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Abstract

Recently, several machine learning methods for gender classi-
fication from frontal facial images have been proposed. Their
variety suggests that there is not a unique or generic solution
to this problem. In addition to the diversity of methods, there
is also a diversity of benchmarks used to assess them. This
gave us the motivation for our work: to select and compare in
a concise but reliable way the main state-of-the-art methods
used in automatic gender recognition. As expected, there is
no overall winner. The winner, based on the accuracy of the
classification, depends on the type of benchmarks used.

Introduction
A major goal of computer vision and artificial intelligence is
to build computers that can understand or classify concepts
such as gender in the same way humans do.

Automatic classification of gender from frontal face im-
ages taken under contrived conditions has been well studied
with impressive results. The variety of methods published
in the literature show that there is not a unique or generic
solution to the gender classification problem.

Applications of gender classification include, image
search, automatic annotation of images, security systems,
face recognition, and real time image acquisition on smart
phones and mobile devices.

The state-of-the-art gender classification methods gen-
erally fall into the following main categories: Convolu-
tional Neural Networks (CNN), Dual Tree Complex Wavelet
Transform (DTCWT) + a Support Vector Machine (SVM)
classifier, and feature extraction techniques such as Principal
Component Analysis (PCA), Histograms of Oriented Gradi-
ents (HOG) and others with a classifier (SVM, kNN, etc).
The SVM approach is natural, since we have a two class
problem. The CNN is related to the well-known deep learn-
ing paradigm. The DTCWT provides approximate shift in-
variance and directionally selective filters (properties lack-
ing in the traditional wavelet transform) while preserving
the usual properties of perfect reconstruction and compu-
tational efficiency with good well-balanced frequency re-
sponses (Kingsbury 2001).

To assess gender classification techniques, two types of
benchmarks may be used: standard posed datasets (with well
defined backgrounds, lighting and photographic characteris-
tics) and datasets containing “In the wild” images that ex-

hibit the diversity of subjects, settings, and qualities typical
of everyday scenes.

The diversity of the methods and benchmarks makes
a comparison between gender classification a challenging
task, and this gave us the motivation for our work. We
compare state-of-the-art methods used in automatic gender
recognition on two benchmarks: the most popular standard
dataset Facial Recognition Technology (FERET) (Phillips et
al. 2000) and a more challenging data set of “in the wild”
images (Adience) (Eidinger, Enbar, and Hassner 2014).

We only compare the accuracy of the classification and
not other performance measures (precision, recall, F1 score,
etc). The main reason is that the misclassification cost in this
particular problem is the same, regardless if we misclassify a
male or a female. We also do not compare the running time,
since the experiments are performed on different computer
architectures (the CNN is implemented on a GPU).

Related work: recent gender classification
methods

Classifiers such as SVMs and feedforward NNs are often
used to classify images after the faces have been cropped out
from the rest of the image, and possibly aligned and normal-
ized. Various feature extraction methods such as Principal
Component Analysis (PCA), independent component analy-
sis, Fischer linear discriminants (Belhumeur, Hespanha, and
Kriegman 1997) (Wu et al. 2015), and edge detection al-
gorithms can be used to encode useful information from
the image that is fed into the classifier, leading to high lev-
els of accuracy on many benchmarks. Other approaches use
hand-crafted template features to find facial keypoints such
as nose, eyes etc, while also using edge detection methods
(Sobel) and line intensities to separate facial edges from
wrinkles. The resulting feature information, when fed into
a feedforward neural network, allows age and gender to be
classified with overall 85% accuracy on two test sets with
a total of 172 images in the FERET and FGNET databases
(Kalansuriya and Dharmaratne 2014).

LDA (Linear Discriminant Analysis) based approaches to
the face recognition task promise invariance to differing il-
luminations (Belhumeur, Hespanha, and Kriegman 1997).
This has been further studied in (Bekios-Calfa, Buena-
posada, and Baumela 2011). Fisher linear discriminant max-
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imizes the ratio of between- class scatter to that of within-
class scatter. Independent component analysis has been used
on a small subset (500 images) of the FERET dataset, lead-
ing to 96% accuracy with an SVM classifier (Jain, Huang,
and Fang 2005). Likewise, PCA has been used in conjunc-
tion with a genetic algorithm that eliminated potentially un-
necessary features. The remaining features were then fed
to a feedforward neural network for training, and an over-
all 85% accuracy was obtained over 3 data sets (Sun et al.
2002). Various information theory based metrics were also
fused together to produce 99.13% gender classification ac-
curacy on the FERET (Perez et al. 2012). To overcome the
challenge of inadequate contrast among facial features using
histogram analysis, Haar wavelet transformation and Ad-
aboost learning techniques have been employed, resulting in
a 97.3% accuracy on the Extended Yale face database which
contains 17 subjects under 576 viewing conditions (Laytner,
Ling, and Xiao 2014). Another experiment describes how
various transformations, such as noise and geometric trans-
formations, were fed in combination into a series of RBFs
(Radial Basis Functions). RBF outputs were forwarded into
a symbolic decision tree that outputs gender and ethnic class.
94% classification accuracy was obtained using the hybrid
architecture on the FERET database (Gutta, Wechsler, and
Phillips 1998).

