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Abstract. This paper addresses the problem of discovering a sound Work-
flow net (WFN) from sample event traces representing the behavior of a
process. A current challenging problem deals with discovering a suitable
model from incomplete logs since it is not possible to ensure that a log
contains all executions of a process. A method that allows building WEFN
from logs including a reduced number of traces is presented. It is based
on the concept of invariant occurrence between activities, which yields
sets of activities named conjoint occurrence classes, which are used to
infer the causal and concurrent behavior not exhibited in the log. Pro-
cedures derived from the method have been implemented in the ProM
framework. Experimental results show that the algorithm can discover
models form logs including less traces compared to other standing discov-
ery algorithms.
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1 Introduction

The automated synthesis of formal models from the observation of a process
execution in the form of event sequences is called process discovery [3]. Event
data is provided commonly by resource planning and workflow management
systems in organizations as logs of event traces, which represent the behavior of
the process to be discovered. The aim is to obtain suitable models that describe
clearly the causal and parallel relationships between the events in traces.

One significant problem in process discovery techniques is the fact that the
log could not contain enough information to discover a process model, i.e. the
log might be incomplete. This might cause that the obtained model excludes
actual behavior or represents some behavior that is not in the real process.
Many things can cause the incompleteness of the log; one of the most common is
the presence of parallelism, due to the high number of possible parallel activities
whose interleaving cannot be sampled in the traces.

The obtained model through a discovery technique must be easy to under-
stand by representing clearly, the causal and parallel relationships between the
activities. Furthermore, such a model must represent all the observed behavior
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(provided as input data) and the lowest amount as possible of non-observed be-
havior. Several metrics called quality dimensions [6] assess the features above
mentioned for the discovered model with respect to the event log.

A procedure used to test whether or not a technique is able to discover models
that have the same language as the real-life process by which a log was produced
is called rediscoverability, which compares the obtained model directly with the
real-life process. This procedure is summarized in Figure 1.

produce _process discovery | discovery
Evem lo; ModD

Quality

dimensions

Rediscoverability

Fig. 1. Model quality evaluation

The method proposed in this paper pursues to obtain a suitable Petri net
model that reveals some behavior hidden in the log, namely some causal and/or
concurrent relationships. A method that allows building sound WFN from logs
including a reduced number of traces is presented. The discovery technique is
based on the concept of invariant occurrence between activities, which leads to
obtain sets of events named conjoint occurrence classes; such classes help to infer
the causal and concurrent behavior not exhibited in the log.

The paper is organized as follows. In Section 2 the related work is over-
viewed, In Section 3, the basic notions of PN and WFN are recalled. Section
4 states the first notions of invariance of occurrence and defines the occurrence
classes. In Section 5 the synthesis of PN model from the conjoint occurrence
classes is presented. Section 6 demonstrates the performance of the proposal
through experiments and the results are compared with other approaches. Sec-
tion 7 concludes the paper.

2 Related Work

Pioneer works on the matter, named language learning techniques, have been
proposed in the field of computer sciences. The aim was to build fine representa-
tions (finite automata, grammars) of languages from samples of accepted words
[12,5]. In the field of workflow management systems, several process discovery
techniques have been proposed. In an early proposal [4], a finite automaton,
called conformal graph is obtained from sample traces execution. Later in [2]
the alpha algorithm uses the log based ordering between activities to infer the
a model. Numerous techniques present extensions To this algorithm, which are
able to discover more complex behavior such as implicit dependencies [19]. In
[8] a probabilistic approach to find the concurrent and direct relations between
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activities is presented. In [16] a formalism to represent the partial order between
activities, which improve the visualizations of event logs with additional data is
introduced. The discovery problem is addressed in an Integer linear programing
approach in [20]. The inductive miner (IM) is presented in [13], which applies a
divide-and-conquer approach that iteratively partitions the activities in process
constructs as joint and splits. An adaptation of this algorithm capable to deal
with incomplete logs called (IMin) [14] uses probabilistic behavioral relations
to deal with incompleteness. Recently, a new formal model to represent process
called process tree has been introduced in [1]. Many methods have adopted this
representation; such is the case of evolutionary tree miner (ETM) [6], that uses
a genetic algorithm to discover a process tree; the innovation in this technique
is that it allows the user to select the preferences with respect to the quality
dimensions of the final model.

