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ABSTRACT
Performance analysis of distributed systems with tiered software 

architecture has popularly entailed mean response time as the 

commonly used metric. It must be noted however that as a metric, 

response-time percentile is of greater importance since it is more 

desirable to reduce the variability of a system’s response time, 
rather than minimizing the mean response time. It is a fact that 

analytical approximations for response time distribution do exist. 

However these analytical solutions capture only the steady-state 

behaviour (long-run behaviour) of the system. On the other hand, 

today’s tiered cloud-based systems are so complex that they never

reach steady-state. Consequently, analyzing their transient 

behaviour (short-term behaviour) becomes far more important 

than analyzing their steady-state behaviour. Regardless, it is a 

difficult task to accomplish transient analysis analytically due to 

the enormous state space of such systems. In this work, we 

analyze the transient behaviour of a 3-tier cloud-based system 

using discrete event simulation. We model the system as an open 

queueing network and estimate the response time distribution 

through the simulation. The results show that in a 3-tier system, a 

configuration with large number of virtual machines (VMs) does 

not necessarily perform better than a configuration with smaller 

number of VMs. The results further show that different system 

configurations containing the same number of VMs yield different 

performance depending on the replication level of software 

components running in different tiers. We demonstrate that our 

model can serve as part of a decision support system associated 

with dynamic VM provisioning. Our model can be used to 

determine whether a given number of VMs can meet the desired 

service-level objectives (SLOs) specified in terms of response 

time percentile.   
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1. INTRODUCTION
Increasingly, tiered web applications are getting deployed in

clouds since cloud computing allows for dynamic scaling of

computational resources as required on a pay-per-use basis. This 

relieves the application service providers from buying and 

maintaining data centers thereby reducing the operational cost. 

However, such deployment poses challenges for automated 

performance management of these applications. This is because 

the management system now needs to decide on the amount of 

computational resources (VMs) to be acquired or released 

dynamically for a change in system workload while ensuring that 

the SLOs are not violated. One way to make such a decision is to 

use system performance models repeatedly to evaluate various 

what-if scenarios [3]. 

System performance models can be used to predict different 

performance measures. The commonly used performance measure 

has been the mean response time (RT). However, Broadwell [5] 

has justified that response-time percentile as a metric is of greater 

importance than mean RT since it is more desirable to reduce the 

variability of a system’s response time, rather than minimizing the 
mean response time. 

In this work, we have used an open queueing network as our 

system performance model because we assume that the cloud-

based systems have large number of users and the users are 

transient in their use of websites. Consequently, the web 

application might behave more like an open system as suggested 

by Harchol-Balter [9]. 

For open queueing networks, computing the exact response time 

distribution analytically is difficult since it may have to deal with 

infinite number of system states. Several approximations to 

response time distribution do exist though [1, 4, 6, 10, 11]. 

However these analytical solutions are for long-run or steady-state 

behaviour of the system.  

Cloud-based web systems are so complex and dynamic that they 

never reach steady-state. Consequently, analyzing their transient 

behaviour becomes far more important than analyzing their 

steady-state behaviour [2]. In this work, we are interested in 

analyzing the transient behavior of the system.  In spite of the 

importance of transient analysis, it is a difficult task to achieve it 

analytically due to the enormous state space of these systems. We 

therefore resort to discrete event simulation for our analysis. 

The goal of this paper is to develop a simulation model to analyze 

transient behavior of a 3-tier cloud-based web system. Our model 

predicts the response time distribution for a given system 

workload. We model the system as an open queueing network 

with only feed-forward arcs. The system workload is represented 

by the arrival rate, i.e. the number of job arrivals per unit time. 

Here, we assume that the software server at each tier is replicated 

into one or more copies and each copy runs on a separate virtual 

machine (VM). Thus, the queueing network consists of a variable 

number of VMs in three tiers. Although our simulation model 

may be computationally expensive as compared to an analytical 
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counterpart, it is more general in terms of service time and inter-

arrival time distributions.   

For our hypothetical 3-tier system, over- or under-utilization of 

VMs could occur if an application service provider didn’t 
purchase enough number of VMs from the cloud provider for 

different tiers of the system. For example, when the number of 

VMs purchased is too few to handle a given workload, most of the 

requests will not be processed within the required response time 

threshold. On the contrary, if too many VMs were purchased to 

handle relatively fewer number of requests, the VMs will be 

under-utilized and this could lead to wastage of computational 

resources.  Hence, the challenge is to find a configuration for the 

system consisting of the appropriate number of VMs for each 

stage to process the incoming requests that will ensure that a 

required response-time percentile is within a given threshold. 