HOG (Histogram of Oriented Gradients) is commonly
used as a global feature extraction technique that expresses
information about the directions of curvatures of an image.
HOG features can capture information about local edge and
gradient structures while maintaining degrees of invariance
to moderate changes in illumination, shadowing, object lo-
cation, and 2D rotation. HOG descriptors, combined with
SVM classifiers, can be used as a global feature extraction
mechanism (Torrione et al. 2014), while HOG descriptors
can be used on locations indicated by landmark-finding soft-
ware in areas such as facial expression classification (Déniz
et al. 2011). One useful application of variations in HOG de-
scriptors is the automatic detection of pedestrians, which is
made easier in part because of their predominantly upright
pose (Dalal and Triggs 2005). In addition, near perfect re-
sults were obtained in facial expression classification when
HOG descriptors were used to extract features from faces
that were isolated through face-finding software (Carcagnı̀
et al. 2015).

A recent technique proposed for face recognition is the
DTCWT, due to its ability to improve operation under vary-
ing illumination and shift conditions when compared to Ga-
bor Wavelets and DWT (Discrete Wavelet Transform). The
Extended Yale B and AR face databases were used, contain-
ing a total 16128 images of 38 human subjects under 9 poses
and 64 illumination conditions. It achieved 98% classifica-
tion accuracy in the best illumination condition, while low
frequency subband image at scale one (L1) achieved 100%
(Sultana et al. 2014).

Recent years have seen great success in image related
problems through the use of CNN, thereby seeing the prolif-
eration of a scalable and more or less universal algorithmic
approach to solving general image processing problems, if
enough training data is available. CNNs have had a great

deal of success in dealing with images of subjects and ob-
jects in natural non-contrived settings, along with handling
the rich diversity that these images entail. One investigation
of CNN fundamentals involved training a CNN to classify
gender on images collected on the Internet. 88% classifica-
tion accuracy was achieved after incorporating L2 regular-
ization into training, and filters were shown to respond to
the same features that neuroscientists have identified as fun-
damental cues humans use in gender classification (Verma
and Vig 2014). Another experiment (Levi and Hassner 2015)
uses a convolutional neural network on the Adience dataset
for gender and age recognition. They used data augmenta-
tion and face cropping to achieve 86% accuracy for gender
classification. This is the only paper we know of that uses
CNN on Adience.

A method recently proposed by (Eidinger, Enbar, and
Hassner 2014) uses an SVM with dropout, a technique in-
spired from newer deep learning methods, that has shown
promise for age and gender estimation. Dropout involves
dropping a certain percent of features randomly during train-
ing. They also introduce the Adiance dataset to fulfill the
need for a set of realistic labeled images for gender and
age recognition in quantities needed to prevent overfitting
and allow true generalization (Eidinger, Enbar, and Hassner
2014).

As we can see, most of the state-of-the-art methods for
gender classification fall into the categories described in
Section .

Data sets
A number of databases exist that can be used to benchmark
gender classification algorithms. Most image sets that con-
tain gender labels suffer from insufficient size, and because
of this we chose two of the larger publicly available datasets:
Color-FERET (Phillips et al. 2000) and Adience (Eidinger,
Enbar, and Hassner 2014).

Figure 1: Randomly selected images from the Adience
dataset illustrating the wider range of photographic condi-
tions found.

Color FERET Version 2 was collected between Decem-
ber 1993 and August 1996 and made freely available with
the intent of promoting the development of face recognition
algorithms. Images in the FERET Color database are 512
by 768 pixels and are in PPM format. They are labeled with
gender, pose, name, and other useful labels.

Although FERET contains a large number of high qual-
ity images in different poses and with varying face obstruc-
tions (beards, glasses, etc), they all have certain similarities
in quality, background, pose, and lighting which make them
very easy for modern machine learning methods to correctly
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Figure 2: Randomly selected images from the FERET
dataset show similarities in lighting, pose, subject, back-
ground, and other photographic conditions.

classify. We used all 11338 images in FERET for which gen-
der labels exist in our experiments.

