
A Comprehensive Sanitization Approach for Workflow
Provenance Graphs

Noha Nagy Mohy
Information Systems Department,

Faculty of Computers and Information,
Cairo University, Egypt

n.nagy@fci-cu.edu.eg

Hoda M. O. Mokhtar
Information Systems Department,

Faculty of Computers and Information,
Cairo University, Egypt

h.mokhtar@fci-cu.edu.eg

Mohamed E. El-Sharkawi
Information Systems Department,

Faculty of Computers and Information,
Cairo University, Egypt

m.elsharkawi@fci-cu.edu.eg

ABSTRACT

As the number of provenance aware organizations increases,

particularly in workflow scientific domains, sharing provenance

data becomes a necessity. Meanwhile, scientists wish to share their

scientific results without sacrificing privacy, neither directly

through illegal authorizations nor indirectly through illegal

inferences. Nevertheless, current work in workflow provenance

sanitizing approaches do not address the disclosure problem of

sensitive information through inferences. In this paper, we propose

a comprehensive workflow provenance sanitization approach

called ProvS that maximize both graph utility and privacy with

respect to the influence of various workflow constraints.

Experimental results show the effectiveness of ProvS through

testing it on a graph-based system implementation.

Keywords

Graph anonymity; Graph privacy; Secure provenance graph.

1. INTRODUCTION
Securing provenance particularly in workflow domain is a

significant challenge that is still open for research [1], [4], [6], [7],

[15], [22]. As provenance stores the history, in some cases

provenance are becoming more precious than traditional data.

Hence, it can give a chance for adversary users to employ it for

breaking security and attacking privacy. Sharing provenance is

needed, particularly in scientific workflows. While scientists may

wish to share their experiments and results with others, they may

have privacy concerns about their scientific results. Also, releasing

provenance query graph results should meet strict security rules to

prevent disclosure of sensitive information.

Securing provenance data has been studied in recent years. Hiding,

anonymization, and grouping are well known sanitization

approaches that are used to preserve privacy of sensitive

provenance graph components[nodes/edges] [3], [6], [8], [9], [12]–

[14], [18], [19], [25]. In fact, these approaches vary in terms of

graph utility, privacy and conformance to provenance policies that

guarantee the completeness and correctness of the provenance

graph [3], [14]. Hiding approach removes the required sensitive

graph components which cause dangling nodes and edges [11].

Anonymization approach only hides the identification attributes.

This approach gave anonymization approach the privilege of

satisfying provenance graph policies and increasing the graph

utility at the same time [14], [29]. However, they do not guarantee

the privacy of sensitive information as the attacker can re-identify

the anonymized graph components. Grouping approach provides an

abstract graph view that preserves the privacy of sensitive graph

components, their major drawback is decreasing the graph utility

[5], [19]. In addition, they require checking the resulting graph

validity according to provenance policies and handling invalid

graphs either by grouping more nodes and edges or inventing new

dummy nodes to satisfy the provenance graph policies [13].

On the other hand, in the application domain, workflow systems are

impacted by industrial laws and regulations that control the

workflow execution to ensure the compliance of business rules and

regulations that prevent business failures [31]. There are multiple

types of workflow constraints that specify the control flow between

business processes, define restrictions on the resources or define

exception handling procedures. Actually, these workflow

constraints are good seeds for attacking privacy particularly in a

provenance area as provenance stores a complete history of the

workflow execution.

This paper focuses on the problem of attacking graph privacy by

re-identifying sanitized graph components through using domain

knowledge. The domain knowledge that we address is the

workflow constraints. We study the main factors that affect the

provenance graph sanitization privacy, utility, and provenance

graph policy. The paper introduces a sanitization approach called

ProvS that utilizes anonymization, grouping and workflow

constraints to produce a set of sanitization actions. These

sanitization actions need to be applied to the workflow provenance

graph to preserve its privacy while considering the graph utility and

provenance graph policies. The key contributions of this paper are:

- Proposing a comprehensive sanitization approach

tailored to preserve privacy of workflow provenance

graphs.

- Handling the privacy problem in anonymization

approach

- Increasing the graph utility of the grouping approach

- Automatically decides which properties (nodes/edges) of

the graph need to be grouped and which properties need

to be anonymized without user intervention.

The rest of the paper is organized as follows: Section 2 presents a

brief background information about provenance graphs in addition

to the various types of workflow constraints. Related work is

reviewed in Section 3. A motivating example is presented in

Section 4. Section 5 introduces the proposed approach ProvS.

Finally, Section 6 concludes the paper and presents some points for

future work.

(c) 2016, Copyright is with the authors. Published in the

Workshop Proceedings of the EDBT/ICDT 2016 Joint

Conference (March 15, 2016, Bordeaux, France) on CEUR-

WS.org (ISSN 1613-0073). Distribution of this paper is permitted

under the terms of the Creative Commons license

2. BACKGROUND
This section provides a brief introduction to the most common

keywords that will be used along this paper.

