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ABSTRACT
The dynamic nature of the data on the Web gives rise to a
multitude of problems related to the description and anal-
ysis of the evolution of such data. Traditional approaches
for identifying and analyzing changes are descriptive, focus-
ing on the provision of a “delta” that describes the changes
and often overwhelming the user with loads of information.
Here, we take an alternative approach which aims at giving
a high-level overview of the change process and at identify-
ing the most important changes in the ontology. For doing
so, we consider different metrics of “change intensity”, tak-
ing into account the changes that affected each class and
its neighborhood, as well as ontological information related
to the importance and connectivity of each class in the dif-
ferent versions. We argue that this approach will allow a
better understanding of the intent (rather than the actions)
of the editor, and a better focusing of the curator analyzing
the changes; traditional delta-based approaches can subse-
quently be used for a more fine-grained analysis.

1. INTRODUCTION
With the growing complexity of the Web, we face a com-

pletely different way of creating, disseminating and consum-
ing big volumes of information. The recent explosion of the
Data Web and the associated Linked Open Data (LOD) ini-
tiative has led several large-scale corporate, government, or
even user-generated data from different domains to be pub-
lished online and become available to a wide spectrum of
users [1]. Dynamicity is an indispensable part of LOD; LOD
datasets are constantly evolving for several reasons, such as
the inclusion of new experimental evidence or observations,
or the correction of erroneous conceptualizations [11].

Understanding this evolution using the differences (deltas)
between versions of datasets (schema and instances) has
been proved to play a crucial role in various curation tasks,
like the synchronization of autonomously developed dataset
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versions [2], the visualization of the evolution history of a
dataset [5, 4], the need for accessing previous versions of a
dataset to support historical or cross-snapshot queries [8],
and the integration [3] and synchronization [6] of intercon-
nected LOD datasets. Towards this, various approaches
have been used for formally describing those deltas, rang-
ing from low-level deltas (describing simple additions and
deletions, see, e.g., [12]), to high-level ones (describing com-
plex updates, such as, for instance, different change patterns
in the subsumption hierarchy [6]).

However, both types of deltas aim at providing a descrip-
tive analysis of the changes, but not at providing an overview
of the changes, or the areas of the ontology that were mostly
affected by the change process. Identifying the most af-
fected areas would require a significant amount of analysis
on behalf of the curator, given that the number of changes
recorded are often in the range of several hundreds (or even
thousands) [6]. Moreover, deltas, even high-level ones, do
not provide a supervisory overview of the changes, and can-
not be easily used to observe trends in the changes. Fur-
ther, not all changes have the same effect on the ontology,
as some may be minor (e.g., changing the label of a class),
whereas others (or their combination) may significantly af-
fect the structure or the focus of the ontology as a whole,
or of particular areas in the ontology (e.g., the deletion of
properties that would disconnect previously connected areas
in the ontology, thereby changing its topology and focus).

Our objective in this paper is to identify the classes that
were mostly affected by the evolution process, thereby prop-
erly directing the focus of the curator. To do that, we rely
on a set of assessment measures that allow quantifying the
“intensity” of the changes that each class underwent, based
on various assessment dimensions. These dimensions are
related to the number of changes affecting that class or its
neighborhood, as well as the effect of these changes on the
centrality and relevance [10] of the class in the considered
versions. These measures, and their combination, will al-
low appropriate ranking of the classes in the ontology, in
terms of “change intensity”, under various different (com-
plementary) viewpoints. Our approach is demonstrated us-
ing experiments from the CIDOC-CRM ontology, confirming
the feasibility of our approach and the considerable insights
gained on the evolution process.

In Section 2 we describe the assessment dimensions, which
are employed in Section 3 for defining the assessment mea-
sures that quantify the importance of the changes related to
each class, whereas Section 4 concludes.



2. ASSESSMENT DIMENSIONS
In this section, we present different dimensions that can be

combined in order to study various aspects of ontology evo-
lution. Each of these dimensions captures a characteristic
that is arguably important in order to quantify the intensity
of the changes that a class underwent.

We consider four such dimensions. The first two are re-
lated to the amount (number) of changes that this spe-
cific class (or its neighborhood) underwent during the evo-
lution process and are defined more precisely in Subsec-
tions 2.1, 2.2. The other two are based on the idea that
the amount of interest exhibited by the curator related to
a class is also related to how important this class is in his
ontology, and how this importance changed during the evo-
lution process. To capture the notion of importance, we use
two metrics that have been proposed in [10], namely cen-
trality (Subsection 2.3) and relevance (Subsection 2.4).

Note that our approach is class-centric, i.e., is concerned
with identifying the classes that are of most interest to the
curator. However, we can easily extend our approach to
properties as well.

