
Defining a UML Profile for Web–based Educational Applications

Andreas Papasalouros
National Technical University of Athens

Software Engineering Laboratory
9 Heroon Polytechneiou, 15780, Zografou, Greece

andpapas@softlab.ntua.gr

Symeon Retalis
University of Piraeus

80 Karaoli & Dimitriou,
18534, Piraeus, Greece

retal@unipi.gr

Abstract

This paper presents a UML profile for web–based educa-
tional applications. The definition of the profile is provided
by applying a certain formalism which is based on the meta-
modeling architecture of the UML language. An example is
given throughout the paper for the illustration of an instan-
tiated model based on the profile.

1. Introduction

The World Wide Web is becoming the basis of ubiqui-
tous, learner–centered learning. Time and space indepen-
dence and the ability for multiple representations of learn-
ing material due to enhanced multimedia presentation capa-
bilities are among the characteristics of the Web that enforce
its potential as a medium for education and training.

Web–based Educational Applications (WEA) are impor-
tant components for web–based learning. By the term ‘edu-
cational application’ we mean properly structured and pre-
sented hypermedia material composed of educational re-
sources and delivered through the web. The presentation
of these resources is usually performed by specialized run-
time environments, web applications or integrated systems
for the support of learning through the web called Learning
Management Systems. An trivial case of an educational ap-
plication is an electronic book containing resources as web
pages with educational content. The delivery of resource
can be static or dynamic, that is, adapted to the user in-
teraction with the application, though the latter case is not
considered in this paper.

The development of WEA is a complex task. It involves
people with different background such as software devel-
opers, web application experts, content developers, domain
experts, instructional designers, etc. Furthermore, WEA are
complex dynamic web–based applications with presenta-
tional, behavioral, architectural aspects. In order to effec-
tively capture and specify the various aspects of a WEA, to

document the decisions concerning various aspects of such
applications, from the implementation of pedagogic and
instructional design to subtle technical decisions of such
applications and to facilitate the communication between
the members of usually heterogeneous development teams
there is a need for a design model. Experience from tradi-
tional software engineering has shown that the adoption use
of such a model in the context of a systematic process for
the development is beneficial for the quality of the product,
namely educational applications and the efficient manage-
ment of the resources, time and effort. Thus, a number of
modeling approaches for web–based applications have been
proposed, e.g. OOHDM [11], RMM [4], WebML [2]. Fur-
thermore, specific models for educational applications exist.
EML [5], which has evolved to the Learning Design speci-
fication [3] proposes a modeling formalism for educational
environments. EML does not aim to support the design but
rather to provide a conceptual framework for the description
of educational settings as a set of “units of study”. LMML
[12] is another modeling language for educational content,
which can be used for design in this domain.

This paper presents a formal definition of a modeling
language for design models for WEA. This language is de-
fined as a sub–set, i.e. a profile of the Unified Modeling
Language (UML), a de facto standard for the modeling of
software systems. It focuses on the formalism used for the
definition of this new modeling language and not in the lan-
guage itself, which is described elsewhere [10]. The pur-
pose of the paper is to provide an overview and not a full
specification of this language. The structure of the paper is
as follows: In the next section a discussion of UML profil-
ing and the approach adopted for defining this profile is pre-
sented. Next, the modeling language for WEA is described
together with the definition of the profile for this language.
The paper ends with a discussion of the consequences of
formal modeling and some extensions of this work.

2. UML metamodels and profiles

The proposed modeling language is based on the UML.
It is an extension of the UML by introducing new modeling
elements and specified as a UML Profile. According to the
UML specification a UML profile is “a coherent set of ex-
tensions, defined for specific purposes” [9]. More generally,
profiling is the customization of a general purpose technol-
ogy for a particular domain [6]. This is a process involving
the elicitation of relevant only elements of the generic tech-
nology and the extension of the semantics of these elements
towards the particular domain of application. In this way,
the generic technology becomes more efficient and easy to
apply.

