
From eHornets to
Hybrid Agent and Workflow Systems

Thomas Wagner, Daniel Moldt, and Michael Köhler-Bußmeier

University of Hamburg, Department of Informatics
http://www.informatik.uni-hamburg.de/TGI/

Abstract. This paper presents a mapping between an elementary Higher
Order Net (eHornet) system and the Paffin-system, a practical hybrid
agent and workflow system. The eHornet system provides a formal
basis for the processes. It also supports properties, like adaptivity and
mobility, which can be preserved in the mapping and used in the Paf-
fin-system. The paper describes the basics of elementary Hornets, the
Paffin-system, as well as the mapping between them.

Keywords: Workflow processes, Higher order nets, Petri nets, Agent
systems, Adaptivity, Mobility

1 Introduction

Using Petri nets and especially workflow nets as a special subset of Petri nets (see
[1]) to model business processes is an established and well documented practise.
However, workflow nets based on classical Petri nets have a static composition.
Employing dynamics or adaptivity in these nets is obstructed by this static
nature of the net structure and underlying formalism.

Extensions of coloured Petri nets are one way to improve modelling. However,
in order to maintain desirable formal properties of workflows, the conceptual
setting of such an extension has to feature a mapping to classical nets. Higher
order nets (Hornets) [12, 13] allow for algebraic operations on nets in a hier-
archic setting. This introduces dynamic possibilities for systems designed with
Hornets, while preserving desired workflow properties. However, their formal
nature means that some practical aspects are more complicated. Examples for
these aspects include distributed execution, which is difficult to achieve in most
cases, as well as (modelling of) management aspects, such as resource allocation
and access control which require specific practical solutions for the given con-
texts of the (execution) environment. The adaption of net structure at run-time
is usually difficult in practical settings. Some special mapping concepts need to
be used to realise this dynamic feature1.
1 E.g. in Renew this is not directly supported, only via tokens being generated at run-
time and hence establishing new net structures. Net templates can be constructed
at run-time and can be instantiated via the net loader. Doing so we can establish
completely new net structures in a similar way as Java does it via reflection and the
class loader.



Consequently, the goal of the research presented in this paper is to find a map-
ping between the formal Hornets and a practical execution environment. The
intended execution environment is a hybrid agent and workflow system called the
Paffin-system (Processes and Agents for a full Integration, [28]). Paffins are
execution entities which can dynamically, at runtime, act and be interacted with
as agents, workflows, both or something in between. They combine the struc-
tural capabilities and properties of agents with the behavioural mechanisms and
attributes of workflows. A full mapping between Hornets and Paffins will
provide practical execution mechanisms for formal Hornets as well as a formal
basis for the practical Paffins. Assumptions and observations made for a Hor-
net model would be viable for the Paffin-system. Later on, verification and
validation results from the Hornets may be applied to the Paffin-system. This
paper presents a coarse approach for the mapping of eHornets to Paffins for
a practical embedding.

The paper is structured as follows: Section 2 discusses Hornets and de-
scribes the example used within this paper, while Section 3 presents the basics
of the Paffin-system. Section 4 describes the mapping between eHornets and
Paffin-system. Throughout these sections a common illustrative example will
be maintained. Finally, Section 5 takes a look at related work, before the paper
is concluded with an outlook in Section 6.

2 Elementary Hornets

Hornets [12, 13] are used for the formalisation. Hornets are a generalisation
of Object Petri Nets, which follow the nets-within-nets paradigm [25]. Object
Petri Nets are Petri nets, where the tokens are nets again, i.e. there is a nested
marking.

For Hornets Object Petri Nets have been extended with algebraic concepts
that allow modifying the structure of the net-tokens as a result of a firing transi-
tion. This is a generalisation of the approach of algebraic nets [21], where tokens
are algebraic data types. A Hornet is called elementary (eHornet) whenever
there are two levels of nesting, where the outer level is called the system net and
the inner tokens nets are called object nets.

This paper will give a simple example only and refer to [12, 13] for all formal
definitions. Consider a Hornet with two workflow nets N1 and N2 as tokens –
cf. Figure 1. To model a run-time adaption2, N1 and N2 are combined, resulting
in the net N3 = (N1‖N2)

3. This modification is modelled by transition t of the
Hornets in Fig. 1. Assume a variable binding α with x 7→ N1 and y 7→ N2. This
2 With run-time adaption we mean that the structure of the net is changed. This
means that e.g. a transition is replaced by a subnet while the simulation is executed.
In Hornets this is done by the modification of the tokens that can be constructed
at run-time / execution time of the model.

3 In the following we will restrict our examples to the parallel ‖ operator. Other
operators introduced in [12] are the operators sequence • and alternative +. For
Hornets the firing rule is defined to be reversible. Therefore, using operators on

308 PNSE’16 – Petri Nets and Software Engineering



ls p
��*x

ls q
HHj
y

t -(x‖y) lr
Z
ZZ}

�
��=

N1 ii1- a - iu- b - ir v- c - if1

N2 ii2- d - ir s- e - if2
N3

net-token produced on r by t

hi3- ���

@@R

@@R

���
- hf3

N1 hi1- a- hu- b- hr v- c- hf1
N2

hi2- d - hsr - e - hf2

Fig. 1. Modification of the Net-Token’s Structure (taken from [12])

binding enables the transition t. Assume that (x‖y) evaluates to N3. If t fires it
removes the two net-tokens from p and q and generates one new net-token on
place r. The net-token on r has the structure of N3 and its marking is obtained
as a transfer from the token on v in N1 and the token on s in N2 into N3. This
transfer is possible since all the places of N1 and N2 are also places in N3 and
tokens can be transferred in the obvious way.