Figure 1. OPM [20]

2.1 Workflow Provenance Graph
Workflow provenance records the history of workflow executions

[17]. There are several tools for capturing workflow provenance

[2], [23], [29]. These tools capture information about the sequence

of workflow process executions used to produce a data item, as well

as the intermediate data passed between these processes. Most of

these tools use the Open Provenance Model (OPM) that was

proposed in [20] as their standard model for representing

provenance data. OPM in Figure 1 models provenance as a Directed

Acyclic Graph (DAG) which consists of three types of nodes:

artifacts represent the data used, processes represent actions

performed on or caused by artifacts, and resulting in new artifacts,

and agents that represent actors executing the process. The edges

of the OPM graph represent a relationship between two nodes.

Provenance graphs are captured automatically by the workflow

system. Provenance graph can be formally defined as G=(V,E,L,F)

where V is the set of vertices, E V V is a set of edges, L is a set

of labels, and F is a labeling function F:EL that assigns each edge

a label.

There are some provenance policies that ensure the correctness and

completeness of the provenance graph which discussed in [14].

Table 1. Provenance graph policy [14]

2.2 Workflow Constraints
The executions of workflow systems are always governed by a set

of constraints that guarantee the correctness of the execution [24].

These constraints can be defined by the user or can be captured

from the Business Process Model (BPM) that acts as a schema for

the workflow system. Processes and its related constraints are the

key elements of workflow constraints. There are different types of

workflow constraints: some constraints based on data values where

the end result of the process determines the following workflow.

Constraints that control the flow of the processes, constraints based

on time while other constraints based on roles that determine who

is responsible for what. A brief description of workflow constraints

that are considered in this paper are outlined in Table 2.

Table 2. Workflow constraints

2.3 Graph Privacy and Utility
Workflow provenance graphs contain sensitive information. For

example, in healthcare, activities including patient diagnoses,

treatments, and processes performed by health care professionals are

considered sensitive information. A major goal of preserving

privacy is to assure that sensitive information is properly protected.

Hence, we need to define what is meant by sensitive information.

Sensitive information is the information that needs to be hidden

from unauthorized users. In this paper, sensitive information can be

a provenance graph node (process, data, or actor) or a provenance

graph edge (used, generated by, controlledBy).

We formalize two privacy goals in workflow provenance graphs.

- Node Privacy: node privacy concerns with hiding the

identity or attribute values of a node. Let G be the original

graph and V be a node belonging to G. Let G' be the

sanitized graph view of G. The privacy of V means if an

adversary is given G' and extra domain knowledge

information then he should not reveal the identity of E in
the original graph G.

Used

A1

A2

P2

Agent

Used

GeneratedBy

ControlledBy

De
riv

ed
Fr

om

TriggeredBy

P1

Provenance Policy Description

No Write Conflict

(NWC)

A data artifact can be written by

only one process

No Cyclic

Dependency (NCD)

There is no cycle between any two

nodes

No-Type Error Two nodes with a direct

dependency are of different types.

No-False Dependency

(NFD)

Two nodes are dependent in the

resulted graph only if they are

dependent in the original graph

No-False

Independency (NFI)

Two nodes are independent in the

resulted graph only if they are

independent in the original graph

 Constraint

Name

Description

A
c
to

r
 C

o
n

st
r
a
in

ts

[2
8

]
[3

1
]

Separation of

Duty (SOD)

Mutual exclusive processes must be

executed by different persons or

roles

Binding of

Duty (BOD)

Multiple processes must be

executed by the same person or

role.

Role Constraint

(RC)

Process must be executed by a

specific role(s)

P
r
o

ce
ss

 C
o

n
st

r
a

in
ts

[2
6

][
3
2

]
1

5
]

Sequential

Processes (SP)

A process output is used as an input

to another process

Parallel

Processes (PP)

Processes are working

concurrently, they start at the same

time

Multiple

Merge Pattern

(MMP)

The process is taking its input from

multiple processes

Same Input

Processes (SI)

Multiple processes are using the

same input data

Exclusive

Processes (EP)

Only one of the exclusive processes

is executed

Time

Constraints

(TC)

The execution time of a process

depends on the execution time of

another process

D
a

ta

C
o

n
st

ra
in

ts

Certain Process

(CP)

If the condition on a process output

data is true this output should be

used by a certain process

Different

workflow

(DWF)

If the condition on a process output

data is true this output must be used

by a specific process certain

number of times

- Edge Privacy: edge privacy concerns with hiding the

relationships between two of the graph nodes. Let G be

the original graph and E be an edge belonging to G. Let

G' be the sanitized graph view of G. The privacy of E
means if an adversary is given G' and extra domain

knowledge information then he should not reveal the

existence of E in the original graph G. In this paper, Edge

privacy can be specified in terms of node privacy as it

requires hiding the identity of the two connected nodes.