2.1 Number of Changes
Consider the evolution of a dataset from a version V1 to

a version V2. In principle, as presented in [6], low-level
deltas are used to describe the set of triples which were
added (δ+V1,V2

) along with the set of triples triples which were

deleted (δ−V1,V2
) during the evolution from V1 to V2. The

number of detected changes over this evolution is the size of
their low-level delta δV1,V2 , i.e., |δV1,V2 | = |δ+V1,V2

|+ |δ−V1,V2
|.

In our case, we are interested in the changes related to a
specific class only, so we use the following definition:

Definition 1. Assume the low-level delta δV1,V2 = 〈δ+V1,V2
,

δ−V1,V2
〉 between two dataset versions V1 and V2, and a class

n. We define the low-level delta of n between V1 and V2 as
δV1,V2(n) = 〈δ+V1,V2

(n), δ−V1,V2
(n)〉, where δ+V1,V2

(n) = V n
2 \

V n
1 , δ−V1,V2

(n) = V n
1 \ V n

2 and V n
i = {t ∈ Vi|t = (u1, u2, u3),

n = uj, for some j}.

Then, the number of changes in which n appears is defined
as |δV1,V2(n)| = |δ+V1,V2

(n)|+ |δ−V1,V2
(n)|.

2.2 Number of Changes in Neighborhood
Apart from the number of changes over a specific class

n, another interesting dimension is the number of changes
in the classes “around” n; this allows determining whether
the topology of the ontology changed in a particular area.
More specifically, we define the neighborhood of a class n for
two dataset versions V1, V2 (denoted by NV1,V2(n)) as the
set of classes that are either related to n via a subsumption
relationship, or are connected with n via a property (through
the property’s domain/range), in either of V1, V2. Then:

Definition 2. Consider two ontology versions V1 and V2,
and a class n with neighborhood NV1,V2(n). We define the
number of changes in NV1,V2(n) as:
|δNV1,V2

(n)| =
∑

c∈NV1,V2
(n) |δV1,V2(c)|.

2.3 Centrality
The notion of centrality [10] is used to quantify how cen-

tral is a specific class in a specific dataset version. To iden-
tify the centrality of a class n in a dataset version Vj , we

initially consider the instances it contains by calculating its
relative cardinality. The relative cardinality RCVj (e(n, ni))
of a property e(n, ni), which connects the classes n and ni,
is defined as the number of the specific instance connections
between these two classes divided by the total number of
the connections of the instances that the two classes have.
Then, we combine the data distribution with the number
of the incoming/outgoing properties of this class. As such,
the in/out-centrality (Cin/Cout) is defined as the sum of
the weighted relative cardinalities of the incoming/outgoing
properties:

Definition 3. Assume the class n that appears in an on-
tology version Vj. The in-centrality Cin

Vj
(n) (respectively, the

out-centrality Cout
Vj

(n)) of n is defined as the sum of the

weighted relative cardinality of the properties e(ni, n) (re-
spectively, e(n, ni)):

Cin
Vj

(n) =

m∑
i=1

RCVj (ni, n) · w(ni,n)

Cout
Vj

(n) =

m∑
i=1

RCVj (n, ni) · w(n,ni)

where m represents the number of the incoming (respectively,
outgoing) properties in the schema.

The weights w(ni, nj) in the above formula have been ex-
perimentally defined and vary depending on whether the
property is user-defined or RDF/S, giving higher importance
to user-defined ones. This is partly because the user-defined
properties correlate classes, each exposing the connectivity
of the entire schema, in contrast to the hierarchical or other
kinds (e.g., rdfs:comment) of RDF/S properties. More de-
tails on the notion of centrality can be found in [10].

2.4 Relevance
The notion of relevance [10] has been proposed as ad-

equate for quantifying the importance of a class within a
dataset. Relevance is based on the idea that the importance
of a class should describe how well the class could represent
its neighborhood. Intuitively, classes with many connections
with other classes in the ontology should have a higher im-
portance than classes with fewer connections. Thus, the
relevance of a class is affected by the centrality of the class
itself, as well as by the centrality of its neighboring classes.
Moreover, since the dataset might contain huge amounts
of data, the actual data instances of the class should also
be considered when trying to estimate its importance (rele-
vance). Formally, relevance is defined as follows:

Definition 4. Assume a class n that appears in an on-
tology version V1. Assume also that the numbers of the in-
coming and outgoing properties that connect n with other
classes are npin and npout, respectively. The relevance of n
in V1, RelV1(n), is the sum of the in- and out-centrality of
n multiplied by the corresponding number of these classes,
divided by the sum of out-centrality of the incoming classes
ni and the in-centrality of the outgoing classes nj:

RelV1(n) =
Cin

V1
(n) ∗ npin + Cout

V1
(n) ∗ npout

npin∑
i=1

Cout
V1

(ni) +

npout∑
j=1

Cin
V1

(nj)



3. ASSESSMENT MEASURES
In this section, based on the assessment dimensions de-

fined above, we provide different ways for combining them,
resulting in useful conclusions regarding the dataset/ontology
evolution. As a running example, we consider two versions of
the CIDOC-CRM1 ontology; clearly, our work could be gen-
eralized for any two versions of any given ontology. Specifi-
cally, we use versions v3.2.1 and v3.3.2, that we will subse-
quently call V1 and V2, which were released in February and
October of 2002, respectively.

