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Abstract This paper describes the methodology used for ECMLPKDD 

2015 Discovery Challenge on Model Reuse with Bike Rental Station Data 

(MoReBikeS). The challenge was to predict the number of bikes in the new 

stations three hours in advance. Initially, the data for the first 25 new 

stations (station 201 to 225) was provided and various prediction methods 

were utilized on these test stations and the results were updated every week. 

Then the full test data for the remaining 50 stations (station 226 to 275) was 

given and the prediction was made using the best method obtained from the 

small test challenge. Several methods like Ordinary Least Squares, Poisson 

Regression, and Zero Inflated Poisson Regression were tried. But reusing 

the linear models learnt from the old stations (station 1 to 200) with lowest 

mean absolute error proved to be the simple and effective solution. 

 

 

1   Introduction  

Majority of the knowledge intensive application areas have a high chance of 

operating context variation. The reuse of the learnt knowledge might play a 

critical importance in generalizing the notion of the operating context. In this 

ECMLPKDD 2015 Discovery Challenge, the bike rental stations located in 

Valencia are considered. The objective is to predict the number of bikes available 

in each new stations (Station 201 to 275) three hours in advance. There are at least 

two use cases given for such predictions [1]. First, a user plans to rent (or return) 

a bike in 3 hour time and wants to choose a bike station which is not empty (or 

full). Second, the company wants to avoid situations where a station is empty or 

full and therefore needs to move bikes between stations. The data set consisted of 

all the necessary details like location, time, weather and profile of bike availability 

for model building and prediction. 

2   Methodology 

In order to make a successful prediction, the information about the current status 

in the station, the weather condition and the time period at which the stations 

would be empty or full were considered along with the profile of bike availability 

in each station which was learnt from the historical information. This is because 

the quality of the prediction can be the increased by collecting more historical 

information. Considering all the above given information, various methods like 

Ordinary Least Squares, Poisson Regression and Zero Inflated Poisson 

Regression were tried.  



Apart from the above information, the linear models developed for old stations 

(station 1 to 200) based on the training dataset and their respective MAE values 

were available. After trying out various methods for prediction, the idea of reusing 

these models learnt from the old stations (station 1 to 200) to predict the number 

of bikes in the new stations (station 201 to 275) provided the best solution based 

on the MAE value. The selection of best models for the new stations and 

prediction of results is discussed in this section. 

2.1   Model Extraction and Prediction 

There were 7 base models available and in addition to that, 6 trained models were 

provided for each of the 200 old stations. As the deployment data for stations 201 

to 275 was given, all the given linear models were utilized for predicting the 

number of bikes in each of the stations 201 to 275. The model with less Mean 

Absolute Error (MAE) was selected as the best model for a particular station. This 

process continued for selecting the best model for all the new stations (201 to 

275).  

In some cases, the prediction results were negative or it exceeded the maximum 

limit of the bikes that can be accommodated in a station. To overcome this 

problem, a constraint was added in such a way that whenever the result is negative, 

the predicted value is reset to zero and whenever the result exceeded the maximum 

limit, the value is reset to the number of docks at that station. So, this helped in 

reducing the MAE value further. Also, in some stations, the extraction algorithm 

came up with two or more models with the same MAE values. In those cases, only 

the first model was selected. 

After the extraction algorithm selected the best models for each of the new 

stations based on the given criteria, the number of bikes in each station for the 

leaderboard data set were predicted using the extracted models. The same set of 

constraints were applied to avoid negative values and over fitting during 

prediction. The R software was used for model extraction and prediction. The 

MAE values for the small test challenge using this strategy was 2.502 and the 

MAE values for the full test challenge turned out to be 2.067.  

3   Other Methods Tried For Prediction 

Initially, before reusing the given linear models, new models were built with the 

deployment data for the stations 201 to 275. The different approaches used for 

building the models and their results are discussed in this section. The Minitab 

and R software is used for this purpose. As the test statistics and graphs for all 

stations cannot be included in this paper, a sample station data is chosen for 

illustration and understanding. Similar procedures were adopted in building 

models for all the other stations.  

