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Abstract. In this paper, we present an approach to improve the effi-
ciency of stochastic simulation for large and dense networks. We are using
stochastic Petri nets as modelling framework. The underlying continuous-
time Markov chain (CTMC) is converted to an equivalent discrete-time
Markov chain (DTMC), this itself gains no efficiency. We improve the
efficiency via discrete-time leaps, even though this results in an approxi-
mate method. The discrete-time leaps are done by applying the maximum
firing rule, this reduces drastically the number of steps. The presented
algorithm is implemented in our modelling and simulation tool Snoopy,
as well as in our advanced analysis and model checking tool MARCIE. We
demonstrate the approach on models of different sizes and complexities.
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1 Introduction

Throughout the past decades typical biological models increased in their size and
complexity, because of advances in systems and molecular biology, in particular
through the high-throughput omic technologies. This progress gained momentum
for the arise of multi-scale modelling [10]. Furthermore, Smallbone and Mendes
raised issues of large-scale metabolic models that simulation methods have to take
care of [19]: “...the inherent stiffness of genome-scale models. Since cells need to
produce some metabolites (such as ATP) at a much higher rate than others (such
as zymosterol), metabolic processes will necessarily be taking place at different
timescales. As such, systems biology tools are needed that can robustly simulate
models of this size and with these numerical instabilities.” This all together
demands for faster and more efficient simulation algorithms, even at the expense
of greater approximation.

We present an approach to improve the efficiency of stochastic simulation
for large and dense networks. We are using stochastic Petri nets as modelling
framework, because of the well defined mathematical background and the nice



C. Rohr: Discrete-Time Leap Method for Stochastic Simulation 363

graphical representation. The underlying continuous-time Markov chain (CTMC)
is converted to an equivalent discrete-time Markov chain (DTMC), this itself gains
no efficiency. We improve the efficiency via discrete-time leaps. The discrete-time
leaps are done by applying the maximum firing rule, this reduces drastically the
needed number of steps. The algorithm is called discrete-time leap method for
the simulation of stochastic Petri nets.

We start by giving the mandatory definitions and continue with the presenta-
tion of the discrete-time leap method. Afterwards we demonstrate our approach
on some case-studies of different sizes and complexities.

2 Preliminaries

A Petri net is a 4-tuple PN = (P, T, f,mg) with a finite set of places P =
{p1,p2,...,Pm}, defining the state of the net and a finite set of transitions
T = {t1,ta,...,ts}, defining the state changes in the net. The sets of places
and transitions are disjoint and not empty. Places and transitions are con-
nected via directed arcs and defined by the arc weight (multiplicity) func-
tion f: (PxT)U(T x P)) — N. We define any marking m as a mapping
m: P — Ny. It maps the set of places onto the set of natural numbers, where
m(p) defines the number of tokens in place p € P. If appropriate and the context
precludes confusion, we treat a place like a variable and write simply p instead of
m(p). An initial marking is denoted by myg. The set of pre-places (input places)
of transition ¢ is defined as *t = {p € P | f(p,t) > 0}. The set of post-places
(output places) of transition ¢ is defined as t* = {p € P | f(t,p) > 0}.

A transition t € T is called enabled in marking m, if Vp € *t: m(p) > f(p,t).
If a transition ¢t € T is enabled in m, it may fire. The firing of a transition ¢
occurs in two parts. First, the transition removes the amount of tokens f(p, )
from each of its pre-places *t. Second, it adds the amount of tokens f(¢,p) to
each of its post-places ¢*. The change in the marking induced by firing transition
t is denoted by

At ={p € "tUt*: Ai(p) = f(t,p) — f(p, 1)} (1)

When ¢ in m fires, a new marking m’ = m + At is reached. This is denoted by
m — m/. The firing itself does not consume any time and takes place atomically.
This defines the standard firing rule.

A transition ¢t may still be enabled after firing once, i.e., it is possible to fire
transition ¢ in a sequence like this m — m/ — m” — ... - m™ until it
is not enabled any more. The number of occurrences of transition ¢ in such a
sequence starting in marking m is named enabledness (concurrency) degree and

is defined as m(p)
oy = mintpes: Qﬂpﬁ)D ‘ .

The standard firing rule given above can be extended by the enabledness degree
in the following way

m' =m+ At - edi(m). (3)
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Usually referred to as mazimum (auto-concurrency) firing rule.