Note that, we do not consider removing edges in our
proposed approach.

Inspired by the fact that a process uses input data to produce output

data, the following is a subset of the inference rules presented in

[30] to prevent disclosure of sensitive information that will be

considered in our approach.

R1: Revealing the input and output would identify the process

R2: Revealing the process and output would reveal the input and

revealing the input and process would reveal the output

Utility is concerned with the amount of information presented in

the sanitized graphs to be useful for sharing. Utility of the graph is

measured by the utility of its nodes and utility of its connections

(edges). There are different utility measures for graph. In this paper,

we use the utility measure that introduced in [3] where the utility of

nodes is measured by the average percentage of nodes in the

original graph that are retained the sanitized graph. The utility of

edges is measured by the average percentage of edges in the

original graph that are retained in the sanitized graph.

3. RELATED WORK
Provenance sanitization via provenance graph transformation is

discussed by several researchers [32], [33], [18], [13], [34].

The authors in [35] proposed ZOOM which controls access to

sensitive provenance data by driving provenance views from

workflow views. The main advantage of ZOOM it allows

provenance to be derived at different levels of granularity.

However, it cannot be used for complex scientific workflows. The

authors in [11] proposed an anonymization approach named

Surrogate Parenthood that derives a protected graph G' from the

original graph G that preserves the provenance policies. In

Surrogate Parenthood each path in G' exists in G. The main

advantage of this work is the fact that it preserves the utility of the

original graph. The authors in [12] presented a framework called

ProPub to publish provenance data based on the data log which

stores user privileges, portions of the graph that need to be

abstracted, deleted, or retained, as well as graph policies. The main

advantage of this framework is that it detects conflicts between

sanitization policy and provenance policies.

The authors in [19] proposed a model known as Provenance

Abstraction Model (PAM) and implemented a tool called ProvAbs

which uses a grouping approach with a defined clearance level of

both graph components and users to get a secured graph view. The

main advantage of this model is that the resulting graph preserves

the confidentiality of the provenance graph. On the other hand, it

may require multiple grouping to preserve to provenance policies.

The authors in [6] proposed a graph grammar rewriting rules that

generate a safe provenance graph. Their proposed rewriting rules

involve some graph operations such as vertex contraction, path

contraction, edge contraction, and node relabeling. The main

limitation of this work is its negligence of provenance policies as

well as they do not study the disclosure threat.

To conclude, previous attempts proposed different approaches to

preserve the privacy of the OPM provenance graph but sacrifice

either the graph privacy or the graph utility. Grouping approaches

preserve the privacy of the OPM graph, but it sacrifices utility in

addition, it requires handling conflicts between the resulted graph

and the provenance policies. On the other hand, anonymization

approaches increase the utility of the sanitized OPM graph (as it

just changes the nodes to less sensitive ones and do not change the

structure of the graph) but they do not guarantee its privacy.

Moreover, anonymization and grouping depend on the user

specification which is very hard specifically for large OPM graphs.

Nevertheless, previous efforts ignored the importance of preserving

graph privacy and provenance policies while preserving an

acceptable level the graph utility. In the remaining of this paper, we

present a novel approach for protecting provenance graphs from

disclosing sensitive information that caused by workflow

constraints without sacrificing neither graph privacy nor its utility.

4. MOTIVATING EXAMPLE
In this Section, we show how the knowledge of workflow

constraints may allow adversary users to infer sensitive information

from a sanitized workflow provenance graph. In the following

discussion, Pa denotes an anonymized view of a process node. Da

denotes an anonymized view of a data node. While Pg and Dg

denote a grouped process node and a grouped data node

respectively.

Figure 2 represents graph G which is a fragment of a workflow

provenance graph. Consider the following set of constraints that

govern the workflow execution where P1, P2, P4, P5 are workflow

processes.

C1: P1 and P2 have the same input data

C2: P4 must be executed by a manager

C3: P2 and P5 must be executed by the same actor

C4: P2 and P4 are sequential processes

C5: If the output data of P4 is greater than 5 then it must be

processed by P5

Figure 2. Workflow provenance graph G

In the following discussion, we discuss two scenarios with different

types of sensitive information and the effectiveness of different

sanitization approaches mainly anonymization and grouping to

prevent disclosure of sensitive information.

Scenario 1: Sensitive information is a process node P2. Figure 3

represents different sanitized views of graph G that are displayed

in Figure 2. Figure 3(a) represents G1, which is produced using

anonymization. P2 is anonymized to Pa and its output D2 is

P1

P2

P4

P5

P3

P6 A2

D1

D2 D5

D7

D6

A3 A4

A1

D3

D4

D8

D9

C

CC

g

U

g
g

U

C

C

U

g

g

C

U

U

U

g

C

Actor
Data

Process

C ControlledBy
 g generatedBy

U UsedBy

anonymized to Da to ensure that Pa cannot be detected from its

input and output data values. G1 prevents direct attacks to P2.