The key contribution of our work is twofold. First our work 

presents a model—not only to predict mean response time but also 

to predict the response time distribution. Our model is general 

enough to accommodate non-Markovian inter-arrival and service-

time distributions. Second, our work demonstrates how our model 

can serve as part of a decision support system to find the 

appropriate configuration that would ensure that a given SLO (in 

terms of response-time percentile) is met. 

The rest of the paper is organized as follows. Section 2 describes 

the 3-tier software architecture. Section 3 describes the open 

queueing network performance model for this architecture. 

Section 4 analyzes the queueing model and discusses the results. 

Finally section 5 concludes the work.  

2. 3-TIER SOFTWARE ARCHITECTURE 
Figure 1 shows the software architecture of our hypothetical 3-tier 

cloud-based system. We analyze this architecture in this work. 

 

 

The architecture consists of three tiers. One or more Web servers 

run in the first tier (tier-1), one or more application servers (App 

servers) run in the second tier (tier-2) and one or more database 

servers (DB servers) run in the third tier (tier-3). The users access 

the application at the web servers. We assume that at any given 

tier, one or more VMs can be provisioned, each running a single 

instance of a server relevant to that tier. For our modeling 

purposes, we assume that the workload is equally distributed 

among the servers at any given tier. We indicate this in Figure 1 

using the phrase "balanced load". 

We assume that a service request will be processed exactly once 

(in a server) at each tier. After completion of processing at the 

third tier, the response is returned to the user. We further assume 

that a request incurs a waiting time in the server’s queue before 
being processed, if the server is busy. The request then incurs a 

service time for getting processed in the server. 

The request is first sent to a Web server for processing. If the Web 

server is busy then the request needs to wait in the server’s queue 
before getting processed.  

The request is then redirected to an App server present in the 

second tier.  If the App server is busy then the request needs to 

wait in the server’s queue before being processed.  
Next, the request is redirected to a DB server present in the third 

tier. As before, the request waits in the server’s queue if the server 
is busy. Once the processing of the request is finished at the DB 

server, the response is sent back to the user. 

3. SYSTEM PERFORMANCE MODEL 
The 3-tier software architecture of Figure 1 is modeled as an open 

queueing network (see Figure 2). In Figure 2, each layer of 

queueing stations represents the collection of servers (each server 

running on its own VM) supporting execution of requests at each 

tier. We assume that the replicas of servers in a given tier have 

identical service time distribution and that the arrivals are split 

uniformly among them. Let  denote the arrival rate of user 

requests at tier 1. If we have 3 server replicas in tier-1, then the 

arrival rate at each of that replica will be /3. We assume that 1 

is the service rate of each Web server replica at tier-1, 2 denotes 

the service rate of each App server replica at tier-2, and 3 denotes 

the service rate of each DB Server replica at tier-3.  

As shown in Figure 2, the response time of a request is the time 

between the arrival of the request at a tier-1 server to the 

completion of the request at a tier-3 server. This time includes the 

waiting times at the queues of the relevant servers at different tiers 

and the service times of those servers.  

Let RTi denote the response time of the i-th request. We assume 

that the SLO is specified in terms of response time percentile. An 

example SLO is “The response time should be less than or equal 

to 0.3 seconds with probability 0.95”. This means that 95% of 

the requests should complete within 0.3 seconds. Here, 0.3 

seconds is the response time threshold. We denote this threshold 

by . 

We have simulated the open queueing network shown in Figure 2 

using a discrete event simulation framework called SimPy—a 

Python based framework. 

Let N denote the total number of requests completed in one 

simulation run. During every simulation run, we record the 

response time of each request RTi. At the end of each simulation 

run, we compute the number of requests whose response time is 

less than or equal to the threshold . For request i,  

  Let  �� = 1 if { RTi ≤  } 

              = 0 otherwise 

users and their 

web browsers  

 Web Server 

VM 
 Web Server 

VM 

 App Server 

VM 
 App Server 

VM 

 DB Server 

VM 
 DB Server 

VM 

 

balanced load  

balanced load  

balanced load  

Figure 1. Software architecture of our hypothetical 3-tier 

cloud-based system. 
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Let the random variable RT denote the response time. We estimate 

the response time distribution as: �ሺ�� ≤ �ሻ = ∑ ��ܰ�
�=1  

Further, we estimate the mean response time as: ܯ��� �� = ∑ ���ܰ�
�=1  

 