Workflow nets as introduced by van der Aalst (see [1]) are used as the back-
ground for the token structure within this paper. However, the notion of workflow
as we use it here in an informal meaning is a generalisation of behavioural de-
scriptions of any entity, not just the formal control of business processes. This
allows us to argue in the following example to have persons being described as
workflows. In this way we concentrate on the modelling of the behaviour of peo-
ple and not on the people themselves. In addition to this the workflow nets in
the following also need some additional concepts for synchronisation with other
workflows for interactions (In the same way as people interact we will talk about
interaction / synchronisation of workflows). Mobility of workflows also needs to
be covered in the case that the workflow can influence the movement within an
environment what is natural behaviour of people. Doing so we are able to model
the relevant features which are covered by the eHornet formalism.

In the following, a scenario featuring mobile and adaptive workflows is dis-
cussed. This scenario is used in the remainder of this paper to illustrate the
different models. It is an artificial family situation:

A child wants some candy and asks its parents for permission. The parents
are in different rooms of the house and the child always asks its mother.
If the mother approves the candy consumption the child can eat some

incoming or outgoing arcs works in similar ways. Their informal behaviour can be
described as follows: The operator binds the variables to the nets (tokens) on the
incoming places and the outgoing places. The usual non determinism applies if there
are several tokens within one place.

T. Wagner et al.: From eHornets to Hybrid Agent and Workflow Systems 309



candy. If the mother disagrees the child becomes sad and won’t eat any
candy. However, the child can also decide to ask its father, who always
agrees to eat all of the available candy in our artificial setting.

This simple scenario can be easily captured as a workflow system. Following
our idea that the behaviours of people are modelled as workflows, the child and
its parents are modelled as individual, interacting workflows. When the child
asks one of its parents the two corresponding workflows need to interact. The
child moves between the rooms to interact with its parents.

The scenario features adaptive and mobile behaviour. The child adapts when
it decides that it can ask the father after the mother didn’t allow eating candy.
The child is also mobile as it has to move between the rooms in which its mother
and father are located.

The scenario is now presented as an eHornet system. The three different
(workflow) nets (Child, Mother, Father) are shown in Figure 3. They are exe-
cuted in the system net depicted in Figure 2.

Fig. 2. Overall System Net

The partition of the system net into the three rooms serves to illustrate the
movement of the family members during the scenario. The father net instance
(the token named “Dad”) is in room 1, the mother net instance (the token named
“Mum”) is in room 2. Initially, the child net instance (the token named “Kid”) is
in its own room 3 but moves to the other rooms during the scenario4.

4 The nets are just an informal representation and do not include the inscriptions for
the formal representations of the eHornets as introduced in [12]. For example for
Room 2 somehow the information about the child and the mother net should be kept
on a place. The assignment corresponding to net types is also not shown. The yes/no
inscription can easily be replaced by a net that hat two transitions. One transition
could be relevant for the yes and one for the no answer. The same holds for several
other modelling patterns in the example.

310 PNSE’16 – Petri Nets and Software Engineering



Fig. 3. Child, Mother, and Father Nets

System The system net embeds the overall execution in the scenario. When the
child net asks the mother for candy it moves from room 3 to room 2. There it
merges with the Mum net, which represents the interaction between the two.
When the interaction is finished the nets are separated again and the child
returns to room 3. Depending on the outcome of the interaction with the mother,
the child workflow may be completed in one of three ways. If the mother agreed
the child workflow can be completed directly. If the mother didn’t agree the
child can either accept this and complete its workflow, or it can change. This is
modelled through the adapt transition.

The adaption mechanism replaces the part of the child net that accepts the
mother’s decision with another net structure that asks the father for candy. It
removes the child net from the place in room 3 and puts the changed net back
instantaneously (the change is indicated by child’ )5.

5 In this paper we use mostly an informal notation for the eHornets. The adaption
needs to be covered by inscriptions that allow for the changes of the tokens / nets.

T. Wagner et al.: From eHornets to Hybrid Agent and Workflow Systems 311



The adapted child net can then move to room 1, merge with the father net,
and finally return to room 3 when the interaction is finished. Since the father
will always allow candy, the child net can complete its own workflow.

Child The child net represents the main workflow. It begins with the task to
ask-mum (for the candy). That task enables the merger of the mother and child
nets. When these nets merge, the places with the same name (mum/mum’)
are combined. This initialises the mother workflow.

When the mother’s answer is put onto the mum’ place the mother and child
nets can separate again. Depending on the mother’s answer either the mum-
says-yes or mum-says-no transitions can fire. If the mother allowed the candy
the next transition is eat-candy, after which the workflow can terminate. If the
mother did not allow the candy there are two options.

The original net implements the child accepting the mother’s decision. The
dont-eat-candy transition fires and the workflow can be completed. If the child
decides to ask its father the Original Net Structure is replaced by the Ask-Dad
Net Structure. This adaption is controlled and executed on the system net level.
When the adaption transition in the system net is fired the child net is, in one
firing step, removed from its original place, the net structures exchanged, and
finally the adapted net put back onto the original place.