In the field of Discrete Event Systems (DES), where the problem is named
identification, several approaches have been proposed for building models repre-
senting the observed behavior of automated processes. The incremental approach
proposed in [15] , allows building safe interpreted PN models from a continuous
stream of system’s outputs. Later, a technique based on project the activities
sequence on sub-alphabets to discover specific patterns is present in [17]. In [11]
input-output identification of automated manufacturing process is addressed;
an interpreted PN is obtained from a set of sequences of input-output vectors
collected from the controller during the system cyclic operation. Recently an
approach based on the computing t-invariants that allow finding implicit depen-
dencies in the PN model is presented in [18]. The literature on this research line
is vast; wide reviews on DES identification can be found in [10, 7].

In both fields, the aim in general is to discover processes models from observed
behavior. However, the nature of processes leads to problem statements somehow
different in terms of input data.

3 Background

This section presents the basic concepts and notations used in this paper.

Definition 1. An ordinary Petri Net structure G is a bipartite digraph repre-
sented by the 4-tuple G = (P,T,I,0) where: P = {p1,p2,...,p|p|} and T =
{t1,t2, ..., ty|} are finite sets of vertices named places and transitions respec-
tively; I : PxT — {0,1} (O : T x P — {0,1}) is a function representing the
arcs going from places to transitions (from transitions to places).

A marking function M : P — IN represents the number of tokens residing
inside each place; it is usually expressed as an |P|-entry vector.

A Petri Net system or Petri Net (PN) is the pair N = (G, M), where G is
a PN structure and My is an initial marking. In a PN system, a transition t;
is enabled at marking My, if Vp; € P, My (p;) > I(pi,t;); an enabled transition t;
can be fired reaching a new marking Myy1. The reachability set of a PN is the
set of all possible reachable markings from MO firing only enabled transitions;
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this set is denoted by R(G,My). For any t; € T, ot; = {p;|I(pi,t;) = 1}, and
tje = {p;|O(tj,p;) = 1}, similarly for any p; € P, ep; = {t;|O(t;,p;) =1}, and
pie = {t;|1(pi,t;) = 1}.

A PN system is 1-bounded or safe iff, for any M; € R(G,M,) and any
p € P,M;(p) < 1. A PN system is live iff, for every reachable marking M1i €
R(G, Mp) and t € T there is a reachable marking M;, € R(G, My) such that ¢ is
enabled in Mjy.

Definition 2. A WorkFlow net (WFN) N is a subclass of PN owning the fol-
lowing properties [3]: (1) it has two special places: i and o. Place i is a source
place: o1 =), and place o is a sink place: o8 = (. (2) If a transition t. is added
to PN connecting place o to i, then the resulting PN (called extended WFN) is
strongly connected.

A consecutive activities sequence: (x,d, e, a,b,y) of a process executions that
brings the system from initial state into the final state, corresponds to a trace;
a workflow log is a multiset of traces. The set of traces that can be produced by
a model N, is the language of N, is denoted by L(N). An example workflow net
is shown in Fig.2

Fig. 2. A sound Workflow net N.

Definition 3. A WFN N is said to be sound iff (N, M) is safe and for any
marking M; € R(N, M), o € M; — M; = [o], N not contains dead transitions.

Definition 4. (Relations between activities). Let A be a log over T. and let
a,beT:

-a — b, iff there is a trace 0 = t1,ta,..t, >€ XA and 1 < i <n—1, such
that ti = a, ti+1 = b,

- allab @if a —x b and b —y a.