A stochastic Petri net (SPN) builds on PN, but transitions have an expo-
nentially distributed firing delay, characterised by the firing rate A\. A transition
may lose its enabledness while waiting for the delay to expire. The firing itself
does not consume time and follows the standard Petri net firing rule. The firing
rates are typically transition-specific and marking-dependent. They are defined
by stochastic firing rate functions, also known as propensity or hazard functions.
The mapping V : T' — H, where H is the set of hazard functions, associates
to each transition a function h; from H. The sum of all transition rates in a
marking m is denoted by E(m) = >, p hi(m).

The semantics of a SPN is a continuous time Markov chain (CTMCQ). It
is a stochastic process with an exponential probability distribution that has the
Markov property. That means, its future behaviour depends only on its current
state and not on former behaviour. The definition of a CTMC is comparable
with the reachability graph, except that the arcs are labelled with the stochastic
firing rate of the transition. A CTMC of a SPN is a tuple CTMCspn =
(Rspn(mo), Q,mo) with Rspn(mg) denoting the state space of the underlying
net, the transition rate matrix Q = Rspn(mo) X Rspn(mo) — ]Ra“ and mg the
initial state. Now, the probability of a transition ¢ enabled in state m to fire
(which results in state m') within 7 time units is

1— e QUnm)T, (4)

When working with biological systems modelled as SPN, stochastic simu-
lation is a suitable analysis technique. Although in principle known a long time
before, Gillespie was the first who developed a supporting theory for stochastic
simulation of chemical kinetics [8,7]. He presented the stochastic simulation
algorithm (SSA). Basically, it performs the following steps:

Starting from the initial marking mg, one has to repeatedly fire transitions.
In order to fire a transition, one must answer two questions:

1. When will the next transition fire?
2. Which transition will fire next?

The enabled transitions in the net compete in a race condition. The fastest one
determines the next marking and the simulation time elapses. In the new marking,
the race condition starts anew.

The SSA creates a sequence of discrete random variables X (7). The discrete
random variable X, (7) describes the number of tokens on place p € P at time 7.
The system state (marking) at time 7 is thus a discrete n-dimensional random
vector X (7) = (X,,(7),...,X,, (7)) € X. The time A7 to the next transition is
an exponentially distributed random variable with mean 1/FE(m); the probability
density function (pdf) is

P(Ar | m) = E(m) - e B(m)-A7 (5)
The next transition to fire is a discrete random variable with probability mass

function (pmf):
P(t[m) = hi(m)/E(m). (6)
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Given the system is in state X (7), the probability that a transition ¢t € T will
occur in the time interval [r, 7 + A7) is given by:

P(Ar,t | m) = E(m) - e P0AT _p,(m)/E(m)

= ht(m) . e_E(m)'AT.

(7)

3 Discrete-time Leap Method

The discrete-time leap method (d-leaping for short) aims at the simulation of
stochastic Petri nets used for modelling biochemical reaction networks. In an
attempt to decrease the time complexity of the simulation algorithm, we exploit
the uniformization of the underlying CTMC in combination with the maximum
firing rule.

The idea of converting a CTMC into a DTMC goes back to [14]. Similar
methods are known as uniformization or randomization, see [20]. The DTMC
is defined stochastically identical to the CTMC, i.e., the original CTMC is
represented by a DTMC where the times are implicitly driven by a Poisson
process. It can be shown that this DTMC behaves equivalently to the CTMC [18].

Generating paths through the DTMC is as expensive as for the CTMC and
we would not gain any efficiency by doing it in an exact way. That’s why, we
are leaping over several states. That means, all enabled transitions that are not
mutually exclusive, are forced to fire within one leap. When the net is filled up
with tokens, every transition will fire within every leap. Furthermore, we embody
the maximum firing rule and let each transition fire concurrently to itself.

3.1 Transition firing

How often a transition is allowed to fire concurrently depends on its enabledness
degree and is determined randomly at each step.

firing rate = random[0, enablness degree] (8)

The construction of the DTMC induces that the times between transitions
are all exponentially distributed. Hence, these times are randomized by a Poisson
process. Since for the uniformized DTMC the number of transitions in any
time interval of length § has a Poisson distribution with rate A. The Poisson
distribution with rate A is an approximation of the bounded discrete binomial
distribution with two parameters k and pr according to the Poisson limit theorem:

A=k pr. 9)

The binomial distribution is used to model the number of successes in a
sequence of k independent yes/no experiments with a probability pr to succeed. In
our case, the enabledness degree corresponds to the sequence’s length k = ed;. The
success probability pr is deduced from equation (4), because of the exponentially
distributed times between transitions. Given out of ed; maximum firings and a
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firing rate h;, we compute the probability pr for transition ¢ in marking m for ¢
units of time as follows

(10)
0 otherwise.