3.1   Ordinary Least Squares Method 

After cleaning the given dataset, the first model was built using all the regressors 

under consideration. A thorough analysis of this full model, including residual 

analysis and multicollinearity check was done. Also, the scatter plot was used to 

study the relationship between the regressor and response variable. From the 

model summary, there was severe collinearity problem between the regressors. 

Also, the test statistics showed that only few variables significantly contributed to 

the model. The scatter plot of those variables is shown in Figure 1. The variable 



‘y’ denotes the number of bikes. The variables x20, x21, x23 and x16 denotes 

bikes 3 hours ago, full profile bikes, short profile bikes and temperature 

respectively. The coefficient of determination value was not satisfactory and the 

PRESS (prediction sum of squares) statistic was large, making the model doubtful 

for prediction purposes. 

 

 

Fig.1. Scatter plot for the initial model 

The residual plot for the initial full model is shown in Figure 2. The normal 

probability plot shows some deviations at the upper and lower tails. This might 

be due to the reason of existence of many zeroes in the response variable. The 

residual plot (deleted residuals versus the fitted values) shows a significant double 

bow pattern, violating the assumption of constant variance. Also, there are some 

outliers noticed from the residual versus observation plot.  

 

 

Fig.2. Residual plot of initial full model 

To explore about the outliers, the values of ordinary residuals, studentized 

residuals, leverage (HI1), Cook’s distance, DFFIT were collected. Though some 

outliers were observed, no influential points were noticed which was confirmed 

from the cook’s distance. Since the reason for the unusual observations were not 

explicit, these observations were not removed and included for modelling.  

In order to identify the regressors that were contributing to the model, the 

subset regression was done. The Mallows Cp and R-squared values were used in 

determining the best set of regressors. Care was taken to choose less number of 

regressors with low Cp and high R-squared value. Also, the stepwise regression, 

forward selection, backward elimination techniques were used. The alpha values 

for entering and removing the variables were set at 0.1 and 0.2 respectively. 

Finally, the regressors that significantly contributed to the model were identified. 



After selecting the best subset of regressors, the analysis was carried out once 

again. The multicollinearity problem disappeared which was confirmed from the 

Variance Inflation Factor (VIF) values (less than 5). The PRESS statistic showed 

drastic improvement. Also, the significance of the regressors was examined.  

The residual plot for subset regression is shown in Figure 3. Though the model 

improved slightly, there is a problem with normality assumption. The residual plot 

does not show any improvement as the double bow pattern still exists. This 

strongly suggested a need for variance stabilizing transformation of the variables 

along with the addition of polynomial and interaction terms for further 

improvement.  

 

 

Fig.3. Residual plot of subset regression 

All the possible sets of transformations (from square root to inverse) were tried 

on the response and regressor variables. Also, the models with polynomial terms 

and interaction terms were built. Finally, the logarithmic transformation of the 

regressor variables was tried and regressed against the response. This logarithmic 

transformation was a good choice for the model since the data involved historical 

information.  

The ANOVA table provided all the necessary test statistics. The regressors that 

contributed significantly to the model were identified. There was an evidence of 

lack of fit for some models but it did not affect much. The PRESS statistic was 

low but the R-squared value dropped further. There were no traces of 

multicollinearity and the model seemed perfect. 

The residual plot for final model is shown in Figure 4. The normal probability 

plot still needs some improvement but the variance is much stabilized. There is 

no pattern evident from the residual plot.  

 

 

Fig.4. Residual plot of final model 



3.2   Poisson Regression  

In order to improve the model further and make it useful for prediction, the 

Poisson Regression was tried. The reason for choosing Poisson regression was 

that the response variable involved counting the number of bikes, which was 

discrete. The log link was particularly attractive for Poisson regression as it 

ensured that all of the predicted values of the response variable will be 

nonnegative.  