- first(o) =t1, last(o) =t,, ifn > 1

The ordering relations has been used in [2, 4] as an abstraction of the behavior
described by a log or model. The previous relations for a workflow model IV, are
defined similarly i.e. if {...,a,b,...) € L(N), then a =y b.
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Definition 5. Completeness (2], Let N be a sound workflow net and X\ a work-
flow log of N. X is a complete workflow log of N iff (1) for any workflow log N
of N: =xC—y, (2) each activity of N is present in A.

4 Invariance of occurrence

This section introduces the notion of invariance of occurrence and presents a
technique for deriving a partial order relationship between activities.

4.1 Trace handling

A trace is a sequence of ordered activities, such that the immediately preceding
activity of a referent activity in the sequence, is associated with a position that is
less by exactly one from the position of the reference activity. i.e. < a,b,c > is a
trace where the activity a is associated with position 1 the activity b is associated
with the positions 2 and the activity c is associated with the position 3, we denote
x; to refer the ith activity in the trace. First, useful operators for expressing the
relative positions of activities in a trace and activity precedence/subsequence
relationships are introduced.

Definition 6. (Trace handling operators). Let A be a workflow log over T,
let a € T'; if there is a trace o = x1, T3, ..., Ty such that o € XA and a € oy,

o 7(x;,01) provides the activity name of element x; in o,
e Pos(a,or) ={p,q,r...,s} such that 7(zp,01) = a,...,T(xs,0,) = a
e Pred(x;, o) = 7(xi—1,0k) , 1 €{2,3,...,n}
o Succ(x;, o) = T(xiy1,0) , i €{1,2,...,n—1}
0 ,if 1€ Pos(a,oy)
g Pred(zi,on) M- N Ui, o Pred(z, ox)
NU;_, o Pred(z;, o),
ifPos(a,or) ={p,...,q, s}, p<,...,<r<s
0 Jif n € Pos(a,oy)
g;j Suce(z;, 0r) N U:;; Suce(zi,o6) N ...
NULZ, Suce(ws, o),
ifPos(a,or) ={p,q,7,...,8},p<qg<,...,<Ss

e Predset(a,or) =

e Succset(a,or) =

The function Pos(a, o) provides a set of indices in which the symbol a
appears in the trace oy, while the functions Pred and Succ provide, respectively,
the predecessor and successor activity of x; in the trace. The Predset is build
from the activities sets appearing between the occurrence of the activity symbol,
together with the beginning of the trace and the first occurrence of the activity
symbol; the operator yields common symbols among these activities sets. The
Succeset is defined similarly.
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Ezample 1. Consider a log A with three traces o1 = (x,a,b,d,e,c,a,b,y), o9
(x,d,e,a,b,y),03 = {x,a,b,d,c,a,e,b,y), which has been produced using the
workflow net N in Fig. 2. Note that is not a complete with respect to N, since
b —n ¢, e =N y hold in N but not in A. Furthermore, the only knowledge about
the parallel behavior generated between the cycle (a, b, ¢) and the sequence (d, ¢)
is al|xe; all the other parallel relations are not in A. The relations found in A
are the following: @ — (a,d), a = (b,e), b = (d,y), ¢ = a, d = (c,e),
e —x (b, a).

If we apply the Predset and Succset functions over the activity symbol a and
the traces in A we get: Predset(a,o1) = {z} N{b,d,e,c} =0, Predset(a,oq) =
{z,d,e}, Predset(a,o3) = {x} N {b,d,c} = 0; Succset(a,o1) = {b,d,e,c} N
{b,y} = {b}, Predset(a,oq) = {b,y}, Predset(a,o3) = {b,d,c} N{e,b,y} = {b}.

4.2 Conjoint Occurrence Relation

Now, we are going to introduce several notions useful to determine the sets of
activities that occur together in all traces of \.

Definition 7. The Invariable precedence set of the activity symbol a in X\ is
the set of activities that always precede a in every trace oy it appears, i.e.
InvPred(a,\) = ,, Predset(a,or). Similarly the Invariable subsequent set is
InvSucc(a, \) =), Succset(a, o).