However, an attacker can infer that Pa is P2 via constraint C1. The

utility of graph G1 is [node utility=19/19 and edge utility=19/19].

Using the grouping approach, P1, P2 and their output data D3 and

D4 are grouped to process Pg1. This grouping will preserve the

privacy of P2, however, it violates the provenance policies as two

nodes from the same type Pg1 and P4 are connected. Hence, we

need to group more nodes to satisfy all the provenance policies.

Figure 3 (b) represents graph G2 that is produced via grouping P4

and its actors with Pg1 and D1 to Pg2.we had to group D1 to handle

NFD policy (Table 1). G2 preserves the privacy of sensitive process

P2 and preserves the provenance policies. However, it affects the

graph utility (node utility=12/19, edge utility=12/19) as it groups

many of the graph components.

Scenario 2: Sensitive information is a data node D5. Figure 4(a)

represents G3 that anonymizes D5 to Da and anonymizes P3 to Pa.

the utility of G3 is [the node utility=19/19 and edge utility=19/19].

Figure 4(b) represents G4 that groups P3, D5, and D2 to Pg. Both

G3 and G4 preserve the privacy of D5, but the utility of G3 has

been better than G4 utility [node utility= 16/19 and edge

utility=16/19].

This example proves that one approach will not fit in all cases. The

choice of the optimal sanitization approach depends on the defined

workflow constraints.

5. ProvS Architecture
In the following discussion, we state some general assumptions to

ensure the effectiveness of our proposed approach. Those

assumptions basically define the general workflow structure to

distinguish other structures that can be a result of firing workflow

constraints. First, workflow processes are in sequential order.

Second, the cardinalities of the relationships between the

provenance graph components are unknown. Third, different

processes are executed by different actors (SOD). Fourth, the input

provenance graph is valid according to provenance graph policy

(see Table 1). We used the graph utility measure that proposed in

[18]. Finally, ProvS produces the set of sanitization actions that

need to be applied to a provenance graph to be secured. We are not

concerned with how the nodes will be anonymized as there are

many approaches exits in the literature for anonymization [27] [16].

The architecture of ProvS is portrayed in Figure 5. The

architecture encapsulates two main phases which will be described

in the following discussion.

5.1 The Design Phase
The design phase is concerned with collecting and refinement

workflow constraints by the workflow experts to be used for

controlling the workflow execution. This phase is performed only

once in offline. It may be repeated only when workflow constraints

are updated. Actually, the main incentive behind studying

workflow constraints are twofold:

- Sanitization will work under supervision of a Workflow

Management System (WFMS) that enforces these

constraints during workflow runs. Therefore, the

workflow constraints will play an integral part in

securing workflow provenance graphs.

- Determining what nodes need to be anonymized and

what nodes need to be grouped in order to preserve the

graph privacy with respect to the knowledge of workflow

constraints.

P1

P2

P4

P5

Pa

P6 A2

D1

D2 Da

D7

D6

A3 A4

A1

D3

D4

D8

D9

C

CC

g

U

g
g

U

C

C

U

g

g

C

U

U

U

g

C

P1

P2

P4

P5

Pg

P6 A2

D1

D7

D6

A3 A4

A1

D3

D4

D8

D9

C

CC

g

U

g

C

C

U

g

g

C

U

U

U

g

C

(a) G3 anonymized view of G with sensitive D5 (b) G4 grouped view of G with sensitive D5

Pa

P2

P4

P5

P3

P6 A2

D1

D2 D5

D7

D6

A3 A4

A1

Da

D4

D8

D9

C

CC

g

U

g
g

U

C

C

U

g

g

C

U

U

U

g

C

Pg2

P5

P3

P6 A2

D2 D5

D7

D6

A1

D8

D9

C

U

g
g

U

C

C

C

U

g

C

(a) G1 anonymized view of G
with sensitive P2

(b) G2 grouped view of G
with sensitive P2

g

Figure 3. Sanitized views of G in case of P2 is the sensitive information

Figure 4.Sanitized views of G in case of D5 is the sensitive information

Workflow constraints specify either the values of nodes' attributes

or the relationships between processes. For illustration, BOD

constraint defines a link structure as multiple process nodes are

connected to the same agent node through controlledBy

relationship. MMP constraint defines a link structure as multiple

data output nodes are connected to the same process node. SP

constraint defines a link structure as a process output node is

connected to the other process node. PP constraint defines a value

of two process nodes, it does not specify any link structure between

them. Similarly, PEP constraint defines a value of a process node.