The Ask-Dad Net Structure is similar to asking the mother. The father,
however, always agrees to the candy, so there is no negative option. The child
asks its father, thus initialising the father workflow, which returns a yes to the
child, which can now eat-all-candy. Finally, the workflow is then in its end state.

Mother/Father The mother and father nets follow a similar structure. Since the
mother and father in the scenario are just secondary (they are object nets) they
are not initialised in the usual way and cannot work without being merged with
the child net.

Consequently the structure of both nets is very simple. The start place
mum/dad enables the sequence of a “think” and an “answer” transition. The
answer is finally put on the end place mum’/dad’.

When the mother or father nets are merged with a child net for interaction,
the start and end places are the merging points. This way the answer can be
transferred to the child net when the nets are separated again. The separation
is not described here, since it follows similar patterns as the merging according
to the details of the firing rule described in [12].

3 Execution Environment

This section describes the basics of the Paffin-system (Processes and Agents
for a full Integration-system), which provides the hybrid agent and workflow

So to adapt in the Figure 2 means that the child, as informally described in Figure 3
will change its structure from the left net part (Original Net Structure) to the right
net part (Ask-Dad Net Structure). The formal inscriptions are not shown here.

312 PNSE’16 – Petri Nets and Software Engineering



management utilised later on. More information about the Paffin-system can
be found in [28, 29].

3.1 General Idea of the Paffin System and its Integration

In general, a combination of agents and workflows is not a new idea. There
has been a number of research efforts that combined the two concepts on some
level (see the discussion on related work in Section 5). However, most of these
research efforts only utilised one concept to enhance the other one, e.g., using
agents to implement and improve workflow management. Our research related to
the Paffin-system goes beyond this. The goal is not just to improve one of the
concepts. Rather, the goal is to improve both concepts, integrate and combine
them and also provide both of them in a unified way to application modellers.
This is what we call a full integration of agents and workflows, as opposed to a
partial integration which enhances only one of the concepts.

The result is a modelling construct which is no longer just a workflow or an
agent, but instead an abstract entity which inherits the capabilities / function-
alities of both concepts. Entities can dynamically act and be interacted with as
an agent, a workflow, both or something in between depending on the current
situation and needs at runtime. Such an entity is, in short, called a Paffin or
Paffin-entity. Paffins serve as the main modelling construct within the Paf-
fin-system and are modelled and, at runtime, managed similarly to agents and
workflows. The ideas leading to the Paffin-system were presented e.g. in [27,
26, 20].

A full integration of agents and workflows as realised in the Paffin-system
provides a number of advantages. The advantages of partial integrations, i.e.,
the enhancements for one of the concepts by incorporating strengths of the
other one, are available for modelling in both directions. Paffins as agents can
utilise workflow properties like atomicity of tasks and simple user interaction.
Paffins as workflows can utilise agent properties like intelligence and mobility.
Furthermore, since Paffins can dynamically be agents or workflows, modellers
are no longer restrained to using one of the two exclusively. Rather, modellers are
free to flexibly adapt the Paffin to the needs of specific situations and choose
whether agent, workflow or something in between is best suited at that moment.

For example, a Paffin acting as a workflow can, during the execution of its
tasks, act as an agent receiving and reviewing intermediate results of the task.
If the intermediate results indicate errors or other problems, the Paffin, as an
agent, can autonomously decide to cancel the execution of the task it executes
acting as a workflow. The combination and full integration of the concepts agent
and workflow on the same abstraction level provides application modellers with a
powerful modelling mechanism. That mechanism, the Paffin, is highly versatile,
flexible and sophisticated. The downside of the power and expressiveness of the
Paffin mechanisms is that they are more difficult to use efficiently. Still, this
disadvantage can be alleviated with supporting modelling tools, guidelines and
approaches.

T. Wagner et al.: From eHornets to Hybrid Agent and Workflow Systems 313



For the purposes of this paper the usability of Paffins as enhanced agents
and workflows is most important. The eHornets are workflows on the sec-
ondary level (the object nets). These workflows interact at some points (merg-
ing mother/father and child), they make decisions (the decision to adapt), and
they are mobile. Interaction, decision making, mobility and more are classical
agent properties. The full integration in the hybrid system allows to model these
workflows as enriched Paffin-entities, adopting agent properties while retain-
ing workflow behaviour. The adaptivity of the workflows can also directly be
mapped into agent behaviour as explained in the remainder of the paper.

3.2 Integration through Agent Activities

The core of the integration within the Paffin-entities is the so-called Agent
Activity (AgAc) (see [28] for details). The principle of the AgAc is illus-
trated in Figure 4. An AgAc is a modelling construct to describe the behaviour
of Paffins. It represents an abstract activity consisting of a number of agent
actions and workflow operations. Agent actions can be categorised into sending
a message, receiving a message and performing an internal action. Workflow op-
erations are requesting a workitem and completing or cancelling/aborting the
execution of the corresponding activity/workitem.

Fig. 4. Principle of the Agent Activity (from [28])

Using these three types of operations and three types of actions it is possible
to model any agent or workflow behaviour. An AgAc incorporating both actions
and operations then describes the abstract activity of a Paffin-entity acting
as both agent and workflow. Actions and operations are combined in a small
process description. Figure 5 shows such a process for an extended task. The
net is a reference net [16] that is implemented for the current prototype of the

314 PNSE’16 – Petri Nets and Software Engineering



Paffin-system (see next subsection). Each action and operation corresponds to
one of the “blocks” of net patterns indicated in the net. The following actions
are executed:
– 1: Request Workitem Workflow operation This workflow operation de-

scribes and offers a workitem for a resource/user within the system. That
workitem is part of the Paffin executing the net in Figure 5 acting as a
workflow. When a user requests this specific workitem the transition can fire
and the workitem becomes an activity. Firing also stores data about the ac-
tivity in the two places which are used to enable completing and cancelling
the activity later on.

