
Biomedical Ontology Evolution in the EMBL-EBI Ontology 
Lookup Service 

 

Olga Vrousgou 
European Bioinformatics Institute 

(EMBL-EBI), 
European Molecular Biology 

Laboratory, 
Cambridge  

United Kingdom 
olgavrou@ebi.ac.uk 

Tony Burdett 
European Bioinformatics Institute 

(EMBL-EBI), 
European Molecular Biology 

Laboratory, 
Cambridge  

United Kingdom 
tburdett@ebi.ac.uk 

Simon Jupp 
European Bioinformatics Institute 

(EMBL-EBI), 
European Molecular Biology 

Laboratory, 
Cambridge  

United Kingdom 
jupp@ebi.ac.uk 

Helen Parkinson 
European Bioinformatics Institute 

(EMBL-EBI), 
European Molecular Biology 

Laboratory, 
Cambridge  

United Kingdom 
parkinson@ebi.ac.uk 

 
 

ABSTRACT 
As ontologies are playing an increasingly important role in data 
annotation on today’s Semantic Web, there is a need to observe 
their constant evolution. At EMBL-EBI ontology preservation and 
curation is of growing value, and new tools are being developed to 
help undertake these tasks. One of these tools is the Ontology 
Lookup Service which holds 140 public bio-medical ontologies 
that are updated when new ontology version become available. To 
track changes in these ontologies we have utilized DIACHRON, a 
platform for tracking the evolution of RDF documents. With 
DIACHRON in OLS we can track and store the changes between 
ontology releases and view the differences through a graphical 
interface.  

CCS Concepts 
• Web Ontology Language (OWL) • Ontologies 

Keywords 
Ontologies, OWL, Data evolution 

1. INTRODUCTION 
Data integration is intrinsic to how modern research is undertaken 
in areas such as genomics, drug development and personalised 
medicine. To better enable this integration a large number of 
biomedical ontologies have been developed by the community to 
provide common metadata vocabularies. There are now several 
hundred biomedical ontologies in widespread use that describe 
concepts such as genes, molecules, drugs and diseases. This 
amounts to millions of terms that are interconnected via 
relationships that naturally form a graph of biological 
knowledge.   

(c) 2016, Copyright is with the authors. Published in the 
Workshop Proceedings of the EDBT/ICDT 2016 Joint Conference 
(March 15, 2016, Bordeaux, France) on CEUR-WS.org (ISSN 
1613-0073). Distribution of this paper is permitted under the 
terms of the Creative Commons license CC-by-nc-nd 4.0 
 

The European Molecular Biology Laboratory - European 
Bioinformatics Institute (EMBL-EBI) is a major provider of 
bioinformatics services and is involved in the preservation of data 
and the curation of data so that it can be served back to the 
community in novel and useful ways. A large part of the curation 
and added value offered by EMBL-EBI is via the semantic 
annotation of data with ontologies. Ontologies can make data 
more interoperable and can be used to enhance search[1] and 
visualization[2] applications over data. 

One of the challenges in working with highly interconnected data 
is dealing with elements that change. Biomedical ontologies aim 
to represent the state of knowledge in biology, but this is 
constantly changing as new biology is discovered. As ontologies 
develop to describe all domains of biology they must be regularly 
updated with new terms or refinement of existing terms to stay 
relevant with the data they describe.  Tracking the changes within 
the ontology alongside the changes in the data is especially 
challenging. Typically the ontologies are developed independently 
of the data they annotate, so when ontologies change, it can be 
difficult to propagate that change to all the datasets that were 
described with those ontologies. 

The DIACHRON project1 has been developing technology for 
monitoring the evolution of data on the Web. Dataset versions can 
be archived in the DIACHRON system and there are components 
for detecting and reporting on changes in the data [3]. The 
DIACHRON platform is able to archive and monitor changes in 
data expressed in the W3C Resource Description Framework2 
(RDF) [4], thus making it suitable for archiving ontologies 
expressed in the W3C Web Ontology Language3 (OWL) that can 
be serialised in RDF. 

 
1  http://www.diachron-fp7.eu  
2  http://www.w3.org/RDF/  
3  http://www.w3.org/OWL/  



The EMBL-EBI has recently developed a new version of the 
Ontology Lookup Service4 (OLS) that includes DIACHRON 
functionality for archiving and executing change detection over 
ontologies. In this paper we present the design and 
implementation of the DIACHRON functionality adapted for the 
OLS system and evaluate the DIACHRON functionality for 
monitoring ontology evolution. 