From the previous discussion and our motivation example we can

conclude some remarks, First, constraints that affect the identity

disclosure, attribute disclosure or define the general workflow

structure (discussed earlier in this section) can be secured using

anonymization approach. On the other hand, constraints which

specify a link structure different from the general workflow

structure cannot be secured against illegal inferences using an

anonymization approach as the structure of the graph is the key

player and anonymization does not hide this structure. Therefore, it

should be sanitized using a grouping approach to hide the graph

structure. A complete assessment of workflow constraints using

anonymization and grouping against privacy is discussed in [21].

Subsequently, we classify the workflow constraints (Table 2),

according to their influence on graph privacy as follows:

- Configuration constraints are the types of constraints

that define link structure different from the general

workflow structure.

- Identity constraints are the types of constraints that

define a node identity or attribute values such that relate

actor or role to a process or define relationships between

processes and/or data.

Orthogonal to this classification, Binding of duty, different

workflow and same input constraints are considered configuration

constraints while the other constraints are considered identity

constraints.

Table 3. Workflow constraints classification

Classification Workflow Constraints

Identity constraints CP, SOD, SP, PP, EP, TC, RC

Configuration constraints BOD, MMP, SI, DWF

Table 3 classifies the workflow constraints presented in Table 2

according to our constraints classification approach. As we

mentioned, SP is the general graph structure therefore, it will not

be considered as a configuration constraint.

Driven by the following facts: workflow constraints may have

different influence on the privacy of OPM graphs. 1) Some

constraints might not affect the privacy of OPM graph, 2) One

constraint may be used to reveal sensitive information; 3) Multiple

constraints can be combined to reveal sensitive information. We

propose a constraint network graph (ConNet) which offers a means

of identifying potential relationships between workflow

components.

ConNet is an undirected graph that represents the workflow

constraints exist among different workflow components. A ConNet

node can be a process, data, or actor that exists in a workflow

constraint. The edges represent constraints between the connected

nodes. These edges are labelled with the workflow constraint name

that governs the execution of the two connecting nodes. The main

incentive behind this graph is to discover all the paths that an

attacker can go through to infer sensitive information. ConNet is

constructed as follows:

For each constraint in the workflow constraints

1. Draw a node for each OPM component in the

constraint

2. Label these nodes with the component's name in the

constraint

3. Connect the nodes in each constraint with an edge

and label this edge with the constraint name

(specified in Table 2).

Continuing with our motivating example discussed in Section 4, the

ConNet is illustrated in Figure 6 ConNet graph is stored in ConNet

repository to be used later in the execution phase.

P5

BindingOfDuty

P1 P2

P4
Manager

Actor

Sequential

Role Const. Certa
in Process

SameInput

Figure 6. ConNet graph for the motivating example

Design Time

ConNet
Repository

Compliance Rules
Repository

Refinement &
Resolve Conflicts

WF Constraints
Graph Generator

Business Rules
Repository

WF Expert

Graph
Owner

Execution Time

Sanitizer

Provenance Graph Repository

Privacy Policy

Inference Engine

Preparing
Sensitive Nodes

Filtering
Get the

supplement
actions

Figure 5. ProvS architecture

5.2 The Execution Phase
This phase is concerned with generating the sanitization actions

that need to be applied to a workflow provenance graph based on

privacy policy and present these sanitization actions to the graph

owner. The main components of this phase are:

Privacy Policy: the privacy policy stores the privacy preferences.

It contains the sensitive graph components [nodes/edges] that need

to be hidden.

Provenance Graph Repository: stores the workflow provenance

graphs that need to be sanitized for sharing.

The Inference Engine Module: The main purpose of this module

is to find the set of provenance graph nodes that are related to the

sensitive information using ConNet graph. The InferenceEngine

procedure in Figure 7 generates two sets, one for the anonymized

nodes AA set which is composed of individual nodes that are

required to be anonymized, while the other is for the grouped nodes

GA set which is a set of nodes set which are required to be grouped

together. The procedure first checks if the sensitive node N exists

in the ConNet (line 2) then, for all the edges that exist in the paths

connected to N, it gets the edge label to determine its classification

type (line 4-8). Then, based on the edge classification the connected

nodes of this edge it is added either to AA or GA (line 9-11).

The Sanitizer Module: the sanitizer has three main functions (i)

preparing the sensitive node set, (ii) Filtering; (iii) get the

supplement actions. The sanitizer algorithm is presented in Figure

9. Preparing sensitive nodes set by acquiring the sensitive nodes

from the privacy policy and for each sensitive edge it get its

connected nodes and add them to the sensitive nodes set. Next, the

sanitizer sends these sensitive set to the InferenceEngine module

(line 5). Further, it filters the AA set and GA set generated from the

InferenceEngine. For multiple sensitive nodes which have different

sanitization actions the sanitizer merge the anonymization sets and

grouping sets. In addition, it uses the following rules in the filtering

step.

Rule 1: If a process exists in both AA set and GA set then remove

it from AA (as grouping is more restricted than anonymization).