– 2: Receive Message Agent action The activity in the example requires
the resource/user to create some data object and send it as a message to
the Paffin executing the process in Figure 56. This agent action describes
the waiting for and subsequent reception of that message. At this point the
Paffin acts as an agent while still executing the task acting as a workflow.

– 3: Internal Action Agent action This agent action describes the execut-
ing Paffin reviewing the received message. It is an internal agent action
that produces a boolean result whether the data object created by the re-
source/user is accepted. The missing third agent action of sending a message
is not an explicit part of this extended task example. It is, however, implic-
itly included in the confirm/cancel in blocks 4 and 5. These management
blocks require some communication between the current Paffin-entity, the
executing Paffin-entity and the underlying management of the platform.

– 4: Direct Confirm Activity Workflow operation If the data object created
by the resource/user of the activity is accepted by the executing Paffin this
workflow operation is executed. It implements the executing Paffin confirm-
ing and completing the activity. At this point (as well as in the alternative
described in 5) the Paffin is both agent and workflow at the same time.
As a workflow it completes the activity (and, automatically in the back-
ground, informs the resource/user of the completion) while, as an agent, it
autonomously decides to do so. The result of the activity (the created data
object) is saved for use in later behaviour and the process can be completed.

– 5: Direct Cancel Activity Workflow operation If the data object created
by the resource/user of the activity is not accepted by the executing Paffin
the activity is cancelled here. Again, the executing Paffin is both agent and
workflow at this point performing the cancelling operation and deciding as an
agent to do so. Cancelling the activity resets the workitem by also triggering
the lower transition of block 1, reenabling the workitem for another try by
another resource/user.
The small and simple example shown in Figure 5 already shows how the

combination of agent actions and workflow operations is utilised in AgAcs.
Through this combination the Paffins within the system can maintain a singular
6 Note that the resource may itself be executing an AgAc within its own Paffin
which is not shown here. The implementation of the resource is irrelevant, as along
as a compatible message is sent to the Paffin executing the net in Figure 5.

T. Wagner et al.: From eHornets to Hybrid Agent and Workflow Systems 315



Fig. 5. Process within an Agent Activity() (Prototype implementation)

316 PNSE’16 – Petri Nets and Software Engineering



context in which they act as agent (Actions 2 and 3), workflows (Operation 1)
or both (Operations 4 and 5). The AgAc is the core mechanism through which
the overall integration of agents and workflows within the Paffin-system is
achieved. More information about the AgAc can be found in [26, 28].

3.3 Paffin-System Architecture and Prototype

The prototype of the Paffin-system is implemented using reference nets [16]
and the Renew-tool (Reference net workshop 7 (see [4] for a description of
the tool). Reference nets are a high-level Petri nets formalism following the
nets-within-nets paradigm [24]. Reference nets allow for Java inscriptions on
transitions within the net and represent the majority of actually executed code.

Agent aspects of the Paffin-prototype are based on the Mulan reference ar-
chitecture (Multi agent nets [22]) and its implementation Capa (Concurrent
agent platform architecture [8]). Agent systems in Mulan and Capa consist
of four layers, where each layer contains and serves as the direct execution en-
vironment for the next one according to the nets-within-nets paradigm. The
system layer contains (i.e. consists of) the agent platforms which contain (i.e.
serve as execution environment for) the agents which contain (i.e. execute) the
agent behaviour called protocols. Workflow aspects are based on the principles
of workflow nets ([1] generally, [11] for reference nets). A workflow net realises
the facilitation of a business process as a Petri net. For the purposes of the Paf-
fin-system we consider not just business processes, but any arbitrary process to
be modelled as a workflow net.

Fig. 6. Application and System Architecture for the Paffin-system.

The Paffin-system itself adopts the principle four layers of the Mulan
reference architecture and extends the layers to capture workflow aspects. This
is illustrated on the right-hand side of Figure 6. The system level represents the
entire system and is a logical summary of the other levels. The system consists
of a number of management platforms, which serve as the next level. These serve
a similar role as workflow and agent management systems in classical system.

7 Renew is available at www.renew.de see [17].

T. Wagner et al.: From eHornets to Hybrid Agent and Workflow Systems 317



The management platforms serve as the execution environment for the Paffins,
which make up the third level. Finally, the Agent Activities are defined and
related to each other in the process-protocol level. A process-protocol serves a
similar function to an agent protocol or a workflow8.

The Paffin-architecture describes, as a reference, the internal composition
and interrelation between the individual elements of the executed management
system. It represents a detailed view of the internal structure. The application
architecture shown on the left-hand side of Figure 6 on the other hand describes
the structure of an application built with the Paffin-system. The foundation is
given by Renew and reference nets. Capa tools and infrastructure (e.g. mon-
itoring and administration), as well as reference workflow net mechanisms are
built on top of Renew. The Paffin-system, whose internal architecture was
described above, builds on top of all of these mechanisms as well as Renew and
reference nets directly. On top of the Paffin-system the Paffin-application is
created. The application is what is actually built by a modeller using the Paf-
fin-system. It provides the content of Agent Activities, process-protocols,
Paffin-knowledge, etc. that actually captures what the modellers want their
system to do. The mapping between eHornets and Paffins creates exactly
such an application as will be described in the following section.

