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Abstract. This paper deals with the identification of controlled discrete event 
processes from timed input-output vector sequences; the sampling date of every 
vector is provided. An efficient method allowing building a transition timed inter-
preted Petri net (TTIPN) model is presented. The method is based on a three-
stage strategy: 1) the observable components of the TTIPN are first obtained, 2) 
the non-observable part is inferred, and 3) the time parameters associated to 
transitions are obtained. This paper focuses on the first and third phases of the 
method; a new method for building the observable model is proposed; additional-
ly, a technique to compute the timing of transitions is presented. The derived al-
gorithms are polynomial-time on the length of the input-output sequences.

Keywords: I-O identification; Discrete event processes; Timed Petri nets.

1 Introduction
Nowadays, many automated processes in operation do not have enough information 
about how they work. This is because the updates have not been documented or in 
many cases the specification does not exist.

Earliest identification methods, named language learning techniques, appear in 
computer sciences. The aim of such methods was to build fine formal specifications 
(finite automata, grammars) of languages from samples of accepted words [1, 2]. In 
DES the problem is referred as process identification; in this field several approaches 
and methods have been proposed for building abstract machines representing the ob-
served behaviour of automated processes. In [3, 4] an incremental approach allows 
synthesising safe interpreted Petri net (PN) models from a sequence of system’s out-
puts. Later, in [5], an approach for building PN from a set of sequences of events is 
presented; it is based on the statement and solution of an integer linear programming 
problem. Numerous extensions to this method have been presented, for example [6, 
7]. In [8] a method for deriving finite automata from sequences of inputs and outputs 
is presented; it is applied to fault detection of manufacturing processes. An extension 
to this method that allows building distributed models is presented in [9]. In [10] In-
put-output identification of automated manufacturing process is addressed; an inter-
preted PN is obtained from a set of sequences of input-output vectors sampled from 
the controller during the system cyclic operation. The method is extended for dealing 
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with a long single observation of input-output vectors [11]. Surveys presented in [12]
and [13] provide a detailed presentation on DES identification.

In the field of workflow management systems (WMS) the problem is named work-
flow mining. The aim of the approach is similar but the problem statement is some-
how different. A complete review of recent works can be found in [14].

Most of the proposed identification techniques process sequences of events and ob-
tain models expressed as Petri nets of finite automata (FA). However, few proposals 
address the identification of timed systems. Relevant works on the matter are [15],
[16], [17].

The work presented herein addresses identification of timed discrete event process-
es, in which the available data is only a set of sequences of input-output vectors, 
which represent the exchanged signals between a controller and a plant from the con-
troller point of view. Additionally, the instants when each vector is observed are con-
sidered. The events, the number of places, and the number of transitions are not 
known a priori. The proposed method yields a Petri net model including input func-
tions and outputs and also timing information regarding the durations of operations. 
Timing is expressed through two parameters associated to transitions: a positive real 
value and pair of positive real values expressing an interval, which can be used ac-
cording to the transition timed PN and time PN semantics respectively.

The method is based on a two-phase strategy presented in a recent previous work
[18], in which the observable components of the TTIPN are first obtained, and then 
the non-observable part is inferred. This paper focuses on the first stages of the meth-
od and proposes a more efficient technique for determining the observable compo-
nents and the timing parameters.

The paper is organised as follows. Section II gives an overview of the basic notions 
on Petri nets. Section III presents the method for building the qualitative observable 
model. Section IV describes the non observable model synthesis. Section V presents 
the strategy for computing the time parameters. Finally concluding remarks are given. 

2 Petri Nets Background
This section presents the basic concepts and notation of Petri Nets (PN), Interpret-

ed Petri nets (IPN), Timed and Time Petri Nets (TPN) used in this paper.
Definition 1: An ordinary Petri Net structure G is a bipartite digraph represented by 

the 4-tuple G = (P, T, Pre, Post) where: P = {p1, p2, ..., p|P|} and T = {t1, t2, ..., t|T|} are
finite sets of vertices named places and transitions respectively; 
Pre(Post) : P × T {0,1} is a function representing the arcs going from places to 
transitions (from transitions to places).