Rule2. If a process exists in multiple groups in GA then merge these

groups to one group (as a node cannot exist in more than one

group).

Finally, the sanitizer gets the supplement actions (Line 8 and 221)

to handles the limitations of anonymization and grouping. For

grouping set it uses Rule 3 (Line 8-12).

Rule 3: For each grouped process set, group the data outputs nodes

of the grouped processes into a data group node (to prevent NFD

and NWC problem in Table 1).

For the anonymization set. It computes the related actions using

procedure RelatedActions in Figure 8. Which uses the following

rules to generate related actions that need to be added to AA set.

Rule 4: for each anonymized data node, anonymize its generated

process and used process (to prevent disclosure of this data using

R1 and R2 in Section 2.3).

Rule 5: for each anonymized process in AA anonymize its output

data and the process that used this output data (to prevent

disclosure of the anonymized process using R1 and R2).

The sanitizer output the final anonymization set and grouping set

to the graph owner.

Continuing with our motivating example discussed in Section 4, for

the first scenario, the anonymization set AA= {P4, D6, A3, A4}

and the grouping set GA= {{P1, P2, P5}, {D3, D4, D7}}. The

resulted graph utility will be [nodes utility=15/19 and the edge

utility= 15/19].

Table 4. Features comparison for sanitization approaches

 ZOOM [10] Surrogates [3] ProPub [12] ProvAbs [18] ProvS

Sanitization

Method

Anonymization X √ X X √

Grouping √ X √ √ √

Conflict Detection and resolution X - √ √ -

Study the utility of graph X √ X √ √

Preserve Graph Privacy X X X X √

Procedure: InferenceEngine (Node N, Graph ConNet, AA

output, GA output)

1. Define set AA=, GA=
2. IF (N exists in ConNet) Then

3. Begin
4. For each path connected to N
5. For each edge in the path

6. (N1, N2)= Get the connected nodes

7. C= Get label of the edge
8. IF((C=BOD)˅(C=MMP)˅(C=SIP)˅(C=DNC)) Then

9. GA= {{N1, N2}}

10. Else
11. AA= {N1, N2}

12. End IF

13. End

Procedure: RelatedActions (Node N, Graph G, AA output)

1. Begin

2. IF(N is a data node) Then

3. AA=AA{process used N}{process generated N}

4. Else IF (N is a process node) Then

5. AA=AA{data generated from N as v}{processes used v}

6. End IF

7. End

Figure 7. InferenceEngine procedure

Figure 8. RelatedActions procedure

In the second scenario, the anonymization set AA= {P3, D5, P5}

and the grouping set GA=. The resulted graph utility will be [node

utility= 19/19 and edge utility=19/19].

5.3 Evaluation
 In Table 4, we compare the main features of different existing

sanitization approaches against ProvS. It is clear from the table that

both Surrogates and ProvS do not cause conflicts in the resulting

graph while other approaches detect and solve conflicts. The reason

is that anonymization preserves the graph structure and ProvS uses

homogenous grouping which handles this issue. For the utility issue

surrogates provides a utility measure for paths and nodes to

measure the informative of the surrogates. ProvAbs annotates each

node in the graph with a utility value which defines the nodes to be

retained in the resulted graph. ProvS uses utility for paths and

nodes to measure the informative of the resulted graph. For the

privacy feature, all the approaches that use grouping preserve the

graph privacy.

We perform experiments to ensure the effectiveness of ProvS.

Experiments were conducted on a HP PC with 2.53GHz Intel Core

i5 CPU, 4GB RAM and 160 disk space running MS Windows 7.

Neo4j 2.2.5 graph database is used to store OPM provenance

graphs and constraints network (ConNet). Java is used as the main

programming language for writing the logic of the code and we

used Cypher queries to retrieve data from the provenance graph and

ConNet.A set of workflow constraints was generated along with a

series of synthetic provenance graphs that satisfy the generated

workflow constraints. The experiments were conducted on 3

different sets of workflow constraints. The first a set of type

configuration constraints which were sanitized via grouping, the

second a set of type identity constraints which were sanitized via

an anonymization approach. The third set is mixed half of them

from identity constraint type and the other half from the

configuration constraint type which was sanitized using a

combination of anonymization and grouping. The results of the

experiments are shown in Figure 10 , which shows clearly that

ProvS increases the graph utility even if the workflow constraints

are configuration constraints. This is due to homogenous grouping

that decreases the number of graph properties which are needed to

be grouped.

Figure 10. Utility measure for different types of constraints

Figure 11. Utility measure for different ConNet topology

Additionally, an additional series of tests to determine the effect of

ConNet topology on the provenance graph utility in case of

configuration constraints. Figure 11 shows a comparison of the

ConNet topology versus graph utility while keeping the sensitive

information, provenance graph size and ConNet size constant. This

comparison shows that unconnected ConNet graphs increase the

utility of the graph as the groups in the grouping set will not be

overlapping and hence, will not be joined. On the other hand, highly

connected ConNet graphs decrease the resulted graph utility as

many nodes will be in different groups and hence these groups will

be joint to be one group.