The current prototype of the Paffin-system already fully supports the full
integration as motivated in the previous subsection. Paffin-entities of the pro-
totype can execute AgAcs that include workflow operations and agent actions
in any (reasonable) order. Currently ongoing work on the prototype focusses
on supporting the modelling, which addresses the disadvantageous effects of the
extended modelling capabilities. Standardised AgAc net components, adapted
monitoring and administration tools and simplifications to the modelling pro-
cess are currently being investigated. Additionally, the applicability of the Paose
modelling approach (Petri net-basedAgent- andOrganisation-oriented Software
Engineering [3]) for Mulan and Capa is being examined.

4 Mapping

The preceding sections explored the basics of eHornet systems and the Paffin
execution environment. This current section outlines how to map an eHornet
system to a Paffin-application. Mapping, in this context, is meant as a rough
translation coming from a modelled eHornet system and yielding a Paffin-
application containing the same functionality. Figure 7 gives an overview of the
mapping process. Mapping can be broken down into two basic steps:

First, identify the structural, behavioural, and additional aspects of the
eHornet system. Second, combine these aspects into the appropriate con-
structs in a Paffin-application.

8 More accurately a subworkflow of the Paffin as a workflow.

318 PNSE’16 – Petri Nets and Software Engineering



Fig. 7. Mapping between the eHornet and the Hybrid System

4.1 Identifying the Aspects

The behavioural aspects include the processes, the individual tasks/actions, and
the access/execution rules. In the eHornet system, this corresponds to the dif-
ferent workflow nets. In the example introduced in Section 2, the processes are
Child, Mother, and Father. The tasks can be extracted directly from the work-
flows, as well as the executing resources. In the example the executing resource
is always the actor of the same name (e.g. the child executes the tasks of the
Child workflow).

Structural aspects deal with the individual actors, their properties, and their
relationship with one another. The actors themselves need to be identified from
the executing resources of the eHornet workflows. For the example these are
the child, the father, and the mother. The communication and infrastructure be-
tween the actors is defined in the system net of the eHornet system. A group
of places in the system net will always represent a logical execution environment,
while the transitions between these groups define the communication infrastruc-
ture. In the example, there are three execution environments, the different rooms.
The transitions between the room 3 and both room 1 and 2 represent an infras-
tructure that allows the child to move from room 3 to room 1 or 2 and back.
Consequently, there are three execution environments for the Paffin-system,
with a communication/migration infrastructure that allows actors from room 3
to move to room 1 or 2 and back. The communication between different actors
is modelled by merging and unmerging workflow nets into an eHornet system.
Instances of this merging also need to be identified and analysed for the partic-
ipating actors. In the example these are the times, at which the child workflow
merges with the mother and father workflows to ask permission for candy. The

T. Wagner et al.: From eHornets to Hybrid Agent and Workflow Systems 319



actors involved are the child and mother in the first case and child and father in
the second case.

Additional aspects include those aspects, which cannot be classified into the
structural and behavioural groups. These include the ontology, which is orthog-
onal to the structure and behaviour, and the adaption rules, which affect both
structure and behaviour. The ontology needs to be identified from the eHornet
system by analysing which (data) objects are considered and communicated be-
tween the actors. For the example this is only the question and answer for candy
between the child and one of its parents. To identify the adaption rules, each
possible adaption in the eHornet system needs to be analysed. The circum-
stances and requirements for each adaption have to be noted, as well as the
possible outcomes.

4.2 Combining the Aspects

After having identified the different aspects, they need to be combined to cre-
ate a Paffin-application. The elements which must be modelled for a Paffin-
application are: entity-knowledge, process-protocols with the included AgAcs,
decision making of the entities, and the deployment management platforms. The
remaining technical administration and management of Paffins do not need to
be changed for each application.

As a basis, each actor from the structural aspects is mapped onto one Paffin-
entity each, though there can be multiple instances of an entity (e.g. a second
child). These entities are assigned to management platforms according to the
identified execution environments from the eHornet system. The communica-
tion/migration infrastructure is coded into the management platforms to allow
or disallow communication with certain other management platforms. Commu-
nication between Paffins is enabled by providing the identifiers and communi-
cation information for each communication partner in each Paffin’s knowledge.
In the example, this results in three Paffins (child, mother, father) and three
management platforms (rooms 1-3). Rooms 1 and 2 manage the father and
mother entities respectively and allow only communication/migration to/from
room 3. Room 3 manages the child entity and consequently allows communica-
tions/migrations to/from both rooms 1 and 2. The father and mother entities
know only the identifier of the child entity, which in turn knows both and is
capable of migration.

Most of the behavioural aspects are mapped into the process-protocols. In
fact, the identified processes are almost directly adopted into process-protocols.
The transitions of the eHornet workflows are turned into AgAcs, which also
include the rules for their execution. In general, each process-protocol will either
be executed by the entity which was created from the responsible actor (e.g. the
child entity for the child workflow) or by an additional entity if the workflow
cannot be clearly assigned to one of the identified actors. The latter might be
the case in a more collaborative scenario, in which a workflow is executed by
many different resources and not owned by one in particular. One important
change from the eHornet workflows to the process-protocol is the handling

320 PNSE’16 – Petri Nets and Software Engineering



of communication. In the eHornets the communication is handled through
merging the nets through named places. This is replaced in the Paffin-system
with agent-like message communication. At each merging point an AgAc mod-
elling the communication is added. This particular AgAc sends a message to
the designated partner or receives and processes a message from a partner. This
does not affect the structure of the process. For this paper’s example the re-
sulting process-protocols are child for the child entity and mother/father for the
mother/father entities respectively. The places mum/mum’/dad/dad’ are re-
placed with Agent Activities for communication.