The initial full model was fitted with Poisson regression. This model seemed 

to be good when compared to the final model built using the ordinary least square 

method. There were some regressors which were not significant, noticed after 

examining the test statistic and also their regression coefficients were negligible.   

The Poisson regression along with the stepwise selection of regressors was 

done in order to obtain the best subset of regressors. The final set of regressors 

seemed to be almost the same as in case of ordinary least squares method. The 

test statistic summary was used to understand the significance of regressors. The 

R-squared value improved slightly for this initial model. The Akaike Information 

Criteria (AIC) was also high, which denoted the expected entropy of the model 

was maximum. The key insight provided by the AIC value is similar to R-squared 

adjust and Mallows Cp. The multicollinearity problem was studied from the VIF 

values. The standard residuals, studentized residuals, cook’s distance, leverage 

values were examined 

The Goodness of fit test provided the value of deviance with its significance. 

The ratio of deviance to the degree of freedom value was near to unity. The 

Pearson chi squared test value was also small with larger p-value indicating that 

the fit was significant. Also, the partial deviance test indicated that all the selected 

regressors were significant to the model. 

The residual plot for the Poisson regression is shown in Figure 5. The upper 

tail of the normal probability plot seems to be good but there is some problem 

with the lower tail. Also, the assumption of constant variance is violated, observed 

from the plot of deleted residuals versus fitted values. There is a nonlinear pattern 

observed in this plot indicating a need for transformation and higher order terms. 

  

 

Fig.5. Residual plot for initial model of Poisson Regression 

Various transformations were tried out and the final combination of variables 

was found. The natural log link function was used and the logarithmic 

transformation of the regressors proved to be good. All the test statistics were 

examined once again. Finally a better model when compared to all the previous 

models was obtained.  

The deviance table provided all the necessary test statistic. There were no 

traces of lack of fit. The error values were low and no traces of multicollinearity 



was observed from VIF values. The Confidence Interval limits were shrunken, 

which was good. The R-squared value was good and the model seemed to be 

perfect. The residual plot for the transformed model is shown in Figure 6. 

 

 

Fig.6. Residual plot after transformation 

The upper tail of the normal probability plot is good but there is still a problem 

at the lower tail. But the assumption of constant variance is satisfied as observed 

from the plot of deleted residuals versus fitted values. The values of the residuals 

are distributed within a range of 4 (+2 to -2). There is no pattern observed from 

the plot and the model has improved a lot when compared to the previous models.  

Only thing that troubled much is the lower tail of the normal probability plot. 

The presence of excess zeroes in the response than usual observations could have 

resulted in larger residuals in the prediction. The existence of these excess zeroes 

also caused trouble in fitting the model. So, in order to overcome this problem, 

Zero Inflated Poisson Regression was tried. 

3.3   Zero Inflated Poisson Regression  

As there were excess of zeroes when examining the response data, there arose a 

doubt that some of the zeroes might be inflated. So, in order to solve this problem, 

the Zero Inflated Poisson Regression was tried. The glm2, ggplot and pscl 

packages were used for zero inflated poisson regression in R software. Finally 

two models were generated, one for the count model and other for the inflated 

zeroes.  

The best subset of regressors were selected and the model was built and 

analyzed. The pearson residual was low. The R-squared value was similar to 

poisson regression and also prediction sum of squares statistic was small relative 

to the other methods. Apart from that, the log likelihood values were large enough 

with good significance, indicating that one or more of the regressors in the subset 

contributed significantly to the model. There was no evidence of lack of fit and 

multicollinearity.  The count model seemed to fit the data well. From the zero 

inflated model, the various factors that contributed towards inflation of zeroes 

were identified.  

The normal probability plot (Q-Q plot) and the residual plot was studied. The 

normal probability plot improved further when compared to the previous methods. 