_ helm) s
_ {1 —e =@ edy(m) >0
pr=

This leads us to a good approximation of the stochastic simulation results.
We compare the simulation results of d-leaping, with § = 0.1, against the direct
method [8] on the most common reaction types in biochemical reaction networks,
i.e., first and second order reactions. The first order reaction P1 — P2 is shown in
Fig. 1. It uses mass-action kinetics with rate constant 1. The results of d-leaping

match the results of the direct method.

— P
— P2
80

T ; 10 T 10
P2 7

‘‘‘‘‘‘ Time

(a) PN (b) é-leaping (c) direct method

Fig. 1. First order reaction: P1 — P2

The second order reaction P1+ P2 — P3 uses mass-action kinetics with rate
constant 0.1. The results shown in Fig. 2 are quite as good as in Fig. 1.

—n — P1
— p3 — P3
— — P2
P1 P2
\ / \ ] x ]
T1

1

Time

(a) PN (b) d-leaping (c) direct method

Fig. 2. Second order reaction: P1 + P2 — P3
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3.2 Dependent Subnets

We discussed the firing of single and independent transitions, but a typical model
consists of much more than that. There are two types of subnets that need some
attention: conflicts and sequences.

A conflict exists inside a Petri net, if two or more transitions share a pre-place,
see Fig. 3. If the amount of tokens on this place is just as much as the arc
weights, one has to determine, which transition will fire. This is not an issue
in the stochastic simulation algorithm. In an exact stochastic simulation only
one transition is selected at a time and there is no need for further conflict
resolution. As in the standard conflict resolution for Petri nets, we have to choose
a transition non-deterministically. The standard conflict resolution proposes a
non-deterministic selection according to a uniform distribution on the number of
affected transitions. But this is not the best solution for us, because this does not
pay attention to the firing rates of the transitions. We are aiming at a weighted
non-deterministic selection, which accounts for the firing rates of transitions as
well.

/ -k =
Pi1
2 |
T1 T2 \\
2
O,,0., —— — ]
(a) PN (b) d-leaping (c) direct method

Fig. 3. Conflict: P1 — P2 and P1 — P3

The handling of transition sequences, see Fig. 4, is closely related to the conflict
resolution. We embody the maximum firing rule and force every transition to
fire (if enabled) in one time step. We shuffle the transitions and let them fire (if
enabled) sequentially to approximate the stochastic behaviour.

Luckily, we can treat both issues, transitions in conflict or in sequence, in
one solution. We generate a weighted random sequence of all transitions t € T in
each step and let them fire (if enabled) sequentially. The serial firing precludes
additional attempts to solve conflicts. Our algorithm is based on the modern
version of the Fisher—Yates shuffle [4] introduced in [2]. Algorithm 1 incorporates
Bernoulli sampling to realize a shuffling in accordance to transition weights. The
weight computation in equation (11) is inspired by the mass-action kinetics and
approximates the expected firing rate, if the transition would be enabled. It is a
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Fig. 4. Sequence: P1 — P2 — P3

heuristic method, but it provided the best results in our experiments.

w= Y fp.t)T (11)

peE®t

We get quite meaningful results using our weighted random shuffle algorithm
for the simulation of conflicts (Fig. 3) and sequences (Fig. 4). The results are
very close to stochastic simulation. The heuristic method, used to compute the
transition weights, needs further attention in future work for non mass-action
kinetics.