The incidence matrix of G is W = W+ W , where W = [wij ]; wij = Pre(pi, tj); and 
W+ = [wij

+]; wij
+ = Post(pi, tj) are the pre-incidence and post-incidence matrices respec-

tively.  
A marking function M : P Z+ represents the number of tokens residing inside 

each place; it is usually expressed as a |P|-entry vector. Z+ is the set of nonnegative 
integers. In particular, in this paper M : P {0,1}; the PN is referred as 1-bounded or 
safe.
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Definition 2: A Petri Net system or Petri Net (PN) is the pair N = (G,M0), where G
is a PN structure and M0 is an initial marking.

In a PN system, a transition tj is enabled at marking Mk if pi P, Mk(pi) Pre(pi,
tj); an enabled transition tj can be fired reaching a new marking Mk+1. This behaviour 
is represented as Mk jt Mk+1. The new marking can be computed as 
Mk+1 = Mk + Wuk, where uk(i) = uk(j) = 1; this equation is called the PN state 
equation. The reachability set of a PN is the set of all possible reachable markings 
from M0 firing only enabled transitions; this set is denoted by R(G,M0). 

Now it is defined IPN, an extension to PN that allows associating input and output 
signals to PN models. This definition is adapted from [19].

Definition 3 : An interpreted Petri net (IPN) (Q, M0) is a labelled net structure 
Q = (G, , , ) with an initial marking M0 where: 
- G is a PN structure, 
- = { 1, 2, ..., r} is the inputs alphabet,
- = { 1, 2,..., q} is the outputs alphabet, 
- : T Ev C is a labelling function of transitions, where 

C={C1, C2,… , C|T|} is the set of input conditions in which every Ci is a Boolean 
function on ; when a Ci is always true it is denoted as “=1”, and 

Ev={Ev1, Ev2,…} is the set of input events conditions; every Evi is a Boolean func-
tion of input events, built on ; events are denoted as i_0 and i_1 for represent-
ing that the input value changes from 1 to 0, or from 0 to 1 respectively. A condi-
tion Evi may not exist; this is denoted as “ ”.

In an IPN, a transition tj will be fired if a) tj is enabled, and b) condition Cj is true, 
and c) the event in E(tj) occurs.

- : R(Q,M0) (Z+)q is an output function, that associates with each marking in 
R(G,M0) a q-entry output vector, where q=| | is the number of outputs. is repre-
sented by a q×|P| matrix, such that if the output symbol i is present (turned on) 
every time that M(pj) 1, then (i, j) = 1, otherwise (i, j) = 0.
The state equation of PN is completed with the marking projection Yk = Mk, where 

Yk (Z+)q is the k-th output vector of the IPN.
Definition 4:  A place pi P is said to be observable if the i-th column vector of 

(denoted as ( ,i)) is not null. Otherwise it is non-observable. P = Pobs Pnobs,
and Pobs Pnobs = ; where Pobs is the set of observable places and Pnobs the set of 
non-observable places.

Now the definitions of timed and time PN are recalled.
Definition 5: A timed transition PN is the tuple N = (G, M0, ), where  G is an 

ordinary PN, M0 is the initial marking, and : T 0 is function that assigns a 
nonnegative value to each tj T; such a value represents the firing time of  is the aver-
age firing of tj once it is enabled [20].

Definition 6: A time PN is the tuple N = (G, M0, ), where  G is an ordinary PN, 
M0 is the initial marking, : T 0 0 is the firing time interval function that as-
signs a firing interval [lj, uj] to each transition tj T. The interval represents a time 
window restriction; tj must be fired after lj or before uj (lj j) time units computed 
from the instant in which tj is enabled [21].
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In both definitions, when (tj)=0 or (tj)=[0, 0], tj is called immediate. Timed and 
immediate transitions are usually represented by empty and filled boxes, respectively.

3 Input-output identification
3.1. The black-box approach

The process to identify consists of a pair controller-plant interacting in a closed 
loop (Fig. 1). The exchanged signals between them are sampled every time a signal 
changes and recorded for building a sequence of vectors representing input and out-
puts from the controller point of view.

The identification method developed in this paper follows the general approach 
proposed in [18]; it consists of two stages. The first one obtains the observable model 
and a transitions sequence S. The second stage processes S and builds the non-
observable model. Then the observable and non-observable models are merged to 
create the final model, which describes closely the actual behaviour of the controller.

Figure 1. Closed loop controller-plant DES

3.2. Identification of the reactive behaviour
The method presented herein extends the previous one by proposing more efficient 
algorithms and addressing the temporal behaviour of the process and obtaining the 
identified model. Thus, besides the input-output vector sequence, the instants when 
each vector is sampled are considered. In this paper we will focus on the construction 
of the observable part and the computing of the time parameters associated to each 
transition.