The UML is a visual language. The definition of the lan-
guage itself is based on a ‘Four–Layer Metamodel Archi-
tecture’ [9]. According to this approach, the definition of
the language is structured in four layers: Meta–metamodel,
metamodel, model and user objects. Each layer acts as a
meta–language for the definition of the next layer. From
another perspective, each layer is aninstanceof the previ-
ous one.

• The meta–metamodel layer provides the abstract con-
structs for the definition of the metamodel layer, e.g.
MetaClasses, MetaAttributes, MetaOperations, etc.
The definition of this layer is based on the Meta–
Object Facility (MOF) [7] which is a specification for
the definition and interchange of metamodels.

• The metamodel layer provides a language for specify-
ing actual models. Examples of metamodel elements
are Classes, Attributes, Operations, etc. Metamodel
elements are represented as (meta) classes. The meta-
model contains a set of UML class diagrams which
contain metaclasses connected with association and
generalisation relationships. Furthermore, for the def-
inition of valid models additional rules and constraints
must be provided. These rules and constraints are ap-
plied as “well–formedness” rules, which are also part
of the UML metamodel. These rules are expressed in a
Object Constraint Language (OCL) [13], which is also
part of the UML specification, and, in few occasions,
in natural language.

• The model layer contains instances of the modeling el-
ements of the metamodel which are actually models of
a particular application or domain, for example a class
Course belongs to the model of a learning system and
it is an instance of the Class element of the metamodel
layer.

• Finally, the user objects layer defines specific informa-
tion for the application domain into consideration, for
example the particular state of a Course class instance.

Our purpose is to define a language for describing mod-
els for the application domain of web-based educational ap-
plications. The structure of these models and the concepts
in use are designated by the application domain under con-
sideration. As mentioned above, this language is defined
by means of a UML profile. The establishment of a UML
profile is provided by extending the metamodel layer in the
four–layered architecture. This extension is provided by us-
ing the standard extension mechanisms of UML, namely
stereotypes, tagged values and constraints. The basic ex-
tension mechanism, stereotypes, extends the existing UML
elements, belonging to the metamodel layer, thus widening
the vocabulary of the language. However, the mere defini-
tion of the UML extension mechanisms mentioned before
does not provide a complete Profile, adequate for model-
ing a new domain by capturing both its concepts and their
relationships in a consistent and meaningful manner. The
approach that we follow for defining a profile for WEA is
based on the UML Profile for CORBA Specification [8].
According to the latter, a profile consists of the following:

• The extension of a subset of the UML metamodel with
new stereotypes and the assignment of these stereo-
types to existing UML (metamodel) elements. This
constitutes a “Virtual Metamodel”.

• The definition of additional of well–formedness rules,
beyond these defined in the UML metamodel, for the
new modeling elements. These rules impose additional
constraints to the new elements so as to express the re-
quirements of the particular domain. These rules refine
and do not contradict with the rules that apply to their
base metamodel elements, so as not to alter their se-
mantics.

• The specification of the semantics of the model in nat-
ural language.

The well-formedness rules for the elements of the pro-
file are defined as constraints expressed in the OCL and,
in few occasions, in natural language. OCL is a language
for the expression of constraints in UML model elements.
As mentioned before, new constraints are defined for the
new elements defined in the profile. The well–formedness
rules expressed using OCL invariants. An invariant expres-
sion applies to a particularcontext. The context in which
an invariant condition applies is denoted by the following
expression which is in the start of every invariant:

context [Element Name] inv:

where[Element Name] is the name of the element
under consideration to which the invariant applies. In
order to define these rules proper OCL operations are