3.3 Algorithm

So far, we discussed the essential steps of the discrete-time leap method. Here, we
integrate the various steps in one algorithm, which is given in detail in Algorithm 2.
Each simulation run starts with the initialization phase (Algorithm 2, line 2-4),
where the simulation time, the marking, and the transition sequence are set. The

Algorithm 1 Weighted random shuffle

Require: transition sequence T, transition weights W, |T'| = |W|=n
Ensure: shuffled transition sequence

1: procedure WEIGHTEDRANDOMSHUFFLE(transitions T', weights W)
2 fori=mn; i>1; i+ i—1do

3 T <= UNIFORMRANDOMINTEGER([1, 7 — 1])

4: t1 < Tn—i, to < Tn—i+r

5: w <— WtQ/(th + WtQ)
6.
7

8

if BERNOULLISAMPLING(w) = 1 then
SWAP(T‘n_i7 Tn—i+r)
: end if
9: end for
10: return T’
11: end procedure
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Algorithm 2 §-leaping algorithm

Require: SPN with initial marking mg, time interval [79, Tmaz], time step 4, runs
T'maz, Weights W

Ensure: marking m at time point Tmaz

1: for r =0; 7 < Tmaz; 7+ r+1do
2 time T < 7o

3 marking m < mo
4: T T

5: while 7 < 7,4, do
6 T, < WEIGHTEDRANDOMSHUFFLE(T;.)
7 for all transitions t; € T, do
8 k < ENABLEDNESSDEGREE(t;, m)

9: h < FIRINGRATE(t;, m)

10: if £ > 0 then

11: f + BINOMIALSAMPLING(a, (1 — e*%"s))
12: m < m+ f- At

13: end if

14: end for

15: T T+0

16: end while

17: end for

next step is the generation of the weighted random sequence of transitions using
the weightedRandomShuffle algorithm (Algorithm 2, line 6). After that for each
transition the following steps are done (Algorithm 2, line 7-14), compute the
enabledness degree k, the firing rate h, and pick a random number f according
to the binomial distribution defined by k and equation (10), finally the transition
fires f-times. The simulation time is elapsed by § time unit. All these steps are
performed until the end of the simulation time interval 7,,,, is reached. Just like
for stochastic simulation, one has to do several simulation runs, in order to get
reasonable results. The overall result is the mean of all runs.

3.4 Caveat

The presented results of the discrete-time leap method approximate the stochastic
simulation algorithm quite well. This might not be true for all kinds of biological
mechanisms in a stochastic Petri net model, as it is the case for, e.g., a simplified
birth-death process, shown in Fig. 5. The result of the stochastic simulation
using mass-action kinetics with a rate constant of 1 shows a steady state of P!
at the initial marking. Transitions 77 and T2 are both likely to fire and thus,
fire alternately in average. The token consumed by T'1 is produced by T2 and
vice versa.

Due to the maximum firing rule, the result of the discrete-time leap method
differs. Let us assume an initial marking of 100 tokens in P! and each transition
consumes 50% of the tokens in each firing for the purpose of demonstration.
There exist two possible firing sequences S; = [T1, T2] and So = [T2, T1]. The
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Fig. 5. Simplified birth-death process, it shows the results for different rate constants
of T2, i.e., creg =1 (blue) and cr2 = 0.5 (green)

execution of S7 results in the following path mg(100) BN m1(50) BELIN ma(75)

and Sy generates mg(100) BN mq(150) BKEIN m2(75). Both sequences decrease
the amount of tokens on P1. So P1 approaches zero tokens in the long term in
any case. This contradicts the exact stochastic simulation results. Equal results
can be obtained by adapting the rate constant of the stochastic transition, i.e.,
setting the rate constant of 72 to 0.5.

4 Case Studies

In this section, we demonstrate our approach on models of the RKIP inhibited
ERK pathway and the mitogen-activated protein kinase, and on two genome scale
metabolic models of E.coli K-12. All Petri nets were modelled with Snoopy [12]
and analysed with MARCIE [13]. The experiments were carried out on a MacPro
with 2xIntel® Xeon® @ 2.26GHz and 32GB RAM running Mac OSX 10.11.

We compared the discrete-time leap method using § = 1 with stochastic
simulation using Gillespie’s direct method [8].

4.1 RKIP inhibited ERK pathway

This model shows the influence of the raf kinase inhibitor protein (RKIP) on
the extracellular signal regulated kinase (ERK) signalling pathway. A model of
non-linear ordinary differential equations was originally published in [1]. Later on,
it was discussed as qualitative and continuous Petri nets in [5], and as stochastic
Petri net in [9]. The Petri net PA grix comprises 11 places and 11 transitions
connected by 34 arcs.

The model is scalable by the initial amount of tokens N in the places RKIP,
MEKpp, ERK and RP. All transition rate functions of SPN gryi use mass action
kinetics with rate constants taken from [9].