3.2.1. Problem statement

The input data is a timed I/O vector sequence w= w(1)w(2) ... w(|w|), where
w(k)=[I(k)|O(k)]T such that I(k) {1,0}r, O(k) {1,0}q and w(k) w(k-1), i.e. a new 
vector is recorded when an input or an output changes. Furthermore each w(k) has 
associated a date (w(k)) 0, which represents the instant when the k-th I/O vector 
is observed.

The aim of the method is to obtain an IPN Q and a timing function Tim that associates 
to each transition two parameters given by and , which express the firings duration 
and interval respectively from the timed and time PN definitions; Tim: T {(valj, intj)| 
valj= (tj) and intj= (tj)} t T}. In this paper a technique that builds the observable 
components given by Pobs is presented.

Controller

Plant

O(k)I(k)

I/O vectors sequence w
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It is assumed that the process formed by the controller and the plant behaves correct-
ly, i.e. bounded, fault free, and deadlock free; besides, the sequence w is observed 
from the initial state. 

3.2.2. Events

Definition 7. An elementary event is the difference between two consecutive I/O 
vectors E(k-1)=w(k) w(k-1) 0, k>1. Each event vector is composed by two parts 
E(k)=[IE(k)|OE(k)]T, where IE(k-1)=I(k) I(k-1) and OE(k-1)=O(k) O(k-1) referred as 
input events and output events respectively. An E(k) is called a reactive event iff 
OE(k) 0.

Remark. The event vectors are unknown a priori but the number is bounded by 
|3r+q| since E(k) {-1,0,1}r+q. The actual number of events is determined from the ob-
served w. Another important issue on this definition is that the only events considered 
are those which are detected by changes in inputs or outputs (or both). Internal events 
that are not due to input changes or do not cause output changes are not considered.

3.2.3. Events sequences
The timed event sequence is then E=e(1)e(2)e(3)…e(k-1), where the instants when 

they are observed are given by (e(k))= (w(k+1)). It is assumed that (w(0))=0.
In this work we are interested in determining the reactive behaviour of the control-

ler; thus we will focus on events that provoke changes in the outputs, i.e. reactive 
events.

A new sequence RE is formed by the reactive events re(h) from E by preserving the 
order in which they appear in E and their associated dates: (re(h))= (e(k)) such that 
e(k) is a reactive event.

Given that between two reactive events in E there could be other non reactive 
events, RE is usually shorter than E.

Example 1. Consider a controlled process that handles 7 inputs (m, a, b, c, d, e, f)
and 4 outputs (R1, L1, R2, L2); the I/O vectors have the format [m a b c d e f |R1 L1 R2
L2]T.   Figure 2 shows the first vectors of the I/O sequence w, and the derived event 
sequences E, and R.

Figure 2. A fragment of I/O sequence w and its corresponding sequences of events E and RE.

w(0) w(1) w(2) w(3) w(4) w(5) w(6) w(7) w(8) w(9) w(10)0 1 0 0 0 0 0 0 0 0 01 0 0 0 0 0 0 0 0 0 00 0 0 1 0 0 0 0 0 0 00 0 0 0 0 0 0 1 0 0 01 ee(1) 0 ee(2) 0 ee(3) 0 ee(4) 0 ee(5) 0 ee(6) 0 ee(7) 0 ee(8) 0 ee(9) 0 ee(10) 00 1 0 -1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 00 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 00 0 1 -1 0 0 0 0 0 00 0 1 0 1 0 1 0 1 0 1 0 1 1 0 -1 0 0 0 0 00 -1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 10 0 1 0 1 0 1 0 1 1 1 -1 1 0 1 0 1 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 -1 10.00 1 3.01 0 3.20 0 8.02 0 8.13 0 8.15 0 8.21 -1 12.90 0 12.99 0 13.01 0 13.240 0 0 0 0 0 1 0 0 01 0 0 0 0 0 0 0 -1 00 0 0 0 0 0 0 0 1 03.01 3.2 8.02 8.13 8.15 8.21 12.9 12.99 13.01 13.24re(1) re(2) re(3)

w = …

E = …

RE = …
(re(h))
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3.3. IPN representation of reactive events
Every OE part of a reactive event re(h) represents a change in the output variables 

i of the system whose entries are different of zero; i_1 and i_0 denote the changes 
of the variable i from 0 to 1 and from1 to 0 respectively. The number of different OE 
in the observed reactive events is the minimum number of transitions in the IPN. All 
the different OEs are stored in a set OES.
For every OE(h), the symbolic expression of the event part is SOE(k)= ( ) i
s.t. OEi(k) 0, where SOEi(k)= i_1 if OEi(k)=1 or SOEi(k)= i_0 if OEi(k)=-1.