Definition 8. The Occurrence Invariable Set of the activity symbol a in X is the
set of activities that always occur when a occurs, that is, Oi(a) = InvPred(a, \)U
InvSuce(a, \) U{a}.

Table 1 shows the Invariable precedence and subsequent sets along with their
respective Occurrence Invariable sets of each activity symbol in T, corresponding
to workflow log in Ezample. 1.

Table 1. Occurrence Invariable set of activities a and d

Activity| InvPred InvSucc Oi

z 1] {a, b, d, e, y}|{z, a, b, d, e, y}
a ] {b} {a, b}

b {a} 0 {a, b}

c {z, a ,b,d} {a, b, vy} |{z, a, b, ¢, d, y}
d {z} {a, b, d, e, y}|{=, a, b, d, e, y}
e {z, d} {b, y} {z, b, d, e, y}
Y {z, a, b, d, e} 0 {z, a, b, d, e, y}

Definition 9. Let R be a binary relation over T defined as R = {(a,b)|b €
Oi(a),Ya,b € T}. Let R’ be the coarsest equivalence relation such that R’ C R.
R’ is called the Conjoint Occurrence Relation (CO,.) and the equivalence classes
are called Congoint Occurrence Classes (CO¢;).
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The Conjoint Occurrence Classes of the log above are COc¢y = {a, b}, COcqy =
{c}, COc3 = {x,d, e,y}; the Fig. 3 shows the matrix representation of the rela-
tion R in which the doted rectangles represent the C'Oc;.

Rla|blel|d |e |z |y
a 1D

b 1L

¢ |1 {1 [ 11
d (1|1 {f L[l
e 1| 1]y
z (11| 1 (111
y L1 ML r

Fig. 3. Matrix representation of relation R, 1 for related elements, noting otherwise.

Conjoint Occurrence Classes have interesting properties, namely Invariance
and Order.

Proposition 1. (Invariance). Let X be a workflow log, COcy a Conjoint Oc-
currence Class induced by R’, and a € COcy,; when o; € X is executed, such that
a € o; all activities in COcy, are also executed in o;.

Proof. By definition, Oi(a) provides all the activities that invariably occurs when
a occurs. Consider Va, b, c € COcy,a € Oi(a), if a € Oi(b) then b € Oi(a) and if
a € 0i(b) Ab € Oi(c) then a € Oi(c), there is no activity unrelated among the
rest of activities; then the set is invariable in all the traces of \. O

Proposition 2. (Order). Let \ be a workflow log, COcy, a Conjoint Occurrence
Class induced by R'. All the activities in COcy occur in the same order in all
the o; € .

Proof. Assume that there are two activities a,b € COcy, in a parallel relation
(al|b); then when the operators Predset and Succset are applied to one activity,
the other one will not appear in its Oi(), consequently they are not in the same
COcy. Similarly, suppose that there are two traces in which a and b appear
in a different order; then the same reasoning is applied to conclude that such
activities cannot belong to the same C'Ocy. ad

If we take activities a,b € T of Example 1, we can observe that a € COc;
and the activity a is present in o1, 09, 03; consequently, b is also in 01,09, 03,
as shown in the traces. o1 = (x,a,b,d,e,c,a,b,y),00 = (x,d,e,a,b,y), o3 =
(x,a,b,d,c a,e,b,y); furthermore, they occur in the same order.
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5 From Conjoint Occurrence Classes to Petri Net
structures

Besides the Invariance and Order information provided by the Conjoint Occur-
rence classes, they provide much more information about the final model. Given
the way in which this classes are computed and the partition of the alphabet T
it is possible to obtain hidden relations between the elements of a C'Oc;; below
we present some propositions that help to find this hidden relations.

5.1 Finding sequential substructures

Proposition 3. The members of a COc form a sequential Petri Net sub-
structure (transition-place-transition) according to their Order, in which each
couple of consecutive activities are causally related.