As machine learning algorithms are increasingly used to
process images of varying quality with vast differences in
scale, obstructions, focus, and which are often acquired with
consumer devices such as web cams or cellphones, bench-
marks such as FERET have become less useful. To address
this issue, datasets such as LWS (labeled faces in the wild)
and most recently Adience have emerged. LWS lacks gen-
der labels but it has accurate names from which gender can
often be deduced automatically with reasonable accuracy.

Adience is a recently released benchmark that contains
gender and approximate age labels separated into 5 folds to
allow duplication of results published by the database au-
thors. It was created by collecting Flickr images and is in-
tended to capture all variations of pose, noise, lighting, and
image quality. Each image is labeled with age and gender.
It is designed to mimic the challenges of ”real world” im-
age classification tasks where faces can be partly obscured
or even partly overlapping (for example in a crowd or when
an adult is holding a child and both are looking at the cam-
era). Eidlinger, et al published a paper where they used a
SVM and filtering to classify age and gender along with the
release of Adience (Eidinger, Enbar, and Hassner 2014).

We used all 19370 of the aligned images from Adience
that had gender labels, to create our training and testing sets
for all experiments that used Adience.

Using the included labels and meta data in the FERET and
Adience datasets, we generated two files containing reduced
size 51x51 pixel data with values normalized between 0 and
1, followed by a gender label. We choose to resize the im-
ages to 51x51 because this produced the best quality images
after Anti-Aliasing

Classification methods
We compare the accuracy of CNN and several SVM based
classifiers. We limit ourselves to methods involving these
two approaches because they are among the most effective
and most prevalently used methods reported in the literature
for Gender Classification.

Gender classifications with SVM perform on the raw im-
age pixels along with different well known feature extrac-
tion methods, namely DTCWT, PCA, and HOG. Training is
done separately on two widely differing datasets consisting
of gender labeled human faces: Color FERET, a set of im-
ages taken under similar conditions with good image quality,

and Adience, a set of labeled unfiltered images intended to
be especially challenging for modern machine learning al-
gorithms. Adience was designed to present all variations in
appearance, noise, pose, and lighting, that can be expected
of images taken without careful preparation or posing. (Ei-
dinger, Enbar, and Hassner 2014)

We use the following steps in conducting our experi-
ments:

• Uniformly shuffle the order of images.
• Use 70% as training set. 30% as testing set.
• Train with training set.
• Record correct classification rate on testing set.

Steps 1-4 are repeated 10 times for each experiment using
freshly initialized classifiers.

We report the results of 18 experiments, 16 of which use
SVMs and two of which use CNN.

SVM classification
Both linear and RBF kernels were used, with each consti-
tuting a separate experiment using the SVC implementation
included as part of scikit-learn(Pedregosa et al. 2011) with
C = 100 parameter set.

In one experiment, raw pixels are fed into the SVM. Other
experiments used the following feature extraction methods:
PCA, HOG, and DTCWT. Feature extraction was applied
to images uniformly without using face finding software to
isolate and align the face.

Histogram of Oriented Gradients
HOG descriptors, combined with SVM classifiers, can be
used as a global feature extraction mechanism (Torrione et
al. 2014), while HOG descriptors can be used on locations
indicated by landmark-finding software in areas such as fa-
cial expression classification (Déniz et al. 2011).

One application of HOG descriptors is the automatic de-
tection of pedestrians, which is made easier in part because
of their predominantly upright pose (Dalal and Triggs 2005).
We use the standard HOG implementation from the scikit-
image library (van der Walt et al. 2014).

For every image in the Adience and FERET databases,
HOG descriptors were uniformly calculated. 9 orientation
bins were used, and each histogram was calculated based on
gradient orientations in the 7x7 pixel non-overlapping cells.
Normalization was done within each cell (i.e., 1 x 1). The
result was fed into a SVM (SVC class from scikit-learn).

Training and testing on both Adience and FERET was
performed separately. 30% of images in each database were
used for testing, and the rest for training. For each database,
after reading the data into arrays, the arrays were shuffled
and then the testing and training set were separated. Train-
ing and testing were repeated 10 times with freshly shuffled
data.

Principal Component Analysis
PCA is a statistical method for finding correlations between
features in data. When used on images of faces the resulting
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images are often referred to as Eigenfaces. PCA is used for
reducing dimensionality of data by eliminating non-essential
information from the dataset and is frequently used in both
image processing and machine learning.