In Example 1 the symbolic representation of the OE of re(1) and re(2) are SOE(1) = 
R1_1 R2_1 and SOE(2) = R1_0 L1_1 respectively.

There are as many observable places as output variables. The corresponding ob-
servable places to a re(h) are marked or unmarked when the value is 1 or -1 accord-
ingly.

A substructure relating observable places pi, such that (pi)= i, by a transition tj

that represents the event re(h) must be created through arcs (tj, pi) and (pi, tj) for the 
values 1 and -1 in the entry corresponding to pi in OE(h).

In Example 1 the reactive events re(1)=e(2) and re(2)= e(7) define the structures 
shown in figure 3.

Figure 3. Examples of IPN sub-structures related to reactive events.

3.4. Firing functions
In a very long event sequence, reactive events that have identical OE 0 may appear 

repeatedly; such events may have different IE. This means that several IE provoke the 
same changes in the system outputs. Thus, it is necessary to define a function that 
embeds all the IE for the same OE; such firing function is associated to the transition 
of the substructure i.e. that associated by of the IPN definition.

3.4.1. Input event functions
For every reactive event re(h) one must consider the corresponding IE(k) and also 

the previous IE whose OE=0 to build a function f in the form Ev C; such functions 
are named Event and Context parts respectively of the input event function fr.

Event part. It represents the changes of the inputs that yield the outputs change. It is 
often determined from IE(k) or IE(k-1) if IE(k)=0. The symbolic expression of the 
event part is SRE(k)= SIEi(k) i s.t. IEi(k) 0, where SIEi(k)= i_1 if IEi(k)=1 or 
SIEi(k)= i_0 if IEi(k)=-1.

Context part. It represents the values of the input variables of w(k). The symbolic 
expression of the condition part is SCRE(k)= ( ) i, where SCIi(k)= i if 
Ii(k)=1or SCIi(k)= i if Ii(k)=0. Furthermore, if a literal i has changed twice its 
value during the previous E(k) in which OE(k)=0, i must not be included in
SCRE(k).
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For every computed fr, the symbolic expression of the OE is associated through a 
function , and the instants (re(h)) are associated in a set of real values; when a fr is 
computed again along the RE, then the corresponding date is added to the set. Based 
in the previous notions the procedure to build the input event functions is given be-
low.

Algorithm 1. Input event functions
Input: Sequences w and RE
Output: F and the sequence FS
1.F Ø; FS Ø; r 1; OES Ø
2. re(h) in RE where h=1, ... , |RE|

Let IE(k) be the k-th input event corresponding to re(h)
2.1. If IE(k) 0

then  Compute SRE (k); 
If SRE(k) OES 
then OES OES SRE (k)

else Compute SRE (k-1);
If SER(k-1) OES 
then OES OES SRE (k-1)

2.2. Compute SCRE(k) from w(k)
2.3. If IE(k) 0

then f
r

(SRE (k), SCRE(k)); 
else f

r
(SRE (k-1), SCRE(k))

2.4. (f
r
) SOE(k)

2.5. If f
r

F
then  F F fr; FS FS • fr; r= r+1; ( f

r
) (re(h))

else Let f
s

F the function already computed s.t. f
s
= f

r
; FS FS • f

s
;

        (fs) (fs) (re(h))
3. Return F and FS

Property 1
The previous algorithm produces a set F of functions that represent all the different 
reactive events in RE and their corresponding execution contexts. Consequently FS
has a correspondence with the sequence of events E. Thus, FS reproduces the input-
output sequence w.
It is easy to see that the complexity of the procedure for building inputs events func-
tions is O(|RE|).

In Example 1, regarding the reactive event re(1) which corresponds to e(1), 
SIE(1)=m_1 a_0 d_0 and SCI(2)= ; then f1(R1_1 R2_1)= (m_1 a_0 d_0, 

). Additionally, f2(R1_0 L1_1)= (c_1, ); notice that b changed twice be-
tween re(1) and re(2). Also f3(R1_1 L1_0)=(f_1, ).