To illustrate the mapping Figure 8 shows the original eHornet and result-
ing father process-protocol. The recurring net structure in that figure is the
AgAc9. The inscriptions connect to the technical backend provided by the ex-
ecuting Paffin. At this point the coarseness of the mapping becomes evident.
The mapping prescribes that merged places and transitions of the eHornet
system are mapped onto AgAcs. However, as is visible in the example these
AgAcs are simple and contain only one agent action each (in sequence: receive
message (from kid), think, create answer, send answer (to kid)). These actions
could be better summarised into one AgAc, since they are semantically related.
For now, issues like this are at the discretion of the modeller who has to decide
which AgAcs to combine and which to possibly extend. Capturing these rea-
sonable combinations is part of the future work regarding the refinement of the
mapping approach.

The additional aspects are mostly mapped into the knowledge and decision
making mechanisms of the individual entities. The ontology is made known
to the knowledge base of the Paffins. Adaption rules can be incorporated in
two ways, depending on the extent of the changes. If the changes only affect
one task/action, they are incorporated directly into the corresponding AgAc.
AgAcs support templates for actions, which are chosen depending on parame-
ters defined in the inscriptions of the AgAc. If the changes are more extensive
the adaption is moved to a decision making mechanism within the entity. This
constantly active mechanism monitors the on-going process-protocols and can in-
tervene and replace them if it decides upon this necessity. The process-protocols
state is saved and a new process-protocol instantiated and moved to the pre-
viously saved state. In the example the latter is the case. The decision making
mechanism can monitor the child process-protocol and, when the mother doesn’t
allow the candy, replace the process-protocol with the adapted version.

5 Related Work

The Paffin-system is directly related to [20, 27]. These works realised a partial
integration of agents into a workflow management system. This partial integra-
tion allowed for workflows to exhibit agent properties (e.g. mobility, intelligence),

9 Please note that the irregular layout of the AgAcs in relation to each other is
intentional as to mirror the original Hornet.

T. Wagner et al.: From eHornets to Hybrid Agent and Workflow Systems 321



Fig. 8. The Father eHornet and the corresponding Father process-protocol.

322 PNSE’16 – Petri Nets and Software Engineering



though modelling was restricted to workflows. The resulting outlook was the idea
of a full integration, which the Paffin-system has now adopted.

Improvements of agents with workflow principles and workflows with agent
principles, which we consider to be partial integrations, have been thoroughly
researched before. For example, [2] uses agent intelligence to create an awareness
of current workflows for an agent. By reasoning about most likely execution paths
the agent can support users by providing better support. Other improvements of
workflow management through agent properties can be found, e.g., in [19, 5, 23,
30]. A good overview can be found in [7], which identifies twenty-four functions
of agents in workflow management and classifies over 100 publications into this
scheme. Improving agents through workflow principles has been researched less
often. Examples include [14, 15, 18]. Such efforts usually concentrate on designing
and managing agent behaviour as workflows.

Such partial integrations do not offer the degree of integration the Paffin-
system adopts. They still exclusively offer only agents or workflows as modelling
constructs, and do not combine the concepts on the modeller’s abstraction level.
They do, however, use the respective other concept in the background, which
allows some properties to be translated.

Adaptivity and flexibility in workflows have been the topic in many publi-
cations, e.g. [6]. Though the functionality is related to the topics of this paper,
these works are mostly focused on the purely process and workflow aspects.
Agents and an integration between them and workflows are not addressed.

There is some research that shows a larger degree of integration e.g. [9, 10,
31]. These approaches rely heavily on agents and their capabilities but still focus
on processes as the main modelling abstraction. The Paffin-system does not
stop there, but, as stated before, aims to provide a full integration.

6 Outlook and Conclusion

The paper presented a mapping between the eHornets formalism and the Paf-
fin-system, a hybrid agent and workflow system. The mapping retains aspects
from the eHornets, such as mobility and adaptivity, while applying a formal
basis to the hybrid Paffin-system.

The mapping creates a bridge between the two modelling approaches from
which both can benefit. The eHornets are provided with a more practically ori-
ented execution potential. Paffin applications are aimed at distributed systems
with complex structures and behaviours. The possibility to make eHornets
available in these kinds of systems is desirable. Paffins on the other hand ben-
efit from the formal basis introduced by the eHornets. The ability to model an
eHornet system with certain formal properties (e.g. liveness, deadlock-freeness)
and mapping that eHornet system onto a Paffin application can make the
use of Paffins more viable in practical situations. This paper presented the first
step towards realising these advantages and benefits. The coarse mapping pre-
sented in this paper creates the foundation on which the practical mechanisms
of Paffins and formal basis of eHornets can be incorporated.