The residual plot did not have any problem apart from some outliers as shown in 

Figure 7. 

 



 

Fig.7. Deviance Residual plot of initial model 

To improve the model further, transformation of the variables was done and 

the results of the transformed model was studied. The results obtained after the 

transformation and addition of interaction terms improved the model further. All 

the test statistics similar to the poisson regression model were checked. The 

normal probability plot and the residual plot is shown in Figures 8 and 9 

respectively. The Zero Inflated Poisson model had only less number of terms and 

found to fit the given data well. The validation of regression models is discussed 

in the next section. 

 

 

Fig.8. Normal probability plot of the transformed model 



 

Fig.9. Deviance Residual plot of the transformed model 

4   Validation of Regression Models 

After the final model is built, it has to be validated to check whether the model is 

adequate for prediction. Model validation is directed towards determining if the 

model will function successfully in its intended operating environment.  

Initially the new models were built based on the deployment data for the month 

of October 2014. As the data for the next month was not available, data splitting 

technique was used for validation. But the prediction capability of the model for 

November 2014 was still doubtful by this method of validation. Also, the results 

of the small test challenge were not satisfactory. 

So, the validation approach was modified. As the training dataset for the 

stations 1 to 10 were provided, the above mentioned model building approaches 

were tried on the training dataset for October 2013 and MAE values were 

calculated by predicting the bikes for November 2013. This method of validation 

seemed to be a good approach and it revealed some interesting facts. The model 

without transformation and addition of interaction terms had low MAE values 

when compared to a model with many terms. The model with large number of 

terms fitted the given data well but in case of prediction it was overfitting the data. 

Also, the leaderboard results of the small test data supported this claim. The MAE 

values for the prediction using models from OLS method, Poisson Regression and 

Zero Inflated Poisson Regression were 2.724, 3.068 and 2.774 respectively. The 

MAE value for the models with transformation and interaction terms was larger 

than the baseline value of 3.288. So the models built by transforming the 

regressors and adding interaction terms did not work well for predicting the bikes 

in this challenge. 

Even though these methods worked well, their MAE values were still larger 

than the MAE values obtained from reusing the old models, which was 2.502. So, 

reusing the models seemed to provide better results as they were obtained from 

the training data sets of the stations. So, this method was selected to predict the 

number of bikes in the full test data.  

 

 



5   Results and Discussions 

Finally, the idea of reusing the linear models built from the old stations was better 

than building new models for the given deployment data. This was obvious 

because, the old models were obtained from the training dataset with data 

collected over two years, but the deployment data was just for a month.  

Though R-squared values increased after transforming the regressors and 

including interaction terms, the model was not suitable for prediction, which can 

be confirmed from the MAE values of small test challenge. As the number of 

terms increased, there was a risk of overfitting. The model with simpler terms 

worked well for this challenge. Also, the models built using the training data 

predicted the results better than the newly built models with limited data. This 

indicated that the models should be robust in order to account for variations in the 

data. Even though the models were built for some other stations, they seem to 

predict well for new stations than the models built using only the deployment data 

of new stations. Also, a good validation approach should be used for choosing the 

best models.   

One more approach that seemed to work was modelling of error values. This 

was carried out in order to reduce further variation in the selected model. This was 

done by collecting the error values from fitting each new station data by reusing 

the models from old stations. These error values were treated as response variable 

and regressed against the new station variables to build a model. Now, the model 

selected from the old stations along with the model created from the error values 

were combined to form a new model for the station. In addition to this, Lasso 

Regression was tried but these methods were not included for predicting the full 

test set in this challenge. Also, rounding the values affected the MAE values. In 

most cases, the MAE values decreased after rounding the results. But, for some 

cases, rounding the values did not have much effect.  

Thus, it is understood that the reuse of the learnt knowledge can play a critical 

importance in generalizing the notion of the operating context. 
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