2

needed. The operations used are OCL ‘built–in’ opera-
tions, operations defined in specification documents such
as [9] and [8] or new operations defined for the purpose
of defining the profile. These operations are presented
next. The OCL expressions which define these opera-
tions are referring to the UML Relationships metamodel.
The aggregatedClasses operation returns the set of
classes (classifiers in the UML metamodel more generic ter-
minology) that are connected with the class under consider-
ation through composite aggregation associations:

aggregatedClasses: Set(Classifier)
aggregatedClasses =

self.associations->
select(a | a.connection->

select (ae |
ae.participant = self

and
ae.aggregation =

#composite))->
collect (ae |

ae.connection->
select(ae |

ae.participant <> self)->
collect(p |

p.participant)).asSet

The aggregateClasses operation returns a set of
Classes that are at the opposite side of aggregation asso-
ciations, i.e. they contain the particular class:

aggregateClasses: Set(Classifier)
aggregateClasses =

self.associations->
select(a | a.connection->

select (ae |
ae.participant = self))->

collect (ae |
ae.connection->

select(ae |
ae.participant <> self

and
ae.aggregation =

#composite))->
collect(p |

p.participant)).asSet

3. Description of the profile for WEA

In the next sections the following sub-models are defined
as UML Packages: Conceptual Model, Navigation Model
and User Interface Model.

3.1. The Conceptual Model

The Conceptual Model captures design decisions during
Instructional Design. These decisions are described as a
hierarchy of learning activity and associated resources. An
example of such a model is illustrated in Figure 1.

TagsExcercise
<<Resource>>

- url = Content/example05.html
- mime-type = text/html

theory02
<<Resource>>

- url = Content/theory02.html
- mime-type = text/html

HTML Excercise
<<Activity>>

- title = An examle of HTML tags
- type = Excercise

<<assocResource>>

HTMLStructureTheory
<<Activity>>

title = HTML Structure and Syntax Description
type = Information

HTML Structure
<<Composite Activity>>

- title = Structure and Syntax of HTML
- type = Information

HTML Lessons
<<Courseware>>

- title = Introduction to Web Technologies

Internet
- title = Internet Basics
- type = Information

<<Activity>>

<<assocResource>>

Internet - WWW
<<Composite Activity>>

title = Internet and WWW Introduction
type = Information

WWW
- title = WWW Basics
- type = Information

<<Activity>>

Figure 1. Example of a Conceptual Model

The virtual metamodel for the conceptual model is
shown in Figure 2. In this figure the Conceptual Model
is shown as a class with stereotype namedstereotype .
This (meta)class is connected with a dependency relation-
ship with stereotypebaseElement with a base class
namedModelManagement::Model . This configura-
tion denotes the fact that the element Conceptual Model
‘instantiates’ the element Model of the UML metamodel,
i.e. it is a Model extended by stereotyping. The pre-
fix ModelManagement states the fact that the meta-
class Model belongs to the ModelManagement pack-
age of the UML metamodel. Figure 3 shows the el-
ements of the Conceptual Model, namelyActivity ,
Composite Activity , and Resource , which are
stereotyped classes.Abstract Activity is a generic
type of activity defined as an abstract metaclass, which
means thatAbstract Activity does not appear as a
modeling element. The subclassing mechanism is used for
organisation purposes. Rules and constraints applied to su-
perclasses are inherited to the subclasses, unless overrid-
den by new rules applied to the descendant classes. Com-
posite activities contain other activities by connecting with
them with aggregate associations. In this way, hierarchies
of activities are defined in the Conceptual Model. A special
type of composite activity with stereotypeCourseware

3

is the root in the activity hierarchy. In addition, atomic
activities are related with one or more Resources with
AssocResource associations (See Figure 4).

ModelManagement::Model

ConceptualModel
<<stereotype>>

<<baseElement>>

Figure 2. Conceptual Virtual Metamodel

Core::Class

Abstract Activity
<<stereotype>>

<<baseElement>>

Resource
<<stereotype>>

<<baseElement>>

Activity
<<stereotype>>

Courseware
<<stereotype>>

Composite Activity
<<stereotype>>

Figure 3. Conceptual Model Classes Virtual
Metamodel

• The Conceptual Model contains only Activity and Re-
source classes

context ConceptualModel inv:
self.ownedElement->forAll(e |

e.oclIsKindOf(Class)
implies (

e.isStereokinded("AbstractActivity")
or

e.isStereokinded("Resource"))

• Abstract Activities have anameand atype attribute.