Table 1 illustrates a sample of classes that appear in both
versions with their values of the assessment dimensions. The
values of the assessment measures introduced in this section
appear in Table 2.

3.1 Deltas Change
The most obvious metric is related to the number of changes

that affected a particular class n. An important additional
concern in this respect is that the changes on the neighbor-
hood may be relevant as well; even if a class itself did not
change much, many changes in the class’ neighborhood may
indicate that this class is interesting from the evolution anal-
ysis perspective. Thus, we define the delta change of a class
as the weighted sum of the number of changes involving n
and the number of changes involving neighbors of n:

∆ChangeV1,V2
(n) = α · |δV1,V2(n)|+ β · |δNV1,V2

(n)|

The parameters α, β can be used by the curator to fine-tune
this metric, by assigning a different weight on the number of
changes in the class or the number of changes in the neigh-
borhood, depending on the application. For instance, if the
curator is not interested in the changes of the neighborhood,
he could consider setting β = 0; for this case, the class
E7.Activity would have a score of 28 (see column |δV1,V2(n)|
in Table 1). If, on the other hand, the curator wants to
consider both types (class and neighborhood) as equally im-
portant, then he could set, e.g., α = β = 1; this is the case
for Table 2, where the score ∆Change of E7.Activity is 119.

3.2 Change of Centrality and Relevance
An indirect way of measuring the effects of a change on

a class is by determining how much the importance of a
class changed by means of the change in its centrality or
relevance. This is, in many cases, superior to the simple
counting of changes, because it shows the cumulative effect
of these changes on the class; and not all changes have the
same effect. For example, we notice that, even thought the
classes E7.Activity and E2.Temporal Enity have the same
number of changes (28 – see column |δV1,V2 |), the changes
of the E2.Temporal Enity have had a greater impact on its
centrality. A closer look at the changes affecting these classes
will reveal that the latter is involved in the addition of 27
new relationships, which increase its connectivity.

To capture this idea, we provide metrics that compute the
absolute difference of the (in/out) centrality before and after
the change; we also provide a metric that combines in and
out centrality. Formally:

∆Cin
V1,V2

(n) = |Cin
V2

(n)− Cin
V1

(n)|

∆Cout
V1,V2

(n) = |Cout
V2

(n)− Cout
V1

(n)|
1http://www.cidoc-crm.org/official_release_cidoc.
html

∆Coverall
V1,V2

(n) = ∆Cin
V1,V2

(n) + ∆Cout
V1,V2

(n)

A step further of the centrality, the relevance indicates the
representative power of a class, as regards its area/neighbour-
hood. The absolute difference of the values of this mea-
surement in versions V1 and V2 reflects the change in the
importance of a class during the evolution from V1 to V2:

∆RelV1,V2(n) = |RelV2(n)−RelV1(n)|

In our running example (Tables 1, 2), the class E55.Type
has greater ∆Coverall

V1,V2
than the class E3.Condition State,

however relevance exhibits the opposite behavior, that is,
E3.Condition State has higher ∆RelV1,V2 than E55.Type.
This observation indicates that even though the change of
E3.Condition State’s connectivity is imperceptible, the im-
portance of the class is influenced to a great extent by the
changes of its neigbourhood. As such, the focus of the spe-
cific area has probably been shifted.

Clearly, the information about the changes of each neigh-
bourhood provides an overview of the evolution of each area
(and its classes). Although the ∆ChangeV1,V2

takes into
consideration the changes on the neighbourhood, the ∆RelV1,V2

offers a more intuitive outcome. Taking as example the
classes E3.Condition State and E7.Activity, the latter has
the greatest value (119) of ∆ChangeV1,V2

in the specific
sample, while the corresponding value for E3.Condition State
is only 34. On the other hand, the difference of relevance
values from V1 to V2 for the class E3.Condition State (see
column ∆RelV1,V2) is one of the highest in Table 2, mean-
ing that the effect of said changes in the importance of
E3.Condition State were significant. Overall, we conclude
that ∆ChangeV1,V2

considers the changes (on the class itself
or its neigbourhood) equally important, whereas ∆RelV1,V2

reflects the evolution of class importance according to the
trend in the changes in its surround area.