6. CONCLUSION AND FUTURE WORK
Traditional sanitization approaches which are tailored to secure

provenance graphs are no longer sufficient as they ignore an

important source of security, namely graph privacy attacks due to

the use of workflow constraints. In this paper, we first illustrated

the main problems of anonymization and grouping approaches.

Then, we highlighted different types of workflow constraints that

could be used in disclosing sensitive information. Further, we

classified these constraints according to their influence on graph

privacy. Consequently, we introduced ProvS that ensures secure

and valid provenance graphs. ProvS combines anonymization and

grouping for sanitizing sensitive provenance graph. Experimental

results show the effectiveness of ProvS through testing it on a

graph-based system implementation.

For future work, we plan to enhance the performance of ProvS in

the presence of large provenance graphs and large number of

workflow constraints. In addition, applying our approach to

different case studies.

The Sanitizer Algorithm

1. Input: OPM graph G(V,E), Sensitive Set SS, ConNet C(V,E)

2. Output: Anonymization set AA and Grouping set GA

3. Method:

1. Define Anonymization Actions Sets AA

2. Define Grouping Actions Set GA

3. Define Output Data Set OD

4. For each S in SS

5. InferenceEngine (S, ConNet, AA,GA)

6. IF (AA != ˅ GA !=) Then

7. Begin

8. For each group in GA

9. Begin

10. OD=set of all generated data from this group

11. GA=GA OD

12. End
13. IF (an element exists in different pairs in GA) Then

14. union these pairs to be one group

15. For each element e in AA

16. IF(e h where hGA) Then

17. AA=AA-{e}

18. For each element e in AA

19. RelatedActions(e, G, AA output)

20. End IF
21. Else// S is not in the ConNet

22. Begin

23. AA=AA{S}

24. RelatedActions(S, G, AA output)

25. End

26. End

Figure 9.The sanitizer algorithm

0

0.2

0.4

0.6

0.8

1

U
til

ity

Number of Configration Constraints

Utility Measure for Different ConNet Topology

Connected Graph Unconnected Graph

0

0.2

0.4

0.6

0.8

1

1.2

U
ti

lit
y

Number of Constraints

Utility Measure for Different Types of Constraints

Configration Constraints Identity Constraints Mixed Constraints

7. REFERENCES
[1] Alsiyami, A., “A Policy Language Definition for Provence

in Pervaisve Computing,” Ph.D.Thesis. Univ. Sussex.

[2] Altintas, I., O. Barney, and E. Jaeger-frank, “Provenance

Collection Support in the Kepler Scientific Workflow

System,” in Proceedings of the international conference

on Provenance and Annotation of Data, 2006, vol. 4145,

pp. 118–132.

[3] Blaustein, B., A. Chapman, L. Seligman, M. D. Allen, and

A. Rosenthal, “Surrogate Parenthood: Protected and

Informative Graphs,” in PVLDB, 2011, vol. 4, no. 8, pp.

518–527.

[4] Cadenhead, T., M. Kantarcioglu, and B. Thuraisingham,

“A framework for policies over provenance,” Proc. 3rd

USENIX Work. Theory Pract. Proven. (TaPP ’11), 2011.

[5] Cadenhead, T., M. Kantarcioglu, and B. Thuraisingham,

“An Evaluation of Privacy, Risks and Utility with

Provenance,” Secur. Knowl. Manag. Work. (SKM),

Novemb., 2010.

[6] Cadenhead, T., V. Khadilkar, M. Kantarcioglu, and B.

Thuraisingham, “Transforming provenance using

redaction,” Proc. 16th ACM Symp. Access Control Model.

Technol. - SACMAT ’11, p. 93, 2011.

[7] Capitani Di Vimercati, S. De, S. Foresti, and P. Samarati,

“Access Control Policies and languages,” Int’,l J. Comput.

Sci. Eng., vol. 3, no. 2, pp. 94–102, 2007.

[8] Chebotko, A., S. Lu, S. Chang, S. Member, S. Chang, and

F. Fotouhi, “Secure abstraction views for scientific

workflow provenance querying,” IEEE Trans. Serv.

Comput., vol. 3, no. 4, pp. 322–337, Oct. 2010.

[9] Cheney, J. and R. Perera, “An Analytical Survey of

Provenance Sanitization,” in IPAW, 2014, pp. 113–126.

[10] Cohen-Boulakia, S., O. Biton, S. Cohen, and S. Davidson,

“Addressing the provenance challenge using ZOOM,”

Concurr. Comput. Pract. Exp., vol. 20, no. 5, pp. 497–506,

2008.

