

12. ISO/IEC: Information Technology - Security Techniques - Systems Security Engineering -
Capability Maturity Model (SSE-CMM) iso/IEC 21817:2008

13. Järvinen, P.: Research questions guiding selection of an appropriate researchmethod. Series of
Publications D – Net Publications D–2004–5, Department of Computer Sciences, University
of Tampere, Tampere, Finland (December 2004)

14. Microsoft: Microsoft Security Development Lifecycle. Microsoft (2012)
15. Pietikäinen, P., Röning, J.e.: Handbook of The Secure Agile Software Development Life

Cycle. University of Oulu (2014)
16. Rindell, K., Hyrynsalmi, S., Leppänen, V.: A comparison of security assurance support of

agile software development methods. In: Proceedings of the 16th International Conference
on Computer Systems and Technologies. p. TBA. ACM (2015)

17. Solinski, A., Petersen, K.: Prioritizing agile benefits and limitations in relation to practice us-
age. Software Quality Journal pp. 1–36 (2014), http://dx.doi.org/10.1007/s11219-014-9253-3

18. Tsipenyuk, K., Chess, B., McGraw, G.: Seven pernicious kingdoms: a taxonomy of software
security errors. Security Privacy, IEEE 3(6), 81–84 (Nov 2005)

19. VersionOne: 8th annual state of agile survey (2013), http://www.versionone.com/pdf/2013-
state-of-agile-survey.pdf, Referenced 17th August 2015

20. Williams, L., Cockburn, A.: Agile software development: it’s about feedback and change.
Computer 36(6), 39–43 (June 2003)

SPLST'15

250


	splst15_proceedings_paperit_headerilla
	9999990236