We performed experiments with different values of N = {10,100,1000}. The
simulation results are given in Fig. 6 and the run-times are provided in Table 1.
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Fig. 6. SPN grrk with N = {10,100, 1000} and 100000 simulation runs

For all instances of IV the results of direct method and d-leaping match quite
well. For N = 10 the simulation run-time for 100 000 simulation runs for direct
method is lower than for d-leaping. The simulation run-time increases for both
algorithms with NV = 100, but the discrete-time leap method is a little faster now.
For N = 1000 the results follow the ones before, the run-time for direct method
increases by a factor of 10, whereas the run-time for §-leaping increases by only
30%.

4.2 Mitogen-activated Protein Kinase

The mitogen-activated protein kinase (MAPK) is the core of the ERK/MAPK
pathway that can, for example, carry cell division and differentiation signals from
the cell membrane to the nucleus. The model was published in [15] and later on,
discussed as stochastic Petri net in [11].

The Petri net SPAN 3 apk comprises 22 places and 30 transitions connected
by 90 arcs. The model is scalable by the initial amount of tokens in six places.
All transition rate functions of SPAN )y apxk use mass action kinetics with rate
constants taken from [11].

We performed experiments with the following 3 different values of N =
{1,10,100}. The simulation results for all three instances of N are given in Fig. 7.
They match quite well for the given places, as well as for the others. The run-time
behaviour for this model develops in a comparable way to SPNgRrk, see Table 1.
The run-time of the direct method in the first instance N = 1 is lower than for
d-leaping, but it increases much faster in the other instances of NV.
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(a) direct method, N = 1 (b) direct method, N = 10 (C) direct method, N = 100
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(d) S-leaping N =1 (e) d-leaping, N = 10 (f) 5-leaping, N = 100

Fig. 7. SPN ymapk with N = {1,10,100} and 100000 simulation runs

4.3 Reduced E.coli K-12 Genome Scale Metabolic model

This reduced model has been developed to illustrate the basic structure of the
whole genome metabolism of E.coli K-12. The reduction was originally done by
hand [17] and subsequently used for comparison with the results of an automated
procedure [3]. The used version of the model is currently part of investigations
concerning structural issues and was provided by [6].

The Petri net comprises 93 places and 172 transitions connected by 589 arcs.
The model is scalable by the initial amount of tokens in 12 places belonging to
a place invariant. It has some places with a high connectivity (Fig. 9(a)), e.g.,
M _h_c(52), M_h20_¢(27) and M_h_e(26). These places are involved in many
reactions and changing their values leads to many updates of transition rates.
This has a strong influence on the overall speed of the stochastic simulation.

We performed experiments with the following 3 different values of N =
{50, 100,500}. The simulation results in Fig. 8 and the run-times in Table 1
are quite interesting. The trajectories of M _adp ¢, M_amp_c and M_alp c
correlate quite well in the direct method and d-leaping. The traces of M accoa__c,
M coa__c and M__succoa__c show some similarities, but M accoa_ ¢ reaches a
non zero steady state for N = 500 in direct method, whereas it goes to zero in
d-leaping. The reason for this, might be the different firing rules. The plots of
M g8 cand M_¢8h2_c differ the most.

The model is still under investigation for its structural correctness and there
are no kinetic rate constants available; so divergent simulation results have
been expected, as well as the run-time variations differing in several orders of
magnitude, which speak for themselves. Here, the direct method is clearly out of
race.
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(a) direct method, N = 50 (b) direct method, N = 100 (C) direct method, N = 500

(d) §-leaping N = 50 (e) §-leaping, N = 100 (f) 5-leaping, N = 500

Fig. 8. E.coli core with N = {50,100, 500} and 100 simulation runs

4.4 FE.coli K-12 Genome Scale Metabolic model

This model describes the whole genome metabolism of F.coli K-12 iJO1366
substrain MG1655, and is one of the 55 GEM models published by Monk et al. [16].
We have chosen this strain as an example, because it was the first strain of E.coli
to be sequenced; it is considered to be the best curated model and thus it has
been used as the basis for reconstructing the models of the other strains of E.coli.
The used version of the model is currently part of investigations concerning
structural issues and was provided by [6].

nnectivity
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‘es with same cor
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I II I 10

0 d 0 G
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connectivity of places connectivity of places