2. REQUIREMENTS  
OLS provides access to over 140 bio-medical ontologies. 
Ontology documents typically reside on the Web and the OLS 
system monitors these documents for updated versions, and 
automatically loads new ontologies into the system when a new 
version is released. OLS provides services for searching and 
visualising these ontologies and also provides an API for 
programmatic access. Many database curation systems use the 
OLS to find terms that are used in annotating biological data. This 
process introduces a dependency on ontologies from the annotated 
data, so any changes in the ontologies can have downstream 
consequences on the data and any services built over those data. 

OLS requires the ability to track terms seen in ontologies over 
time to better assist applications that rely on these ontologies. 
There are a large number of changes that one might consider 
tracking within an ontology. One of the most important aspects of 
change relating to ontologies is the creation, deletion and editing 
of term (or class level) information. Being able to track additions 
to an ontology is also a useful metric of ontology activity. 
Ontologies that haven’t been updated for a long time may suggest 
the ontology is no longer actively maintained. Ontology best 
practices[5] encourage developers to a avoid deleting ontology 
classes, and rather use a deprecation or obsoletion strategy so that 
terms remain in the ontology or at a minimum the term URIs 
remain resolvable. This is import for applications that use third 
party ontologies for data annotation and rely on those terms 
resolving on the Web. In practice there are still many reasons why 
an ontology term may get deleted, or a URI may be refactored, so 
old URIs are frequently no longer accessible.  

Deletions in OWL, when viewed at the RDF triple level, are 
typically associated with a kind of edit. For example, moving a 
class in the ontology class hierarchy would typically be detected 
at the RDF triple level as a removal of a triple with an 
rdfs:subClassOf predicate with the addition of a new triple with 
the same subject and predicate, but a different object. The ability 
to detect such changes in an ontology is useful as many edits 
involving the rdfs:subClassOf predicate may suggest an ontology 
is undergoing a major rearrangement and as such could have a 
potential impact on any application that makes an assumption 
about the structure of the hierarchy. There are also other types of 
non-logical edits, such as to term metadata that may include the 
editing of a term label or addition of new synonyms or definitions 
that might indicate a refinement or change to the interpretation of 
a term.  

Table 1 outlines the major ontology changes that the OLS 
application is concerned with detecting. These changes are 
restricted to those that can be expressed at the level of RDF 
triples.  

 

 
 
4  http://www.ebi.ac.uk/ols/beta/  

 

 

 

Table 1. Abstracted ontology changes detected by 
DIACHRON  

 

Ontology change Change triplet 

Addition of new 
class 

Addition of ?x rdf:type owl:Class 

Removal of class Removal of ?x rdf:type owl:Class 

Edit label Addition of  
?x <label property> <OWL literal> 

Removal of  
?x <label property> <OWL literal> 

Edit synonym Addition of  
?x <synonym property> <OWL literal> 

Removal of  
?x <synonym property> <OWL literal> 

Edit definition Addition of  
?x <definition property> <OWL literal> 

Removal of  
?x <definition property> <OWL literal> 

Class move Addition of ?x rdfs:subClassOf ?owlClass 
Removal of ?x rdfs:subClassOf ?owlClass 

Class obsoletion Addition of ?x owl:deprecated “true” 

 
 

2.1 Diachron services 
 
The DIACHRON platform is comprised of several components 
that are accessible via Web services. The OLS application is 
currently utilizing services from three of the components, namely, 
the DIACHRON archive, the change detection, and the integration 
layer. 

• The archive service is responsible for converting the 
ontology versions represented in OWL to the 
DIACHRON RDF model. Once converted, the 
“diachronised” RDF can be uploaded into the archive 
via the archiving API.  

• The change detection service is responsible for the 
calculation of changes between two ontology releases. 
There are two types of changes, simple and complex. 
Simple changes capture all the additions and deletions 
of all terms in an ontology and are predefined. Complex 
changes are user defined changes based on specified 
collections of simple changes.  



• The integration layer is designed to provide an 
abstraction over the underlying services and handle 
security and mediation of services via a single point of 
entry to the DIACHRON platform. 