4. SIMULATION RESULTS 
In this section, we analyze the queueing network of Figure 2 for 

different configurations of VMs. We denote a VM configuration 

as (C1, C2, C3) where C1, C2, C3 denote the number of VMs in tier-

1, tier-2 and tier-3 respectively. We assume that a VM in a tier 

runs a server replica relevant to that tier. In sub-section 4.1, we 

take an example VM configuration (3,2,1). Using the 

configuration, we estimate the response-time distribution and 

analyze the system’s transient behavior for five different time-

periods. We assume that the requests arrive according to a Poisson 

process and the service times of the servers are exponentially 

distributed. We further assume that that the system gets started 

with empty queues for every server. In sub-section 4.2, we 

demonstrate how our model can be used to evaluate various what-

if scenarios in order to decide for a configuration that would meet 

a given SLO.  

Table 1 shows the model parameters and their values for our 

simulation. We have adopted them from the work of Gullhav et al. 

[8]. We assume the arrival rate to be 100 requests/sec. We further 

assume that the tier-3 servers are faster than tier-2 servers, and the 

tier-2 servers are faster than tier-1 servers. We have assumed the 

service rates accordingly (see Table 1). 

 

Table 1. Model Parameters 

Parameter Parameter Value 

Arrival rate, 100 requests/sec 

Service rate at tier-1, 1 60 requests/sec 

Service rate at tier-2, 2 70 requests/sec 

Service rate at tier-3, 3 80 requests/sec 

   

4.1 Finding Response-time Distribution and 

Percentiles 
To illustrate the predictions of response time distribution and 

percentiles, we consider the configuration (3,2,1). This 

configuration reflects the scenario where the database layer 

becomes the performance bottleneck owing to requirements of 

transactional access and atomicity [7]. We analyze this 

configuration for five different time periods: 60sec, 120sec, 

180sec, 240sec and 300sec. We assume the model parameters as 

given in Table 1. 

A plot of the five resulting response time distributions is shown in 

Figure 3 for the configuration (3,2,1). In this configuration, there 

is only one server at tier-3 which processes 80 requests per 

second. Since the arrival rate is 100 requests/sec, the requests get 

queued up in the tier-3 server as time increases. Consequently, as 

time passes by, more and more requests fail to meet a given 

threshold. If we consider an SLO specifying that “The response 

time should be below 15 seconds with probability 95%”, then this 

configuration will meet the SLO for only one minute. 

Subsequently, it will not be able to meet the SLO any further.  

Figure 4 summarizes some important statistics about the five 

response time distributions. It shows the mean response time and 

three different response time percentiles (90th, 95th and 99th) with 

the passage of time. We find that during a time period of 5 

Web Server  

Tier-1 

App Server  

Tier-2 

DB Server 

Tier-3 

Response Time 





















Figure 2. The 3-tier software architecture of Figure 1 depicted as an open queueing network model. 
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minutes, the configuration (3,2,1) will be able to meet a response 

time threshold of 57 seconds with probability 0.95. 

 

 

 

4.2 What-if analysis in Decision Support 
In this section, we illustrate how our model is used to evaluate 

different what-if scenarios to decide for a VM configuration that 

would meet a specified SLO.  

We are aware that the cloud computing paradigm allows for the 

dynamic scaling of computational resources as required on a pay-

per-use basis. Let us assume that our cost budget will allow us to 

buy a maximum of 3 VMs for each tier. We further assume that 

every VM costs the same amount of dollars. Therefore, instead of 

a static configuration, our aim is to change the configuration 

dynamically depending on the workload to be cost effective. Thus 

our goal is to buy a minimum number of VMs that will meet the 

SLO for a given workload. 

Since we are allowed a maximum of 3 VMs per tier, there could 

be 27 potential VM configurations that could be analyzed. We 

analyze the response time per request for processing 1000 

requests using the model parameter values provided in Table 1. 

We undertake this analysis for the response time threshold range 

of 0.1 to 0.7 seconds. We consider only those configurations for 

which the probability of meeting a given threshold (in the range 

0.1 to 0.7 secs) is 0.55 or higher. We find that out of the 27 

different configurations, only 8 of them meet this requirement.  