Proof. (by contraposition). Suppose that the elements in COc¢; do not have a
PN sequential substructure according to their Order. Let a, b be any activities in
COcy, such that a < b (a before b); given that there is not a PN sequential sub-
structure, at least one of the places p; that connect a to b is missing causing that
b could appear before a in some execution; therefore by proof of Proposition 2,
these sets of elements cannot be in the same C'Ocy. O

Definition 10. Fach sequential Petri Net sub-structure can be disassembled in
three parts: the start and the end activities according to the order and rest of
the sequential substructure, which is called the body.

Fig. 4 shows the sequential PN sub-structure of each C'Oc in A, the dotted
rectangle corresponds to the class body.

COc,
COc, P .
a | 1 b
cox, Aomeeee 4
x 1 d

Fig. 4. The sequential substructure of the COc of the previous log.

Definition 11. Two activities a,b belonging to a COc; have a strong causality
denoted (a = b), iff they are consecutive in the order of the COc¢;
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Proposition 4. For all places p; in a sequential Petri Net sub-structure induced
by a COc, ep; = 1 and p;e = 1; additionally their input and output activities
must belong to the COc.

Proof. Following the same reasoning as in the proof of Proposition 3, given
that place p; exists but there is an activity k € p;e such that k ¢ COc;, it
could provoke an execution in which the activity a appears without the future
appearance of b; therefore a,b are not in COc. In case that k € ep;, this allows
an execution in which the activity a appears without the previous appearance
of b. a

5.2 Parallel and Causal Behavior Deducted from COc¢

The incompleteness of the log is mostly caused by the high level of parallel be-
havior of activities in the real process, this is a common issue in several discovery
techniques based on Log ordering relations. The C'Oc classes provide a way to
deal with this problem. Since the members of a C'Oc are causally related, given
a property of one of its elements, this may be transmitted to the other members
in the class, i.e. it is possible to deduce parallel behavior between a couple of
activities, even if they are not directly consecutive in both directions.

Most of the workflow systems offers standard building blocks such as OR-
split, OR~joint, AND-split, AND-joint [3], OR-splits/OR-joins correspond to
places with multiple outgoing/ingoing arcs in a Petri Net, while AND-Split/AND-
join corresponds to a transition with two or more output/input places, the latter
blocks capture the parallel behavior of the process. Next proposition states how
the COc and the Oi() can be used to infer these particular transitions.

Proposition 5. Let COc;,COc; be two different conjoint occurrence classes,
such that at least an activity a € COc; is parallel to an activity b € COc; i.e.
(al|d) then.

1) If there exist two elements x,y corresponding to start and end activities of
either COc¢; or COcj, such that COc; UCOc¢; C Oi(x)NOi(y), then x,y are
And-split, And-join activities respectively.

2) The elements in COc; have a parallel relation with the elements of COc;
(COc¢;||CO¢y), with the exception of activities corresponding to And-split or
And-join.

Proof. (1) Given that Oi(a) contains the activities that occur whenever the a
occurs and the And-split structure puts a token in two or more places enabling
different threads, the only way in which an activity a has an And-split structure
is that his Oi(a) contains all the activities involved in all the parallel threads.
The reasoning is similar for the AND-joint case. d

(2) Given that both CO¢; and C'Oc¢; define sequential substructures in which
each place has one input and output, then the only way to see the presence
of an activity a € COc; during the sequential execution of C'Oc;, is that the
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activities in both sequential substructures are enabled by a previous And-split,
consequently the activities in COc¢; have a parallel behavior with the elements
of COc; a

The COc gives a partitioned view of the process. Next function helps to join
this partitions in order to complete the model.

Definition 12. Let X C T be a set of activities and o; € \; the function ¢ x (o;)
filters the trace by applying the natural projection of o; over T\X.

The previous function makes a filtering over the log traces, by removing all
the occurrences of any activity a € X. The traces preserve the order of reminder
activities.