3. METHOD 
Tracking ontology evolution is the primary use case for 
DIACHRON within EMBL-EBI. OLS currently deals with 
tracking external ontologies for changes and indexing any new 
releases. OLS provides a REST API to the available ontologies 
that includes information about when an ontology was last 
updated. We have developed a Java application that crawls the 
OLS API for each new ontology release, retrieves the latest 
ontology version and archives it into the DIACHRON platform. 
As new versions become available via the OLS API, the 
DIACHRON platform will archive the newer version and run 
change detection between versions.  

For a delta of changes to be produced between the new release 
and the old version of an ontology, there is a need to always keep 
the latest versions archived in a uniform way. In order to adapt 
DIACHRON to be used in OLS, we need to configure the change 
types in Table 1 to reflect how certain features are implemented in 
a particular ontology. For instance, most ontologies have a notion 
of synonyms, but the predicates for synonym vary between 
ontologies. We would like to use DIACRHON to detect changes, 
such as “synonym edit” at a conceptual level, without worrying 
about implementation details. The deltas between ontologies need 
to be stored and presented in a user friendly way in the OLS 
application.  

The new OLS platform provides an extensive list of API 
endpoints that provides an easy way for developers to access its 
underlying data. Using this API we are able to retrieve 
information about the ontologies that are stored in OLS such as 
their location where the ontologies will be downloaded from, the 
latest version that was indexed into OLS, and information such as 
the predicate used for label, synonyms and definitions. 

DIACHRON provides an ontology for describing changes 
according to the underlying DIACRHON model. There is also an 
API for creating change types for a given dataset that is exposed 
as a Web service in DIACHRON. The OLS crawler reads an 
ontology configuration from the OLS API, creates a new dataset 
and specifies DIACHRON changes using the DIACHRON 
service API. The flow for adding OLS data to DIACHRON is as 
follows (also depicted in Figure 1).  

For each ontology in OLS: 

1. From the OLS API get the latest version that has been 
indexed in OLS. 

2. Get the latest version that has been archived in the 
archiver. 

3. If it is the first time that this ontology will be archived 
create a DIACHRON dataset id. We need to know the 
dataset id before we can upload the “diachronised” 
dataset.  

4. If it is the first time this ontology has been archived, 
define the ontology’s complex changes and store them 
through the changes API. 

5. If there is a new version of the ontology, download it 
from the file location that is provided by the OLS API 

6. The ontology is downloaded in native OWL or OBO 
format then submitted to the DIACHRON archive 
service.  

7. If this is a new version of an ontology that has been 
previous archived, change detection between the new 
and old versions will be executed using the changes 
API. The results of the change detection are also stored 
in the archive and made available via the integration 
layer.  

 
Figure 1. Program flow of the OLS crawler. The crawler is 
scheduled to run every night, pushing new ontologies to 
DIACRHON, archiving new ontology releases, and running 
the change detection service for updated ontologies. 
As mentioned above, there is a need to create different complex 
changes for each ontology. Many ontologies use different 
properties to describe a term. This leads to the need to define a set 
of complex changes for each ontology, based on the properties 
defined in the OLS API. It is also essential to update the complex 
changes if a term property alters from one version to another. The 
main challenge we face here is that a complex change may not 
only have different properties between ontologies, but may also 
have an entirely different implementation. For example, when a 
term is marked as obsolete in EFO, it is moved to be a subclass of 
the “ObsoleteClass” class. In other ontologies, such as the Gene 
Ontology, they use the owl:deprecated property to indicate term 
obsoletion. We have defined additional configuration into our 
OLS crawling application that specifies the obsolete class strategy 
used by a particular ontology.  This requires a priori knowledge of 
the strategy used by an ontology, and requires maintenance of this 
additional configuration to ensure it remains in sync with each 
ontology. 

4. RESULTS 
Changes detected between ontologies are stored in the 
DIACHRON platform according to the DIACHRON changes 
ontology schema[6]. These changes can be queried directly with 
SPARQL or by a REST API endpoint that is provided by 
DIACHRON to access a JSON representation of the changes. This 
changes API is used by OLS to visualize DIACHRON changes.  



Figure 2 shows an overview of changes in the Experimental 
Factor Ontology over a 12 month period (EFO version 2.50 
through 2.59). This visualisation gives a broad overview of 
changes in the ontology that is color coded according to the 
change type defined in Table 1.  This provides a useful visual 
history of the evolution of the EFO ontology. We can easily see 
that in general the ontology changes very little between releases, 
with only a handful of new terms added on each release. 
However, there are two very clear spikes in 2.56 and 2.57, where 
a large number of deletions were followed in the next version by a 
large number of additions. This spike exposes a problem with the 
2.56 release where many terms disappeared and was quickly fixed 
for the 2.57 release. The ability to see such a dramatic change is a 
possible indicator that 2.56 should not be used and any application 
relying on it should update their EFO version.  