T. Wagner et al.: From eHornets to Hybrid Agent and Workflow Systems 323



Future work will address and build upon this coarse approach and refine it
to fully exploit these intended benefits and advantages. Direct, short-term goals
still focus on extending the modelling support and usability of the Paffin-
system prototype. The long-term goals relate to actually exploiting the eHor-
net mapping for purposes of verification. The ability to ascertain properties in
the formal model (e.g. liveness, deadlock-freeness) for the practical execution is
a highly desirable feature. Examining the conditions under which these proper-
ties are retained in the mapping and adapting the mapping to directly enforce
these conditions are important results in the near future. Coupled with an en-
visioned, fully automated mapping between eHornets and the hybrid system,
the results could be used to easily create formally verified practical systems.
This future work also includes the vision of a reverse mapping from Paffins to
eHornets. Such a mapping would make exploiting the formal basis for valida-
tion and verification introduced in this paper even simpler. Finally the extension
from eHornets to Hornets will allow more expressive models, but has to be
balanced with the formal verification restrictions.

In conclusion, the presented mapping opens up the dynamic and formal na-
ture of eHornets for a practical system. The Paffin-system itself combines
agents and workflows on a fundamental and essential level. The idea to provide
agents and workflows on the same level of abstraction naturally supports the
complex relation between processes and the beings/objects that execute those
processes in the real world. Consequently, the full integration proposed within
the approach is a powerful, yet complex and difficult to handle mechanism. Es-
tablishing a formal basis for it is an important milestone towards the Paffin
integration approach becoming a validated and well grasped modelling technique.

References

1. van der Aalst, W.: Verification of workflow nets. LNCS 1248/1997, 407–426 (1997),
application and Theory of Petri Nets 1997

2. Both, F., Hoogendoorn, M., Mee, A., Treur, J., Vos, M.: An intelligent agent model
with awareness of workflow progress. Applied Intelligence 36, 498–510 (2012),
http://dx.doi.org/10.1007/s10489-010-0273-9

3. Cabac, L., Dörges, T., Rölke, H.: A monitoring toolset for Petri net-based agent-
oriented software engineering. In: Valk, R., van Hee, K.M. (eds.) 29th International
Conference on Application and Theory of Petri Nets, Xi’an, China. LNCS, vol.
5062, pp. 399–408. Springer-Verlag (2008)

4. Cabac, L., Haustermann, M., Mosteller, D.: Renew 2.5 – towards a comprehensive
integrated development environment for Petri net-based applications. In: Kordon,
F., Moldt, D. (eds.) 37th International Conference on Application and Theory of
Petri Nets, Toruń, Poland. LNCS, vol. 9698. Springer-Verlag (Jun 2016)

5. Czarnul, P., Matuszek, M., Wójcik, M., Zalewski, K.: BeesyBees - efficient and
reliable execution of service-based workflow applications for BeesyCluster using
distributed agents. In: Proceedings of IMCSIT 2010. pp. 173 –180 (oct 2010)

6. Dadam, P., Reichert, M., Rinderle-Ma, S., Göser, K., Kreher, U., Jurisch, M.:
Von ADEPT zur AristaFlow BPM Suite - Eine Vision wird Realität: "Correctness

324 PNSE’16 – Petri Nets and Software Engineering



by Construction" und flexible, robuste Ausführung von Unternehmensprozessen.
EMISA Forum 29(1), 9–28 (2009)

7. Delias, P., Doulamis, A., Matsatsinis, N.: What agents can do in workflow man-
agement systems. Artificial Intelligence Review 35(2), 155–189 (2011)

8. Duvigneau, M., Moldt, D., Rölke, H.: Concurrent Architecture for a Multi-agent
Platform. In: Giunchiglia, F., Odell, J., Weiß, G. (eds.) Agent-Oriented Software
Engineering III. Third International Workshop, Agent-oriented Software Engineer-
ing (AOSE) 2002, Bologna, Italy, July 2002. Revised Papers and Invited Con-
tributions. LNCS, vol. 2585, pp. 59–72. Springer-Verlag, Berlin Heidelberg New
York (2003), http://www.springerlink.com/openurl.asp?genre=article&issn=0302-
9743&volume=2585&spage=59

9. Guo, L., Robertson, D., Chen-Burger, Y.H.: A novel approach for enacting the
distributed business workflows using BPEL4WS on the multi-agent platform. In:
e-Business Engineering, 2005. ICEBE 2005. IEEE International Conference on. pp.
657 –664 (oct 2005)

10. Hsieh, F.S.: Collaborative Workflow Management in Holonic Multi-Agent Systems.
In: O’Shea, J., Nguyen, N., Crockett, K., Howlett, R., Jain, L.C. (eds.) Agent and
Multi-Agent Systems: Technologies and Applications, LNCS, vol. 6682, pp. 383–
393. Springer-Verlag (2011), http://dx.doi.org/10.1007/978-3-642-22000-5_40

11. Jacob, T.: Implementierung einer sicheren und rollenbasierten Workflow-
management-Komponente für ein Petrinetzwerkzeug. Diploma thesis, University
of Hamburg, Department of Computer Science, Vogt-Kölln Str. 30, D-22527 Ham-
burg (2002)

12. Köhler-Bußmeier, M.: Hornets: Nets within nets combined with net algebra. In:
Wolf, K., Franceschinis, G. (eds.) International Conference on Application and
Theory of Petri Nets (ICATPN’2009). LNCS, vol. 5606, pp. 243–262. Springer-
Verlag (2009)

13. Köhler-Bußmeier, M., Heitmann, F.: Complexity results for elementary hornets. In:
Colom, J.M., Desel, J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 150–169.
Springer-Verlag (2013)