Once the parallel behavior between all the COc have been detected, it is
possible to use the ¢x function as a strategy to find missing parallel behavior
or links (causal relations) between sequential substructures, by assigning to X
the parallel activities of a COc; w.r.t a COc; and vice versa.

In order to illustrate how the function ¢ x operates, it is applied on the C'Oc¢
and previous log. Since el|a, then COc1||COcs. Giving X the parallel activities
in COc; the result is: ¢r,5)(01) = (v,d,e,¢,y), drapy(02) = (z,d,e,y) and
®{apy(03) = (2,d,c,e,y), then by computing the Relations between activities for
the filtered log, a new parallel behavior is discovered: c||e, therefore COcs||COcs.

Now being X the parallel activities in C'Ocz, the result is, ¢f4.1(01) =
<(E, a,b,c,a,b, y>’ ¢{d,e} (02) = <$, a,b, y> and (b{d,e} (03) = <£C7 a,b, c,a,b, y>7 then
the new consecutive relation b — ) ¢ is discovered.

Notice that x,y are not part of the parallel behavior because they are the
start and end in COcs; furthermore, COc¢y U COcs C Oi(x) N Oi(y), thus z,y
corresponds to an AND-split and AND-joint respectively. The application of this
procedure to the new parallel relation (COc3||COcs3) does not create new —
relations. This log filtering is performed iteratively over all the classes that have
a parallel relation in addition to the new ones which result of a previous filter.
The computation ends when no new consecutive relations are found.

5.3 Building the Petri Net Model

Once a hidden behavior in the log is found, it is used to connect all the sequential
substructures into the final model by creating new places. Table 2 shows the
Relations between activities of the log A in Example 1, after adding the found
relations by filtering the log.

The rest of (a — b) relations after removing all the parallel behavior (|])
determine the existence of a place between activities a and b; some of these
are already considered by the places which conform a sequential Petri Net sub-
structure, such is the case of the strong causal relations (¢ = b) in CO¢; and
(x = d), (d=e), (e = y) in COcs for Example 1. For the rest of relations, the
addition of places is quite intuitive, it is defined as follows.
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Table 2. Relations between activities after log filtering

Tlx|al|b|c|d|e|y
T — =

a = ]

b ==
c — ]

d [RRIRA =

€ INNInE =
Y

Definition 13. (Merging activities in — relation). When the left activity in
two — relations are the same (a —) b,a — ¢) two possible substructures can
be created.

a) The places of —y relations are merged into a single one iff (b -5 ¢ V
¢ -+ b) This is denoted as |a, b+ c].

b) The places of —x relations are not merged iff (b —x ¢ V ¢ —5 b) This is
denoted as [a, bl|c].

Similarly, for — 5 relations when the right activity is common, (b —y a,c —
a), the substructure created will be either [bl|c , a] or [b+ ¢ , a] accordingly. In
general, a set of — relations in the form (a —) b,a =) ¢,...,a =5 d) may
produce either [a, b + ¢ + d]| or [a, b||c||d]. Consequently, the merging can be
applied to composed relations, i.e. [b+c , a]l and [b+c , d] leads [b+ ¢ , a+ d].

For the activities in first(o) or last(o) we add two more places corresponding
to the ¢ and o places in the final workflow model i.e. a € i e |30y, a € first(o;)
and a € o0|30;, a € last(o;)

A similar way to infer the merging of places is presented in [2]. In contrast to
this result our proposal reduces considerably the space search since high percent-
age of the places are already found previously by the sequential sub-structures

The Fig. 5 shows the Petri Net model after connecting the sequential sub-
structures with the new relations.

All the definitions previously described can be summarized in the following
algorithm that we called the Conjoint Occurrence Miner (CoM).

6 Implementation and tests

We implement the CoM algorithm as a plunging in the ProM Framework [9] to
test our results and compare our approach with other important techniques in
the literature.

The aim of these experiments is to show first, how the CoM algorithm deals
with small logs, and then, to present how others process discovery algorithms
work with the same incomplete logs.
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Algorithm 1 Conjoint Occurrence Miner (CoM)
Input: Log .