[11] Davidson, S. B., Z. Bao, and S. Roy, “Hiding Data and

Structure in Workflow Provenance,” DNIS, pp. 41–48,

2011.

[12] Dey, S. C., D. Zinn, and B. Ludäscher, “ProPub: Towards

a declarative approach for publishing customized, policy-

aware provenance,” Lect. Notes Comput. Sci. (including

Subser. Lect. Notes Artif. Intell. Lect. Notes

Bioinformatics), vol. 6809 LNCS, pp. 225–243, 2011.

[13] Dey, S. and B. Ludascher, “A declarative approach to

customize workflow provenance,” Proc. Jt. EDBT/ICDT

2013 Work. - EDBT ’13, p. 9, 2013.

[14] Dey, S., D. Zinn, and B. Ludáscher, “Repairing

provenance policy violations by inventing non-functional

nodes,” in CEUR Workshop Proceedings, 2011, vol. 737,

pp. 109–122.

[15] Jurnawan, W. and U. Röhm, “Data provenance support in

relational databases for stored procedures,” in Lecture

Notes in Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), 2009, vol. 5667 LNCS, pp. 97–111.

[16] Kifer, D., “L-Diversity : Privacy Beyond k -Anonymity,”

Proc. 22nd Int. Conf. Data Eng., vol. 1, pp. 1–36, 2006.

[17] Kumar, M. and M. K. Anand, “Managing Scientific

Workflow Provenance,” Unversiy od California, 2009.

[18] Missier, P., J. Bryans, C. Gamble, V. Curcin, and R.

Danger, “ProvAbs: model, policy, and tooling for

abstracting PROV graphs,” Procs. IPAW 2014

(Provenance Annot., pp. 3–15, 2014.

[19] Missier, P., J. Bryans, C. Gamble, V. Curcin, and R.

Danger, “Provenance Graph Abstraction by Node

Grouping,” Sch. Comput. Sci. Tech. Rep. Ser., no. August,

2013.

[20] Moreau, L., J. Freire, J. Futrelle, R. E. Mcgrath, J. Myers,

and P. Paulson, “The Open Provenance Model : An

Overview,” IPAW, no. August 2007, pp. 323–326, 2008.

[21] Nagy, N., “Assessment of Workflow Constraints and

Sanitization Approaches on Provenance Graph Privacy

and Utility,” Tech. report, Cairo Univ., 2016.

[22] Nguyen, D., J. Park, R. Sandhu, D. Nguyen, and R.

Sandhu, “A Provenance-based Access Control Model,”

2012 Tenth Annu. Int. Conf. Privacy, Secur. Trust, pp.

137–144, 2012.

[23] Oinn, T., M. Addis, J. Ferris, D. Marvin, M. Senger, M.

Greenwood, T. Carver, K. Glover, M. R. Pocock, A.

Wipat, and P. Li, “Taverna: A tool for the composition and

enactment of bioinformatics workflows,” Bioinformatics,

vol. 20, no. 17, pp. 3045–3054, 2004.

[24] Pesic, M., “Constraint-Based Workflow Management

Systems: Shifting Controls to Users,” 2008.

[25] Rachapalli, J., V. Khadilkar, M. Kantarcioglu, and B.

Thuraisingham, “REDACT: A Framework for Sanitizing

RDF Data,” in Proceedings of the 22nd international

conference on World Wide Web companion, 2013, pp.

157–158.

[26] Runte, W. and M. El Kharbili, “Constraint Checking for

Business Process Management,” in GI Jahrestagung,

2009, pp. 4093–4103.

[27] Samarati, P., “Protecting respondents’ identities in

microdata release,” IEEE Trans. Knowl. Data Eng., vol.

13, no. 6, pp. 1010–1027, 2001.

[28] Schefer, S., M. Strembeck, J. Mendling, and A.

Baumgrass, “Detecting and Resolving Conflicts of

Mutual-Exclusion and Binding Constraints in a Business

Process Context,” Move to Meaningful Internet Syst. OTM

2011, vol. 7044, no. October, pp. 1–18, 2011.

[29] Silva, C. T., E. Anderson, E. Santos, and J. Freire, “Using

VisTrails and provenance for teaching scientific

visualization,” Comput. Graph. Forum, 2011.

[30] Thuraisingham, B., T. Cadenhead, M. Kantarcioglu, and

V. Khadilkar, Secure Data Provenance and Inference

Control with Semantic Web. Auerbach Publications, 2014.

[31] Turetken, O., A. ELGammal, Van Den Heuvel, and M.

Papazoglou, “Enforcing Compliance on Business

Processes Through the Use of Patterns,” in 19th European

Conference on Information Systems (ECIS 2011), Finland,

2011.

[32] White, S. a and I. B. M. Corp, “Process Modeling

Notations and Workflow Patterns,” Bus. 21, vol. 21, pp.

1–25, 2004.