14. Korhonen, J., Pajunen, L., Puustjärvi, J.: Using transactional workflow ontology
in agent cooperation. In: AIM Workshop, First EurAsian Conference on Advances
in ICT. Tehran, 2002 (2002)

15. Kotb, Y.T.: Workflow-Net Based Cooperative Multi-Agent Systems. Ph.D. thesis,
The University of Western Ontario, Electronic Thesis and Dissertation Repository
(August 2011), paper 228

16. Kummer, O.: Referenznetze. Logos Verlag, Berlin (2002), http://www.logos-
verlag.de/cgi-local/buch?isbn=0035

17. Kummer, O., Wienberg, F., Duvigneau, M., Cabac, L., Haustermann,
M., Mosteller, D.: Renew – the Reference Net Workshop. Available at:
http://www.renew.de/ (Jun 2016), http://www.renew.de/, release 2.5

18. Mislevics, A., Grundspenkis, J.: Workflow based approach for designing and ex-
ecuting mobile agents. In: Digital Information Processing and Communications
(ICDIPC), 2012 Second International Conference on. pp. 96 –101 (july 2012)

19. Pla, A., Gay, P., Meléndez, J., López, B.: Petri net based agents for coordinating
resources in a workflow management system. In: ICAART 2011 - Proceedings of
the 3rd International Conference on Agents and Artificial Intelligence, Rome, Italy,
January 28-30, 2011. pp. 514–523 (2011)

20. Reese, C.: Prozess-Infrastruktur für Agentenanwendungen, Agent Technology –
Theory and Applications, vol. 3. Logos Verlag, Berlin (2010)

T. Wagner et al.: From eHornets to Hybrid Agent and Workflow Systems 325



21. Reisig, W.: Petri nets and algebraic specifications. Theoretical Computer Science
80, 1–34 (1991)

22. Rölke, H.: Modellierung von Agenten und Multiagentensystemen – Grundlagen
und Anwendungen, Agent Technology – Theory and Applications, vol. 2. Logos
Verlag, Berlin (2004), http://logos-verlag.de/cgi-local/buch?isbn=0768

23. Savarimuthu, B., Purvis, M., Purvis, M.: Different Perspectives on Model-
ing Workflows in an Agent Based Workflow Management System. In: Khosla,
R., Howlett, R., Jain, L. (eds.) Knowledge-Based Intelligent Information and
Engineering Systems, LNCS, vol. 3684, pp. 906–906. Springer-Verlag (2005),
http://dx.doi.org/10.1007/11554028_30

24. Valk, R.: Petri Nets as Token Objects - An Introduction to Elemen-
tary Object Nets. In: Desel, J., Silva, M. (eds.) 19th International
Conference on Application and Theory of Petri nets, Lisbon, Portugal.
pp. 1–25. No. 1420 in LNCS, Springer-Verlag, Berlin Heidelberg New
York (1998), http://www.springerlink.com/openurl.asp?genre=article&issn=0302-
9743&volume=1420&spage=1

25. Valk, R.: Object Petri nets: Using the nets-within-nets paradigm. In: Desel, J.,
Reisig, W., Rozenberg, G. (eds.) Advanced Course on Petri Nets 2003. LNCS, vol.
3098, pp. 819–848. Springer-Verlag (2003)

26. Wagner, T., Moldt, D.: Approaching the Integration of Agents and Workflows. In:
Bergenthum, R., Desel, J. (eds.) 18. Workshop AWPN 2011, Hagen, September
2011. Tagungsband. pp. 55–61 (2011)

27. Wagner, T., Quenum, J., Moldt, D., Reese, C.: Providing an Agent Flavored Inte-
gration for Workflow Management. In: Jensen, K., Donatelli, S., Kleijn, J. (eds.)
Transactions on Petri Nets and Other Models of Concurrency V, LNCS, vol. 6900,
pp. 243–264. Springer-Verlag, Berlin Heidelberg New York (2012)

28. Wagner, T., Moldt, D.: Integrating agent actions and workflow operations. In:
Müller, J.P., Ketter, W., Kaminka, G., Wagner, G., Bulling, N. (eds.) Multiagent
System Technologies - 13th German Conference, MATES 2015, Cottbus, Germany,
September 28-30, 2015, Revised Selected Papers. Lecture Notes in Computer Sci-
ence, vol. 9433, pp. 61–78. Springer (2015)

29. Wagner, T., Moldt, D.: Workflow management principles for interactions between
Petri net-based agents. In: Devillers, R., Valmari, A. (eds.) Application and Theory
of Petri Nets and Concurrency - 36th International Conference, PETRI NETS
2015, Brussels, Belgium, June 21-26, 2015, Proceedings. LNCS, vol. 9115, pp. 329–
349. Springer-Verlag (2015), http://dx.doi.org/10.1007/978-3-319-19488-2_17

30. Y., L., C., L.: A workflow engine model based on multi-agent. In: Computer Appli-
cation and System Modeling (ICCASM), 2010 International Conference on. vol. 14,
pp. V14–486 –V14–489 (oct 2010)

31. Zhaohui, L., Jia, C., Rui, G., Bin, X.: A Reconfigurable Platform of Manufacturing
Execution System Based on Workflow and Agent. In: Software Engineering, 2009.
WCSE ’09. WRI World Congress on. vol. 1, pp. 314 –318 (may 2009)

326 PNSE’16 – Petri Nets and Software Engineering