Core::Association

AssocResource
<<stereotype>>

<<baseElement>>

Figure 4. Conceptual Model Associations Vir-
tual Metamodel

context AbstractActivity inv:
self.features->

select(a |
a.oclIsKindOf(Attribute)
and
a.name = ’name’).

size = 1
and
self.features->

select(a |
a.oclIsKindOf(Attribute)
and
a.name=’type’).

size = 1

• A Resource has amime-type and aurl attribute.
The expression for this constraint is syntactically sim-
ilar to the above and it is omitted.

• Composite Activities are associated (through aggrega-
tion associations) with activities, either atomic either
composite.

context CompositeActivity inv:
self.aggregatedClasses->forAll(c |

c.isStereokinded("AbstractActivity"))

• Atomic activities do not contain other classes through
aggregation associations.

context Activity inv:
self.aggregatedClasses.isEmpty

• A Courseware is not contained by any other classes
through aggregation associations.

context Courseware inv:
self.aggregateClasses.isEmpty

4

• AssocResource associations connect one
Resource stereotyped class with aConcept
stereotyped class.

context AssocResource inv:
self.connection.size = 2
and
self.connection.participant->

exists(c |
c.isStereokinded("Activity"))

and
exists(c |
c.isStereokinded("Resource"))

3.2. Navigation Model

The Navigation Model captures the design decisions
concerning the definition of the actual web pages of the
learning content, as well as the links that facilitate the navi-
gation through these pages.

Internet
<<Node>>

- title = Introduction to Internet
WWW

<<Node>>

- title = Introduction tthe WWW

InternetWWW
<<Composite Node>>

- title = Internet and WWW

HTMLStructure
<<Node>>

- title = Structure of HTML documents

HTMLLessons
<<Content>>

- title = Educational Content on HTML

Figure 5. Example of a Navigation Structure
Model

The navigation model is separated with two sub-models:
The Navigation Structure Model deals with the definition
of the actual web pages, the links that facilitate navigation
as well as the definition of the actual content of these pages.
The Navigation Behavior Model defines the dynamic, adap-
tive behavior of the WEA. In this version of the profile
deals with static applications only so the Behavior Model
is not considered. The Navigation Structure Model de-
fines the (static) navigation structure of a WEA by means
of the following elements:Content , which is a top-level
container,Composite Node , which is a composite ele-
ments containing other elements, such as a chapter in an
electronic book,Nodes , which are the actual web pages.

Again,Abstract Node is an abstraction of a composite
or atomic Node. The structure of the nodes is hierarchi-
cal, as the Conceptual Model. In addition,Link elements
can connect nodes of the navigation model. Note that these
links are associative links that define arbitrary navigation
between nodes of the educational hypertext. Besides these,
implicit structural links exist. These links denote the tran-
sitions to the previous or next node in the traversal of the
hierarchical structure of nodes or the selection of a certain
node. The presentation of these links is supported by the
run–time system which delivers the educational application.
Although both conceptual and navigational model diagrams
are hierarchical, the corresponding graphs are not neces-
sarily isomorphic. Nodes are realisations in the navigation
space of one or more learning activities. Thus, one node
can be related to one or more activities. Figure 5 illustrates
an example of a Navigation Structure Model, which is an
instantiation of the above virtual metamodels. The trace re-
lationships between elements of this diagram and the Con-
ceptual Model are not depicted, since they are obvious from
the names of the elements.