(a) Reduced E.coli K-12 core model (b) E.coli K-12 model

Fig. 9. Connectivity of the reduced E.coli K-12 core model (a) and the E.coli K-12
genome scale metabolic model (b).
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The Petri net comprises 2046 places and 3703 transitions connected by 13001
arcs. The model is scalable by the initial amount of tokens in 101 of 2046 places.
The model is supposed to be rather dense. This is confirmed by looking at the
place connectivity in Fig. 9(b). The top six places at the connectivity ranking
are M__h_c with 1198 arcs, M__h20_ ¢ with 617 arcs, M__atp_c with 402 arcs,
M _h_p with 369 arcs, M__pi _c with 339 arcs and M__adp__c with 314 arcs. Places
with such high connectivity have a large impact on the performance of stochastic
simulation, because the greater connectivity of a place, the more transitions
change the number of tokens on this place and the more transition rates have to
be evaluated each time this happens.

We performed experiments with the following 3 different values of N =
{50,100, 500}. The simulation results given in Fig. 10, as well as the run-times

(b) direct method, N = 100 (C) direct method, N = 500

,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

(d) s-1eaping N = 50 (e) s-1eaping, N = 100 (f) s-1eaping, N = 500

Fig. 10. E.coli K-12 with N = {50,100,500} and 10 simulation runs

in Table 1 are quite interesting. The plots of the randomly chosen places are
comparable to some extent, but others differ a lot. This is not surprising, because
the model is under investigation and there are no kinetic parameters available.
We were not able to finish one stochastic simulation run within 40 days for
N = 500. The simulation run-times for d-leaping are moderate for such a big
and dense model. The scaling parameter NV has little influence on the simulation
run-time of -leaping.

5 Conclusions

We presented the discrete-time leap method for the simulation of stochastic Petri
nets. It converts the underlying CTMC into a stochastically equivalent DTMC.
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Table 1. Comparison of run-times for the direct method (a) and d-leaping (b). All
models were parametrised with N and simulated with different numbers of simulation
runs. T is placed, if the simulation did not finish in reasonable time (>40 days).

model N 1 run 10 runs 100 runs 100 000 runs
a b a b a b a b
ERK 10 <Is <ls| <ls <Is <lIs <Is 9s 35s

ERK 100 <ls <ls <ls <ls <ls <ls 1m21s 46s

ERK 1000 <ls <ls <ls <ls <ls <ls 13m27s  1mbs
MAPK 1 <ls <ls <ls <ls <ls <ls 12s 1m?7s
MAPK 10 <ls <ls <ls <ls <ls <ls 1m47s  2mls
MAPK 100 <ls <ls <l1s <ls <1s <ls 16m50s 2m38s

FE.coli core 50 13s <l1ls| 2mls 3s 50m8s 50s i 11h20m
E.coli core 100 | 1m47s <1s| 18mds 3s | 6h56m  56s T 11h50m
E.coli core 500 | 46m30s <1s| 10h31m  4s 7d10h 1ml2s T 14h10m
E.coli K-12 50 | 18h33m 9s | 10d16h 1m3ls 1 33m1ls 1 12d13h
E.coli K-12 100 | 2d17h 9s | 40d7h 1m32s T 33md4s T 12d14h
E.coli K-12 500 T 9s T 1m32s T 33m20s T 13d12h

Generating paths through the DTMC is as expensive as for the CTMC and we
would not gain any efficiency by doing it in an exact way. That’s why, we are
leaping over several states. The discrete time model and the maximum firing
rule in combination with binomial sampling and weighted random shuffling of
the transitions make an efficient simulation algorithm, that leads to comparable
results. The weighted random shuffle is in need for further improvements to
obtain even better approximations of the stochastic simulation.

We can conclude that the discrete-time leap method computes reasonable
results and it has a very good run-time performance especially for larger and
dense networks. It is less sensitive to higher number of tokens and thus higher
transition rates than stochastic simulation algorithms in terms of run-time. This
recommends d-leaping for models, which stochastic simulation is not capable of
simulating in reasonable time, e.g., genome scale metabolic models. Furthermore,
it is suitable for in silico experiments, where the differences between modified
models are of interest, such as knock-out scenarios of certain species or reactions.
For particular models it might be necessary to adapt the kinetic rate constants
in order to obtain similar results, see Section 3.4. Here, further investigations are
needed if we can compute the required adaptations from the net structure.