Output: sound Workflow net N.

1: Compute — 4, ||x relations.

2: for Va € T do

3 Compute InvPred(a,\) and InvSucc(a, \)
4 Compute Oi(a)

5: end for
6
7
8
9

: From Oi compute the C'Oc classes COc
: Build the PN sequential substructures
: Find the missing — relations

: Build the final PN as stated in (5.3)

. | (}4

\wom/* N

Fig. 5. Petri Net model discovered from A

6.1 Experiments

FExperiment 1
We used the Workflow net N presented in Figure 2 to generate a complete
workflow log A according to the — relation, then we construct 4 smaller sub-
logs of X’ by removing traces from )\, which have 0.90,0.80,0.75 and 0.60 of the
average ratio of —-pairs compared to the model N, named [ 9, Aj 55, Ao 75 and
A0.go respectively. In this case, Aj g, corresponds to A presented in Ezample 1.
For this experiment, we consider the following discovery algorithms: Integer
Linear Programing miner (ILP)[20], a-algorithm [2], Inductive Miner (IM) [13],
and Inductive Miner Incompleteness (IMin) [13], we use the ProM Framework
[9] for perform the experiments; ILP()), for instance, means the application of
ILP algorithm to the log \. We want to show (1) for which of the mentioned
logs the algorithm return a language equivalent model and (2) if the algorithm
is able to rediscover the original model.

Results.

(1) L(N) = LULP(Xyg35)), LIN) = L((Xg90)), LIN) = LIM(Ap.90));
L(N) = LIMin(Xye)) and L(N) = L(CoM (X 60))-
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(2) ILP, o and IM require the full — relations for rediscover the original
model N, whereas IMin and CoM rediscover N with \j g9, Aj.go respectively.

The one that needs less information for rediscover the model is the CoM
algorithm. Figure 6 shows fragments of the resulting models applying the others
algorithms to Ng.

@ IM;apd, a—y, d (b) IMin ; a, b, d can de fired in any order

Fig. 6. Discovered models from X gy

FExperiment 2
In this experiment, thirty logs are used to tests the proposed method and other
discovery techniques. Such logs have been obtained in the same way than in
Ezperiment 1, from six diverse sound WFN involving form six to ten activities;
the nets are shown in Figure 7.

Results. Table 3 shows the results of Experiment 2. Column 2: gives the per-
centage of logs for which the discovery technique returns a language equivalent
model. Column 3: gives the percentage of logs for which the technique is able to
rediscover the original model.

Table 3. Results of the Experiment 2

miner Lan_guage Rediscoverability
equivalent
ILP 36% 23%
@ 23% 16%
M 56% 33%
IMin 100% 53%
CoM 90% 83%
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Fig. 7. Workflow nets of Fxperiment 2.

6.2 Limitations of the method

Although the method shows good results for dealing with incompleteness, there
are particular behaviors that cannot be discovered using this technique; such is
the case of short loops structures as shown in Ny and Ny of Figure 8. This is
because it is not easy to infer the conjoint occurrence classes COc from traces
in which an activity can be observed directly after itself.

x ::l\ v x /'jl\' ¥
O+0 410 010 O+0
\ v

b

Fig. 8. Two sound WFN
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7 Conclusion

In this work a novel discovery technique is presented. It is based on a new
relation between activities called Conjoint Occurrence Relation, which leads to
a partition of the activities alphabet into classes. Such classes are used to infer
causal and parallel relations missing in the incomplete log, and consequently,
Petri net substructures. Furthermore, the experimental results show that the
performance algorithm is acceptable with respect to other relevant discovery
techniques. Although the technique is presented as a discovery one, which can
deal with logs including reduced number of traces, the proposed notions and
algorithms seem to be a promising approach for dealing with the problem of
rediscoverability. Current research addresses study the class of models and the
minimum behavior exhibited in the log for ensure this property.
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