To create the Eigenfaces we used the RandomizedPCA
tool within scikit-learn, which is based on work by (Halko,
Martinsson, and Tropp 2011) and (Martinsson, Rokhlin, and
Tygert 2011). The resulting Eigenfaces were then used in a
linear and RBF SVM.

Convolutional Neural Network
For the learning stage we used a convolutional neural net-
work with 3 hidden convolutional layers and one softmax
layer. The training was done using a GTX Titan X GPU
using the Theano based library Pylearn2 and CUDNN li-
braries. Stochastic gradient descent was used as the training
algorithm with a momentum of 0.95, found by trial and error.
Learning rates under 0.001 did not show any improvement.
Increasing the learning rate above around 0.005 results in
decreased classification accuracy.

A general outline of the structure of our CNN is:
• Hidden layer 1: A Rectified Linear Convolutional Layer

using a kernel shape of 4x4, a pool shape of 2x2, a pool
stride of 2x2 and 128 output channels. Initial weights are
randomly selected with a range of 0.5.

• Hidden layer 2: A Rectified Linear Convolutional Layer
using a kernel shape of 4x4, a pool shape of 2x2, a pool
stride of 2x2 and 256 output channels. Initial weights are
randomly selected with a range of 0.5.

• Hidden layer 3: A Rectified Linear Convolutional Layer
using a kernel shape of 3x3, a pool shape of 2x2, a pool
stride of 2x2 and 512 output channels. Initial weights are
randomly selected with a range of 0.5.

• Softmax layer: Initial weights randomly set between 0 and
0.5. Output is the class (male or female).

Experimental results
Tables 1 and 2 summarize the classification accuracy of each
approach on each data-set after random shuffling and sep-
aration into 70% training and 30% testing sets. For each
method the grayscale pixels were used as the features, ei-
ther directly to the classifier, or to the filter mentioned. For
example, HOG+SVM[RBF] indicates that we use the pixels
as input to a HOG filter, the output of which is used as the
input to a SVM with an RBF kernel.

DTCWT was both the second best method (after CNN)
and the very worst method we examined; its performance
has the greatest degree of variability depending on the
dataset. It performs very well when objects are consistent
in location and scale. CNN outperformed all methods. Even
the worst CNN experiment on the most difficult dataset per-
formed better than the best of any other method on the eas-
iest dataset. This is not a surprising outcome. We wanted
to see if HOG alone was sufficient to increase classification
accuracy as a filter. We found that HOG filters with SVM,
without the usual additional models, provide no benefit on
their own over raw pixel values for this experimental setup.

Table 1: Mean Classification accuracy and Standard Devi-
ation for different methods on the Adience dataset over 10
runs. 70% of images used for training and 30% used for test-
ing.

Method Mean SD
CNN 96.1% 0.0029
PCA+SVM[RBF] 77.4% 0.0071
SVM[RBF] 77.3% 0.0046
HOG + SVM[RBF] 75.8% 0.006
HOG+SVM[linear] 75% 0.0053
PCA+ SVM[linear] 72 % 0.0032
SVM[linear] 70.2% 0.0052
DTCWT on SVM[RBF] 68.5% 0.0059
DTCWT on SVM[linear] 59% 0.0046

Table 2: Mean Classification accuracy and Standard Devi-
ation for different methods on the FERET dataset over 10
runs. 70% of images used for training and 30% used for test-
ing.

Method Mean SD
CNN 97.9% 0.0058
DTCWT on SVM[RBF] 90.7% 0.0047
PCA+SVM[RBF] 90.2% 0.0063
SVM[RBF] 87.1% 0.0053
HOG+SVM[RBF] 85.6% 0.0042
HOG+SVM[linear] 84.6% 0.0024
DTCWT on SVM[linear] 83.3% 0.0047
PCA+SVM[linear] 81% 0.0071
SVM[linear] 76.5% 0.0099

PCA ties with DTCWT on the best performance on FERET
but performs better than DTCWT on Adiance. As expected
RBF methods performed better than linear SVM classifiers,
however unexpectedly this did not hold true for Adiance,
where differences in filters were enough to cancel out the
effect of RBF in some cases. Every time we used a filter
on FERET RBF was better than linear with filters. This did
not hold for Adience. None of the filters worked particularly
well on Adience, with only PCA slightly outperforming raw
pixels for the RBF classifier.

On the FERET dataset DTCWT is better (90% vs 86%).
On Adience, it is worse (6̃7% vs 77%). This would lend
support to the idea that DTCWT seems to work better (in
theory) on images that are more similar to FERET (uniform
lighting, no complex backgrounds, no extreme warping, pix-
elation, or blurring ).