The discrete-time leap method is implemented in our tools Snoopy [12] and
MARCIE [13]. Both are free available for non-commercial use on our web page.

References

1. Cho, K.H., Shin, S.Y., Kim, H-W., Wolkenhauer, O., McFerran, B., Kolch, W.:
Mathematical modeling of the influence of RKIP on the ERK signaling pathway.
In: Proc. CMSB 2003. pp. 127-141. LNCS 2602, Springer (2003)



376

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

BioPPN’16 — Biological Processes and Petri Nets

Durstenfeld, R.: Algorithm 235: Random permutation. Commun. ACM 7(7), 420
(Jul 1964), http://doi.acm.org/10.1145/364520.364540

. Erdrich, P., Steuer, R., Klamt, S.: An algorithm for the reduction of genome-scale

metabolic network models to meaningful core models. BMC systems biology 9(1)
(2015)

Fisher, R.A., Yates, F., et al.: Statistical tables for biological, agricultural and
medical research. Oliver and Boyd, Edinburgh, 6th edn. (1963)

Gilbert, D., Heiner, M.: From Petri nets to differential equations - an integrative
approach for biochemical network analysis. In: Proc. ICATPN 2006. pp. 181-200.
LNCS 4024, Springer (2006)

Gilbert, D., Heiner, M.: personal communication (2016)

Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J Phys
Chem 81(25), 2340 — 2361 (December 1977)

Gillespie, D.: A General Method for Numerically Simulating the Stochastic Time
Evolution of Coupled Chemical Species. J Comput Phys 22, 403-434 (1976)
Heiner, M., Donaldson, R., Gilbert, D.: Petri Nets for Systems Biology, in Iyengar,
M.S. (ed.), Symbolic Systems Biology: Theory and Methods. Jones and Bartlett
Publishers, Inc. (2010)

Heiner, M., Gilbert, D.: Biomodel engineering for multiscale systems biology.
Progress in Biophysics and Molecular Biology 111(2-3), 119-128 (April 2013),
http://www.sciencedirect.com/science/article/pii/ S00796107120010717v=s5
Heiner, M., Gilbert, D., Donaldson, R.: Petri nets in systems and synthetic biology.
In: SFM. pp. 215-264. LNCS 5016, Springer (2008)

Heiner, M., Herajy, M., Liu, F., Rohr, C., Schwarick, M.: Snoopy - a unifying Petri
net tool. In: Proc. PETRI NETS 2012. LNCS, vol. 7347, pp. 398—407. Springer
(June 2012)

Heiner, M., Rohr, C., Schwarick, M.: MARCIE - Model checking And Reachability
analysis done effiCIEntly. In: Colom, J., Desel, J. (eds.) Proc. PETRI NETS 2013.
LNCS, vol. 7927, pp. 389—399. Springer (June 2013)

Jensen, A.: Markoff chains as an aid in the study of markoff processes. Scandinavian
Actuarial Journal 1953(supl), 87-91 (1953)

Levchenko, A., Bruck, J., Sternberg, P.: Scaffold proteins may biphasically affect
the levels of mitogen-activated protein kinase signaling and reduce its threshold
properties. Proc Natl Acad Sci USA 97(11), 5818-5823 (2000)

Monk, J.M., Charusanti, P., Azizb, R.K., Lermand, J.A., Premyodhinb, N.; Orth,
J.D., Feist, A.M., Palsson, B.(.: Genome-scale metabolic reconstructions of mul-
tiple Escherichia coli strains highlight strain-specific adaptations to nutritional
environments. PNAS 110(50), 20338-20343 (2013)

Orth, J.D., Fleming, R.M., Palsson, B.0.: Reconstruction and use of microbial
metabolic networks: the core Escherichia coli metabolic model as an educational
guide. EcoSal Plus 4(1) (2010)

Sandmann, W.: Brief Communication: Discrete-time stochastic modeling and simu-
lation of biochemical networks. Comput. Biol. Chem. 32, 292-297 (August 2008),
http://dl.acm.org/citation.cfm?id=1385698.1385866

Smallbone, K., Mendes, P.: Large-scale metabolic models: From reconstruction to
differential equations. Industrial Biotechnology 9(4), 179-184 (2013)

Stewart, W.: Introduction to the Numerical Solution of Markov Chains. Princeton
Univ. Press (1994)