ModelManagement::Model

NavigationStructureModel
<<stereotype>>

<<baseElement>>

Figure 6. Conceptual Virtual Metamodel

The following constraints are applied to elements of the
Navigation Structure Model:

• As mentioned above, the structure of nodes is hier-
archical, as is the Conceptual Model. Thus, simi-
lar constraints apply to its elements as regards to ag-
gregation. AComposite Node stereotyped class
is connected through aggregation associations with
Abstract Node classes,Content class has no
aggregate classes, i.e. it is not contained by any other
node, and, finally, atomic nodes do not contain other
nodes. The OCL expressions for these rules are omit-
ted for the sake of brevity.

• The Navigation Model contains only
Abstract Node classes.

• A Link stereotyped association connects Nodes. A
link represents a unidirectional link from a source to
one or more destinations. It denotes the direction of

5

Content
<<stereotype>>

Composite
<<stereotype>>

Node
<<stereotype>>

Abstract Node
<<stereotype>>

Core::Class

<<baseElement>>

Figure 7. Navigation Model Classes Virtual
Metamodel

Core::Association

Link
<<stereotype>>

<<baseElement>>

Figure 8. Navigation Model Associations Vir-
tual Metamodel

a link in the following way: In the UML metamodel
an association contains two or more association ends.
These ends have a navigability attribute. Navigability
is graphically depicted with an arrow at the navigable
end of the association. The navigability of the associa-
tion end, that is the direction of the arrow in the visual
presentation of the association, denotes the direction
of the link. Thus, there is exactly one end which is
not navigable, which corresponds to the “source” of
the link and one or more navigable ends, which corre-
spond to the “destination” of the link.

context Link inv:
self.connection.participant->

forAll(p |
p.isStereokinded("Node"))

and
self.connecions->

select(ae |

ae.isNavigable = false).
size = 1

• Abstract Node elements have an attribute named
title .

• An Abstract Node is related to one or more
Abstract Activity elements of the Activity
Model with a Trace dependency. This is a standard
UML element, a special kind of relationship which de-
picts dependencies model elements between different
models. This constraint is provided in natural language
only.

3.3. User Interface Model

The User Interface Model deals with the presentation
aspects of the elements defined in the Navigation Model
i.e. their layout and style. In particular, nodes of the
Navigation Model are associated with an element of the
User Interface model. Multiple navigation elements can
be associated with the same presentation specification, thus
promoting uniformity and maintenability of the user in-
terface. The User Interface Model elements have their
counterparts in corresponding elements of web technology
specifications, namely HTML and Cascading StyleSheets
(CSS) elements. The basic element in this model is named
Template . A template contains the following stereo-
typed UML classes with aggregation associations:Html ,
that represents HTML elements or aggregations of HTML
elements andCss that represent Cascading Style Sheet
classes. Attributes of these classes and their values are at-
tributes and values of CSS elements. Elements defined in
the User Interface model are related with Trace dependen-
cies to particular nodes of the Navigation Model thus as-
signing specific presentation attributes to these nodes, as
well to their children in the navigation structure hierarchy.
No metamodel diagrams are shown, since they are similar
to those of the Conceptual and Navigation Structure mod-
els. Figure 9 shows an example of a User Interface Model
for the HTML educational application under consideration.
The trace relationship between the template and the root ele-
ment of the navigational model means that all nodes (pages)
share the same template.

The following constraints are applied to the User Inter-
face Model elements:

• The Presentation Model containsTemplate , Css
andHtml classes.

• Template classes contain, through composite aggre-
gations,Css andHtml elements.

• Template classes are connected with Abstract Nodes
of the Navigation Model throughTrace relationships.

6

H1
<<Css>>

- font-family = Arial
- font-size = 14pt
- font-weight = bold

P
<<Css>>

- font-family = Verdana, Arial, Helvetica, sans-serif
- font-size = 12pt

CourseTemplate
<<Template>>

HTMLLessons
<<Content>> <<Trace>>

Figure 9. Example of a User Interface Model

4. Discussion

The definition of a Design Model can facilitate the pro-
cess of developing software projects, regardless of the do-
main of the application. This facilitation is even more im-
portant in fields where the people involved in the develop-
ment process come from different backgrounds so there is
an increased need for a means of communicating design de-
cisions. However, this improvement is often confuted by
the lack of formalism in the definition of such models. This
lack of formalism has certain negative aspects:

• Poorly defined models, which are based on the intu-
ition of the designers rather than in predefined ‘rules’.