3.4.2. Merging input event functions
Once the reactive functions fh are obtained, several input event functions could cor-

respond to a same output event vector. In the sequence RE of figure 4 regarding Ex-
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ample 1, the output event R1_0 L1_1 is found several times with different fh, i.e.  e(7), 
e(23), e(39), etc. These events are enhanced with rectangles in the sequence shown in
figure 4.

Figure 4. Fragment of a sequence of reactive events.

Such functions could be associated to the transition that yields the marking change 
in the obtained IPN structures as a compound event. The functions that provoke a 
given oe OES are associated through the function : OES 2F.

Afterwards, functions associated to every oe must be gathered according to the 
event part of the input function; then the condition part can be expressed as a disjunc-
tion of contexts of the corresponding functions, and then compacted by Boolean sim-
plifications.

In the example, the output event oe= R1_0 L1_1 is provoked by the input events 
represented by the functions: 

f2(R1_0 L1_1) = (c_1, ), and
f10(R1_0 L1_1) = (c_1, ), 

which can be embedded by the composed function g1= f2,10= c_1 ( +) = (c_1, ), which is associated to t2 in figure 3.

3.4.3. Transitions sequence
Once the observable components are obtained, the sequence of transitions S that 

reproduces the reactive events is computed. This is straightforward performed by 
tracking the firing functions sequence FS and applying a mapping :T {gi}.

The technique above described is summarised in Algorithm 2 given below.

Algorithm 2. Compound functions
Input: F, FS, and OES
Output: T, , S, Timed sequence S
1.S Ø; S Ø; T Ø;
2.// Finding functions with the same output event (oe)

oe OES: ;
fr F: 
If (fr)=oe then

fr

160



3.// Gathering the functions in 
oe OES

1; i ;

ff

fr
If SRE(ff) =SRE(fr)
then gei fr); i i fr;

(oe)\ fr;
Endif

ti    // determining the transitions set
fs i: ’( fs) ti; s i; i=i+1

Endwhile
4.//Building compound functions

i s
gci Context( i)

(ti i, gci)
5.// Transitions sequence formation

fr FS: S S ’( fr); S S ( ’( fr), ( f
r
))

6. Return T, , S, S

Property 2
Algorithm 2 returns the set of Transitions T and the labelling , which associates the  
input firing functions. Furthermore, the procedure builds both sequences S and St.
As defined in the Step 5, S is formed by transitions ti that correspond to fr in FS;
then by Property 1, S correspond to event sequence E, consequently to w.
Step 2 of  Algorithm 2 is performed in O((|OES|)(|F|)). Step 3 is executed in
O((|OES|)(| |)2). Step 4 is completed in O(| s|). Step 5 is performed in O(|FS|).
The length of diverse structures is as follows: | s .
Then, the approximated complexity of the procedure O(|FS|). Given that |w|= |RE| 
and |FS|=|RE|, this complexity is linear on the length of w.

In Example 1, 12 different input functions for 6 output events were computed. 
They are summarised in Table 1. The observable sub-model is depicted in figure 4. 

Table 1. Output events and their associated compound functions

Transition Output event Input functions Compound function
t1 R1_1 R2_1 f1 g1=( m_1 a_0 d_0, )

t2 R1_0 I1_1 f2, f9 g2=( c_1,  )
t3 R2_0 L2_1 f3, f8 g4=(f_1, )

t4 L1_0 f4, f7 g5=(a_1, (m + ) )

t5 L2_0 f5, f6, f10 g6=(d_1, ( + ))
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Figure 4. Observable component of a IPN model.

The transitions set is T={t1, t2, t3, t4, t5} and obtained sequences S and S are:
S= t1 t2 t3 t4 t5 t1 t2 t3 t5 t4 t1 t2 t3 t4 t5 t1 t2 t3 t5 t4 t1 t3 t2 t4 t5 t1 t3 t2 t5 t4 t1 t3 t2 t4 t5 t1 t3

t2 t5 t4 t1 t2 t3 t4 t5 t1 t2 t3 t5 t4 t1 t2 t3 t4 t5 t1 t2 t3 t5 t4 t1 t3 t2 t4 t5 t1 t3 t2 t4 t5 t1 t3 t2 t5 t4 t1 t3

t2 t4 t5 t1 t3 t2 t5 t4 t1.
S = (t1, 3.01) (t2, 12.90) (t3, 13.01) (t4, 22.91) (t5, 23.10) (t1, 25.85) (t2, 35.83) (t3,