Using an initial momentum of 0.95 tended to promote fast
convergence without getting stuck in local minimum. We
use a momentum of 0.95 and a learning rate of 0.001.

Using this setup we have achieved an average valid classi-
fication rate of 98% on FERET and 96% on Adience which
is better than the previous highest reported results according
to (Levi and Hassner 2015) on Adience, but we do not rec-
ommend direct comparison of our results with theirs because
of different experimental protocols used.

One of our aims is to investigate the use of the dual tree
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complex wavelet transform (DTCWT) on the face feature
classification task. Several recent papers report success in
using DTCWT in gender recognition from frontal face im-
ages citing the benefits of partial rotation invariance. It is
somewhat unclear how to best use this for “In the wild” im-
ages.

Conclusions
Much of the previous work on automatic gender classifica-
tion use differing datasets and experimental protocols that
can make direct comparisons between reported results mis-
leading. We have compared nine different machine learning
methods used in gender recognition on two benchmarks, us-
ing identical research methodology to allow a direct com-
parison between the efficacies of the different classifiers and
feature extraction methods. In addition to providing updated
information on the effectiveness of these algorithms, we pro-
vide directly comparable results.

The aim of our study was to explore gender classifica-
tion using recent learning algorithms. We carried out experi-
ments on several state-of-the-art gender classification meth-
ods. We compared the accuracy of these methods on two
very different data sets (“In the wild” verses posed images).

To the extent of our knowledge, this is the first use of
DTCWT on a large � 15, 000 database of “in the wild” im-
ages, specifically addressing gender classification. We have
achieved an average accuracy of 98% (FERET) and 96%
(Adience), which is better than the previous highest reported
results (according to (Levi and Hassner 2015)) on Adience
using a CNN.

The DTCWT seems to work better (⇡ 90%) on images
that are more similar to FERET (uniform lighting, no com-
plex backgrounds, no extreme warping, pixelation, or blur-
ring).

The Adience and FERET data sets are relatively large and
this may explain why the CNN method generally outper-
forms other methods: it is known that deep learning per-
forms well when large training sets are being used. It is
interesting to determine in this particular application what
“large” actually is.
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Perez, C.; Tapia, J.; Estévez, P.; and Held, C. 2012. Gen-
der classification from face images using mutual information
and feature fusion. International Journal of Optomechatron-
ics 6(1):92–119.
Phillips, P. J.; Moon, H.; Rizvi, S. A.; and Rauss, P. J. 2000.
The feret evaluation methodology for face-recognition algo-
rithms. Pattern Analysis and Machine Intelligence, IEEE
Transactions on 22(10):1090–1104.
Sultana, M.; Gavrilova, M.; Alhajj, R.; and Yanushkevich, S.
2014. Adaptive multi-stream score fusion for illumination
invariant face recognition. In Computational Intelligence in
Biometrics and Identity Management (CIBIM), 2014 IEEE
Symposium on, 94–101. IEEE.
Sun, Z.; Yuan, X.; Bebis, G.; and Loui, S. J. 2002. Neural-
network-based gender classification using genetic search

Joseph Lemley et al. MAICS 2016 pp. 97–102

101



for eigen-feature selection. In Neural Networks, 2002.
IJCNN’02. Proceedings of the 2002 International Joint Con-
ference on, volume 3, 2433–2438. IEEE.
Torrione, P. A.; Morton, K. D.; Sakaguchi, R.; and Collins,
L. M. 2014. Histograms of oriented gradients for landmine
detection in ground-penetrating radar data. Geoscience and
Remote Sensing, IEEE Transactions on 52(3):1539–1550.
van der Walt, S.; Schönberger, J. L.; Nunez-Iglesias, J.;
Boulogne, F.; Warner, J. D.; Yager, N.; Gouillart, E.; Yu,
T.; and the scikit-image contributors. 2014. scikit-image:
image processing in Python. PeerJ 2:e453.
Verma, A., and Vig, L. 2014. Using convolutional neural
networks to discover cogntively validated features for gen-
der classification. In Soft Computing and Machine Intelli-
gence (ISCMI), 2014 International Conference on, 33–37.
IEEE.
Wu, Y.; Zhuang, Y.; Long, X.; Lin, F.; and Xu, W. 2015.
Human gender classification: A review. arXiv preprint
arXiv:1507.05122.

Joseph Lemley et al. MAICS 2016 pp. 97–102

102