Figure 5 shows the response time distribution for the eight 

configurations (2,2,2), (2,2,3), (2,3,2), (2,3,3), (3,2,2), (3,2,3), 

(3,3,2) and (3,3,3). Let us consider an SLO to be “The response 

time should be below 0.3 seconds with probability 0.95”. The 

question we want to answer is “Which configuration is the best 

one to meet this SLO?” From the figure we see that the 

configurations (2,3,2), (2,3,3), (3,2,2), (3,2,3), (3,3,2) and (3,3,3) 

satisfy the SLO. However, among these configurations, (2,3,2) 

and (3,2,2) have smaller number of VMs (7 VMs) in comparison 

to others. But (2,3,2) meets the response time threshold with 

probability 0.969 whereas (3,2,2) meets the response time 

threshold with probability 0.987. So the best configuration that 

meets the SLO would be (3,2,2). 

 

Table 2 summarizes some important statistics about the response 

time distributions of eight VM configurations. It shows the mean 

response time and 95th and 99th response time percentiles. This 

table demonstrates that percentile measures are of greater 

importance than mean values. As an example, let us consider an 

SLO specified in terms of mean RT as “The mean RT should be 

below 0.1 seconds”. Eyeballing the Table 2, we find that two 

configurations (3,3,2) and (3,3,3) satisfies this SLO. On the 

contrary, we observe in Figure 5 that the response time of 0.1 

Figure 5. Response time distribution of eight different 

VM configurations. System starts with empty queues 

at every server. 1000 requests are processed. 

Figure 4. Mean Response Time (Mean RT), 90th, 95th 

and 99th percentile for RT plotted against the passage 

of time for the VM configuration (3,2,1). System starts 

with empty queues at every server. 

Figure 3. Transient Analysis of configuration (3,2,1): 

Response time distribution for five different time 

periods of 60, 120, 180, 240 and 300 seconds. 
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seconds will be met only by about 60% of the requests for (3,3,2), 

and only about 69% of the requests for (3,3,3). These percentages 

are way below than the 95% to 99% norm. This suggests that an 

SLO specified in terms of response time percentiles is more 

reliable than the SLO given in terms of response time averages. 

Table 2. Mean Response Time (RT), 95th and 99th percentile 

for RT for eight configurations 

VM 

Configuration 

Mean RT 

(sec) 

RT 95th 

percentile 

(sec) 

RT 99th 

percentile 

(sec) 

(2,2,2) 0.185 0.38 0.46 

(2,2,3) 0.157 0.33 0.42 

(2,3,2) 0.136 0.28 0.34 

(2,3,3) 0.126 0.26 0.31 

(3,2,2) 0.116 0.23 0.31 

(3,2,3) 0.102 0.21 0.30 

(3,3,2) 0.097 0.20 0.28 

(3,3,3) 0.087 0.19 0.26 

 

Next we demonstrate that different system configurations 

containing the same number of VMs yield different performance 

depending on the VM replication level in different tiers. Figure 6 

shows the response time distribution for three VM configurations 

(2,2,3), (2,3,2) and (3,2,2). All these configurations have 7 VMs. 

With the assumed model parameter values of Table 1, this figure 

shows that the configuration (3,2,2) is better than (2,3,2) which in 

turn is better than (2,2,3) performance-wise. Likewise we 

compared sets of configurations, each set consisting of 

configurations having same number of VMs—sets of 4, 5, 6 and 8 

VMs. We conclude that VM replication in tier-1 yields better 

result than replication in lower tiers among the configurations 

with same number of VMs. 

 

 

Next we demonstrate that a configuration with large number of 

VMs does not necessarily perform better than a configuration with 

smaller number of VMs. Let us consider two VM configurations: 

(2,3,3) with 8 VMs, and (3,2,2) with 7 VMs. With the assumed 

parameter values of Table 1, Figure 7 shows that the configuration 

(3,2,2) performs better for a response time threshold of 0.3 

seconds or below than the configuration (2,3,3). Such tier-based 

analyses can help a service provider to refrain from unnecessarily 

spending money to buy excess VMs since it may not be a 

worthwhile investment. 

 

 

5. CONCLUSIONS 
We have developed a simulation model to analyze transient 

behavior of a 3-tier cloud-based web system. Our model not only 

predicts mean response time but also the response time 

percentiles. Our model is general enough to accommodate non-

Markovian inter-arrival and service-time distributions. We have 

demonstrated how our model can serve as part of a decision 

support for VM planning process. Given all the VM plans 

satisfying SLO requirements, we acknowledge that it is not a 

straight forward task to figure out the optimal plan. We 

recommend that research be undertaken to investigate whether our 

model can be used jointly with an optimization engine to select 

the best VM plan. 
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