36.03) (t5, 45.84) (t4, 46.02) (t1, 49.07) (t2, 58.89) (t3, 59.19) (t4, 68.99) (t5, 69.00) (t1,
71.99) (t2, 81.75) (t3, 82.12) (t5, 92.01) (t4, 92.05) (t1, 94.89) (t3, 104.97) (t2, 105.03) 
(t4, 115.01) (t5, 115.33) (t1, 117.97) (t3, 127.87) (t2, 128.01) (t5, 137.69) (t4, 137.88) (t1,
140.99) (t3, 150.85) (t2, 151.35) (t4, 161.03) (t5, 161.10) (t1, 163.84) (t3, 173.81) (t2,
173.99) (t5, 183.99) (t4, 184.03) (t1, 187.02) (t2, 196.85) (t3, 197.01) (t4, 207.01) (t5,
207.10) (t1, 210.00) (t2, 219.98) (t3, 220.01) (t5, 229.94) (t4, 229.99) (t1, 232.01) (t2,
241.91) (t3, 242.01) (t4, 252.03) (t5, 252.09) (t1, 255.10) (t2, 264.78) (t3, 264.99) (t5,
274.69) (t4, 274.99) (t1, 278.10) (t3, 287.79) (t2, 288.12) (t4, 298.01) (t5, 298.04) (t1,
301.04) (t3, 310.79) (t2, 311.01) (t4, 321.02) (t5, 321.04) (t1, 324.30) (t3, 333.90) (t2,
334.01) (t5, 344.10) (t4, 344.12) (t1, 347.01) (t3, 356.61) (t2, 357.06) (t4, 367.10) (t5,
367.12) (t1, 370.01) (t3, 379.94) (t2, 380.41) (t5, 389.99) (t4, 390.01) (t1, 393.04).

Proposition 1. The observable model reproduces the input-output sequence w and 
behaves 1-bounded with respect to the execution of such a sequence.

Proof. The non-observable model is built from the output part of the reactive events,
which mark and unmark the observable places following the reactive events sequence 
RE. In turn RE reproduces w by property 1; then, the model is able to execute w.
Since by assumption the process behaves correctly, there is not two successive re-
quests to activate an operation before deactivate it and then the places have zero or 
one tokens during the execution of w. �

4 Determining the non observable model
In order to complete the model, a technique that finds a PN model, which repro-

duces the transitions sequence S has to be applied. This model, called the non observ-
able PN, is merged with the observable model to obtain the IPN that reproduces the 
input/output sequence w.

The method used for computing the non observable model is presented in [22],
which builds from S, a safe PN and its initial marking using only the transitions in T.
The method computes the causal and concurrent relations between the transitions in 
the sequence S. This is achieved by determining the t-invariants, which are used to 
determine substructures in the discovered model. In the last stage of the method the t-
invariants are used for reducing the possible exceeding language by determining cau-
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sality between events not observed consecutively. Further details on the method can 
be consulted in [22]. The application of this method to the sequence S of the example 
yields the model shown in figure 5.

Both the non observable and the observable models are combined by merging the 
transitions that have the same name. In the example the merging of models in figures 
4 and 5 yields the IPN shown in figure 6. Afterwards, non observable implicit places 
are removed, and then the model yield is shown in figure 7.

                  
      Figure 5. Non observable IPN                        Figure 6.Merging observable and non-observable models

Figure 7. The reduced IPN model that reproduces w

Proposition 2. The partially observable IPN model (Q, M0) obtained through the pro-
posed method is able to reproduce the input-output sequence w. Such a model be-
haves 1-bounded when w is fired.
Proof. By property 2, the observable model reproduces w, hence the transitions se-
quence S. The method for computing the non observable models also guarantees the 
reproduction of S; therefore, the compound model reproduces the sequence w. In this 
model, by Proposition 1 and by the 1-boundedness of the non observable model, the 
final model is also 1-bounded. �

5 Computing the timing parameters
The last stage of the identification method is to obtain the timing parameters of the 

IPN models. For this purpose, the Tim function is determined from the timed se-
quence S and the structure of the synthesized PN.