3.3 Combined Change
Note that, in some cases, different changes on the same

class may “cancel out” the net effect on the importance of
the class. In this case, the metrics of Subsection 3.2 may not
be fully adequate. In this section, we provide a combining
function that considers both the change of importance (in
particular, of relevance) of a class, and the changes that this
class (and its neighbourhood) underwent, essentially balanc-
ing between the two alternatives above:

CCV1,V2(n) = ∆ChangeV1,V2
(n) ·∆RelV1,V2(n)

Our objective here is to compute an aggregated score for
the class based on its behaviour on a pure quantitative mea-
sure that cares only for numbers of changes and a more
sophisticated measure that additionally regards the evolu-
tion of the connectivity of the class in the ontology. For
example, in Table 2, we can see that although the classes
E7.Activity and E28.Conceptual Object have similar values
for ∆RelV1,V2 , their CCV1,V2 differs significantly, due to the
different number of changes affecting those classes (see col-
umn ∆ChangeV1,V2

).

4. CONCLUSIONS
In this paper, we proposed measures that can be used to

assess the evolution intensity of each class in a given dataset
version. This is intended as an aid for the curator, allow-
ing him to quickly get an overview of the most important



Table 1: Assessment Dimensions
CIDOC-CRM Class |δV1,V2 | |δNV1,V2

| RelV1 Cin
V1

Cout
V1

RelV2 Cin
V2

Cout
V2

E7.Activity 28 91 0,94 0,28 0,51 1,25 0,33 0,56
E2.Temporal Entity 28 34 0,15 0,04 0,32 2,29 0,35 0,63
E28.Conceptual Object 13 39 0,68 0,16 0,44 0,22 0,054 0,32
E55.Type 24 26 0,83 0,25 0,21 1,47 0,31 0,59
E3.Condition State 6 28 1,70 0,14 0,44 0,38 0,09 0,39

Table 2: Assessment Measures
CIDOC-CRM Class ∆ChangeV1,V2

∆Cin
V1,V2

∆Cout
V1,V2

∆Coverall
V1,V2

∆RelV1,V2 CCV1,V2

E7.Activity 119 0,04 0,04 0,09 0,30 36,7
E2.Temporal Entity 62 0,31 0,31 0,62 2,14 132,7
E28.Conceptual Object 52 0,11 0,12 0,23 0,45 23,74
E55.Type 50 0,063 0,37 0,43 0,63 31,63
E3.Condition State 34 0,04 0,04 0,09 1,31 44,72

changes, and properly focusing on the truly important ones.
Our work is motivated by the fact that deltas are not suit-
able for providing an overview of the evolution process, as
they are too descriptive (at a very detailed level), and often
large and overwhelming for the curator. Towards this aim,
we considered several dimensions that capture information
on the number of changes, the centrality and the relevance
of the ontology classes between different dataset versions
and studied how to combine them to provide measures and
useful insights on the ontology evolution.

As a future work, we plan to consider alternative assess-
ment measures, e.g., measures that rank higher the classes
that are important for the ontology, even if the changes that
they underwent are minor; we may also consider alternative
combinations of assessment dimensions and measures. To
evaluate our approach, we plan to perform a user study; our
usability experiments will consider the overhead imposed to
the users for understanding the degree of change between
two ontologies versus how well the proposed measures con-
ceive the changes.

Moreover, given our set of assessment dimensions or mea-
sures, possibly augmented by additional ones, we envision to
offer a number of different, user-defined, ways for combining
them in order to determine complex assessment measures
that provide helpful deductions regarding an ontology evo-
lution and take explicitly into account the information needs
of particular users. For example, a user may choose to com-
bine the assessment dimensions based on the notion of atti-
tude. We consider two types of attitude: the overriding and
the combinatory one. Assume, for instance, the simple case
in which we have only two assessment dimensions, namely A
and B. Then, in the overriding attitude, one of the dimen-
sions, say A, is given priority over the other, meaning that
B is somehow applicable only when A is not (e.g., consider
a user that cares for changes in the neighborhood of a class
only when there are no changes on the class itself). In the
combinatory attitude, both A and B contribute to the final
assessment measure. For example, assume a user that con-
siders equally important the number of changes of a class
with the change of the relevance of the class between these
two versions. These are similar to the standard preference
methods for prioritized and pareto composition [9].

Interestingly, we believe that the issue of allowing users
to define their own assessment measures arises not only
when aggregating different choices of a single person, but
also when aggregating choices of different people (modeling
the needs of groups of users). In the former case, there is a

need to combine different criteria that are posed by a single
user, whereas in the latter case, we seek to reach a con-
sensus among the members of the group. As a short-term
goal, we plan to integrate such a capability to our system
for visualizing the evolution of an ontology [7].
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