Figure 3 shows how we can use the visualization to drill down 
into specific changes for a given release. We have also connected 
the visualization component to the JIRA tracking system for the 
EFO ontology so changes can be viewed alongside tickets that 
were closed on that release. This feature allows users to see 
changes in the context of the work that was performed for that 
release.  

 
Figure 2. EFO changes from release 2.50 - 2.59. 
 

 
Figure 3. Reported changes from EFO release 2.56. 

5. Conclusion 
We have presented an update to the EMBL-EBI Ontology Lookup 
Service to include DIACHRON base change tracking of 
ontologies. The DIACHRON platform uses the OLS API to detect 
when new ontology versions have been indexed and archives new 
version in the DIACHRON archive. DIACHRON changes are 
configured according to properties outlined in the OLS ontology 
configuration, so that a range of abstracted common changes can 
be detected between all of the ontologies in OLS. We have 
developed user interface components to assist users in searching 
and browsing ontology changes.  

This work presents a pragmatic and scalable approach to change 
detection in ontologies. Computing true change detection in OWL 
ontologies is still an area of active research. Ontology change 
detection at the level of RDF triples alone is limited to fairly 
trivial changes in the ontology.  However, we have illustrated that 
this is sufficient to highlight some key aspects of change within 
ontologies, and this may be sufficient for the users of these 
ontologies. We are not attempting to report on all ontological 
changes, but instead require a system that tracks terms and basic 
term metadata over time. In this scenario DIACHRON provides 
us with a convenient platform for tracking ontology evolution at 
this level.  

The addition of DIACHRON functionality to OLS provides the 
OLS user community a novel mechanism to access ontology 
changes via the DIACHRON API. As the amount of biological 
data annotated to ontology terms continues to grow, it is vital that 
tools are in place to assist database developers and curators to 
track the evolution of these vocabularies. The DIACHRON 
functionality added to OLS now provides a platform for 
monitoring these changes and can be exploited in downstream 
services relating to data concurrency, consistency and integrity, 
and may also be used to facilitate an aspect of data repair relating 
to data-to-ontology annotation.  

 

6. ACKNOWLEDGMENTS 
We would like to acknowledge all members of the DIACHRON 
consortium for their contribution to this work. In particular we 
would like to thank Christos Pateritsas, Yannis Roussakis, 
Hasapis Panagiotis, Marios Meimaris and Giorgos Flouris for 
their contribution to components of the DIACHRON platform 
utilized by the OLS application.  

7. REFERENCES 
[1] Petryszak, R. et al. 2013. Expression Atlas update – a 

database of gene and transcript expression from microarray 
and sequencing-based functional genomics experiments. In 
Nucleic Acids Research, DOI=10.1093/nar/gkt1270. 

[2] Welter D, MacArthur J, Morales J, Burdett T, Hall P, Junkins 
H, Klemm A, Flicek P, Manolio T, Hindorff L, and 
Parkinson H. 2014. The NHGRI GWAS Catalog, a curated 
resource of SNP-trait associations. In Nucleic Acids 
Research, Vol. 42 (Database issue): D1001-D1006.  

[3] Auer S., et al. 2012. Diachronic linked data: towards long-
term preservation of structured interrelated information". In 
Proc. of the First International Workshop on Open Data 
(WOD '12). ACM, New York, NY, USA, 31—39. 

[4] Papavassiliou V., et al. 2009. On Detecting High-Level 
Changes in RDF/S KBs, Proceedings of the 8th International 
Semantic Web Conference, October 25-29 

[5] Barry Smith et al. 2007. The OBO Foundry: coordinated 
evolution of ontologies to support biomedical data 
integration. In Nature Biotechnology 25, 1251-1255. 
DOI=10.1038/nbt1346. 

[6] Roussakis Y., Chrysakis I., Stefanidis K., Flouris G., 
Stavrakas Y. 2015. A Flexible Framework for Understanding 
the Dynamics of Evolving RDF Datasets. International 
Semantic Web Conference (1) 2015: 495-512 