The strategy consists in parsing S by comparing the transition tk in S (k) with one 
or several previous transitions in the sequence, and then determining the time elapse 
between (fr) of S (k) and the corresponding (fr) in the upstream S (k-i). This reason-
ing is based on the semantics of transition-timed Petri nets in which the time elapse 
associated to a transition tk represents the maximum stay duration of the marking that 
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enables tk. Thus, every time tk appears in the sequence one must analyze the occur-
rence of ( tk) in the subsequence preceding S (k), up to the previous appearance of tk

or S (1). Figure 8 illustrates the general structure of the PN fragment to analyze.

Figure 7. Possible transitions occurred preceding to tk in S.

For every place in tk, one must detect one of the input transitions (since the PN is 
1-bounded) in the subsequence preceding tk in S ; among these transitions, let tr be 
that whose date is the latest, then the maximum residence time of tokens in the mark-
ing that enables tk is = (tk) (tr), which is indeed the time elapse associated to tk for 
this subsequence. The above strategy is summarized and structured in Algorithm 3 
given below.

Algorithm 3. Determining timing function
Input: S
Output: function Tim
1. tj T: (tj)
2. tj T:

For k=1 to |S | // analysing the occurrences of tj in S
If tj= GetTrans(S (k))
then
{ (tj) GetTime(S (k));

r k - 1
While (GetTrans(S (r)) ( tj)) do

r k – 1
Endwhile
(tr) GetTime(S (r));
(tk) (tk) ( (tk) (tr))}

Endfor
3. tj T

(tj) average( (tj));
(tj) [min( (tj)), max( (tj))]

Tim(tj) ( (tj), (tj))
4. Return Tim
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tktb

td

...
tc

...
...

(ta)
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Property 3
The algorithm obtains for every transition tj, both the average of the duration of the 
making enabling tj, and their minimum and maximum values. It is easy to see the S
is executed witin the instants given by the computed interval. 
The first and the third steps are performed in O(|T|). The second step is more time 
consuming; inside the two for iterations (executed in O(|T||S |)), one must explore in 
S a subsequence preceding tj, which contains tj. Since the maximum value of the 
| tj| is small compared to |S |, the complexity is O(|T||S |)).

In Example 1, the timing parameters obtained from S are given in Table 2.

Table 2. Timing parameters for the IPN model.

Transition Tim(tj) (tj)

t1 (2.90, [2.02, 3.26]) {3.01, 2.75, 3.05, 2.99, 2.84, 2.64, 3.11, 2.74, 2.99, 2.02, 
3.01, 3.11, 3.00, 3.26, 2.89, 2.89, 3.03}

t2 (9.98, [9.68, 10.40]) {9.89, 9.98, 9.82, 9.76, 10.14, 10.04, 10.36, 10.15, 9.83, 
9.98, 9.90, 9.68, 10.02, 9.97, 9.71, 10.05, 10.40}

t3 (9.92, [9.60, 10.18]) {10.00, 10.18, 10.12, 10.13, 10.08, 9.90, 9.86, 9.97, 9.99, 
10.01, 10.00, 9.89, 9.69, 9.75, 9.60, 9.60, 9.93}

t4 (9.93, [9.60, 10.11]) {9.90, 9.99, 9.80, 9.93, 9.98, 9.87, 9.68, 10.04, 10.00, 
9.98, 10.02, 10.00, 9.89, 10.01, 10.11, 10.04, 9.60}

t5 (9.93, [9.58, 10.30]) {10.09, 9.81, 9.81, 9.89, 10.30, 9.68, 9.75, 10.00, 10.09, 
9.93, 10.08, 9.70, 9.92, 10.03, 10.09, 10.06, 9.58}

6 Conclusions
In this paper the problem of identifying timed discrete event processes is ad-

dressed. A novel method that obtains the observable components of an IPN model and 
determines the timing parameters is proposed.

In this problem the only available input data is a sequence of input-output vectors 
and the instants when they are recorded. Using the method that discover the non ob-
servable model, the final obtained model is an IPN in which the process outputs are 
associated to some places, and the transitions are labelled with functions of inputs that 
express the reactive behaviour of the process. The time parameters are given as a pair 
( , ) corresponding to the parameters of timed and time PN respectively.

The proposed method for computing the observable components is simpler than a 
previous work [18] since it focuses on reactive events and the processing is less com-
plex; besides the technique for determining the transitions timing is simple. These 
features lead to polynomial time algorithms on the size of the input-output sequence, 
which are able to handle long sequences efficiently.

Current research studies the obtained time parameters; the time elapsed can be 
highly dispersed and then a refinement of the untimed model could be required.
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