• It is impossible to automate the authoring of models by
means of specific CASE tools.

• It is impossible to automate the process of automatic
code generation based on the models created (forward
engineering).

Rigor definitions of modeling languages alleviates the
aforementioned problems. A definition of a modeling lan-
guage is usually provided by means of a metamodel, i.e.
a model of the set of all valid models in the language.
Such a MOF-based metamodel for web application design
is proposed in [1]. Furthermore, EML and LMML pre-
sented earlier, are defined by means of a metamodel, i.e.
a normal UML model that describes the modeling primi-
tives of the language. Besides modeling primitives, EML
and LMML provide an XML definition and provide appro-
priate schemas, as an additional formalism. Conversely, our
approach is based on the extension mechanisms of UML
for the creation of a profile, thus it does not define a new
metamodel but rather refines the existing metamodel of the
language using a specific formalism.

We are in the process of extending the definition of the
profile so as to include dynamic features of WEA. Further-
more, this profile was defined based on version 1.5 of the
UML and OCL. We intend to update it by using the version
2.0 of these languages.

5. Acknowledgements

This work was partially supported by the “TELL: To-
wards effective network supported collaborative learning”
project which is partly sponsored by the European Commis-
sion under e-learning program (ref num: 2003-4721 TELL).

References

[1] L. Baresi, F. Garzotto, L. Mainetti, and P. Paolini. Meta-
modeling techniques meet web application design tools. In
R.-D. Kutsche and H. Weber, editors,FASE, volume 2306
of Lecture Notes in Computer Science, pages 294–307.
Springer, 2002.

[2] S. Ceri, P. Fraternali, and A. Bongio. Web Modeling Lan-
guage (WebML): a modeling language for designing web
sites.Computer Networks, 33(1-6):137–157, 2000.

[3] IMS. IMS Learning Design Information Model, Version 1.0
Final Specification, Jan. 2003.

[4] T. Isakowitz, E. A. Stohr, and P. Balasubramanian. RMM:
A methodology for structured hypermedia design.Commu-
nications of the ACM, 38(8):34–44, Aug. 1995.

[5] R. Koper. Modeling Units of Study from a Pedagogical Per-
spective: The Pedagogical Meta-Model Behind EML, 2001.

[6] R. Malveau and T. J. Mowbray.Software Architect Boot-
camp. Prentice Hall PTR, Upper Saddle River, NJ, 2001.

[7] OMG. Meta Object Facility (MOF) Specification, Version
1.4, Apr. 2002.

[8] OMG. UML Profile for CORBA, Version 1.0, Apr. 2002.
[9] OMG. Unified Modeling Language Specification, Version

1.5, Mar. 2003.
[10] S. Retalis and A. Papasalouros. Designing and automati-

cally generating educational adaptive hypermedia applica-
tions. Educational Technology & Society, to appear.

[11] D. Schwabe and G. Rossi. The object-oriented hypermedia
design model.Communications of the ACM, 38(8):45–46,
1995.

[12] C. S̈uß and B. Freitag. Metamodeling for web-based
teachware management. In P. P. Chen, D. W. Embley,
J. Kouloumdjian, S. W. Liddle, and J. F. Roddick, editors,
Advances in Conceptual Modeling: ER ’99 Workshops on
Evolution and Change in Data Management, Reverse En-
gineering in Information Systems, and the World Wide Web
and Conceptual Modeling, Paris, France, November 15-18,
1999, Proceedings, volume 1727 ofLecture Notes in Com-
puter Science, pages 360–373. Springer, 1999.

[13] J. Warmer and A. Kleppe.The Object Constraint Language:
Precise Modeling with UML. Addison Wesley, Reading,
MA, 1999.

7

