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ABSTRACT
Link Discovery is a new research area of the Semantic Web
which studies the problem of finding semantically related
entities lying in different knowledge bases. This area has
become more crucial recently, as the volume of the available
Linked Data on the web has been increasing considerably.
Although many link discovery tools have been developed,
none of them takes into consideration the discovery of spa-
tial or temporal relations, leaving datasets with such char-
acteristics weakly interlinked and therefore disallowing the
exploitation of the rich information they provide.

In this paper, we propose new methods for Spatial and
Temporal Link Discovery and provide the first implementa-
tion of our techniques based on the well-known framework
Silk. Silk, enhanced with the new features, allows data
publishers to generate a wide variety of spatial, temporal
and spatiotemporal relations between their data and other
Linked Open Data, dealing effectively with the common het-
erogeneity issues of such data. Furthermore, we experimen-
tally evaluate our implementation by using it in a real-world
scenario and demonstrate that it discovers accurately all the
existing links in a time efficient and scalable way.

CCS Concepts
•Information systems → Information integration;
Spatial-temporal systems; Data extraction and in-
tegration;

Keywords
Spatial and Temporal Link Discovery, Semantic Web,
Linked Data

1. INTRODUCTION
Linked data is a research area which studies how one can

make RDF data available on the Web, and interlink it with
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other data in order to increase its value for users [4]. The
goal of Linked Data is to allow people to share structured
data on the web as easily as they can do with documents
today. An important step for the evolution of the Web of
documents to the Web of data is the transformation of the
data from any form that it exists into a common format, the
Resource Description Framework (RDF) so that it can be
easily integrated with other data already transformed in this
format. All the data that is compatible with the Linked Data
Principles composes the Linked Open Data (LOD) cloud1.

Recently, spatial and temporal extensions to RDF have
been proposed and implemented. GeoSPARQL [22] is a re-
cent OGC2 standard that allows representing and querying
geospatial data on the Semantic Web. Also, the data model
stRDF accompanied by the query language stSPARQL [17]
are extensions of the standard RDF and SPARQL for rep-
resenting and querying geospatial data that changes over
time. Both of the above extensions are implemented in the
open source spatiotemporal RDF store Strabon [18]. Fur-
thermore, OGC and W3C have established a joined working
group which studies the use of spatial data on the web [29].

Link Discovery is one of the main Linked Data Principles.
Its main objective is to establish semantic links between en-
tities in order to enhance and enrich the information that is
known about them. Whilst the problem of Entity Resolu-
tion i.e., the problem of finding entities which are equivalent,
has been studied a lot in areas such as Relational Databases
and Information Retrieval, Link Discovery defines the more
generic problem of finding semantically related entities lying
in different knowledge bases [2].

Although a lot of effort has been given in the represen-
tation and querying of geospatial and temporal RDF data,
there are not many works in the respective area of Link Dis-
covery. In the context of Spatial Link Discovery, state of the
art techniques are focusing on finding only spatial equiva-
lences between entities, leaving other kinds of relations e.g.,
topological relations, undiscovered and the rich geospatial
information lying in many datasets unexploited. The situ-
ation regarding Temporal Link Discovery is even more pre-
mature and thus, to the best of our knowledge, there are
almost no datasets with temporal information that are con-
nected with each other with links that denote a temporal
relation.

Another common use of Link Discovery is for detecting
internal links within a single dataset. For example, by ap-
plying an Entity Resolution method on a dataset, we can

1http://www.w3.org/DesignIssues/LinkedData.html
2http://www.opengeospatial.org
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discover all the similar entities i.e., all the duplicates of this
dataset. Hence, with Spatial and Temporal Link Discovery
we can materialize all the spatial, temporal and spatiotem-
poral relations that hold between the entities of a dataset.
This operation is very useful in the areas of Qualitative Spa-
tial and Temporal Reasoning where the large graphs that are
created based on the qualitative relations are given as input
to corresponding reasoners [7, 10] in order to extract useful
information or to verify the consistency of a dataset.

The lack of research in the area of Spatial and Tempo-
ral Link Discovery will be made more notable when more
datasets with such characteristics will be made available in
the LOD Cloud. Currently, a lot of initiatives are moving
towards this direction by publishing open geospatial data
and metadata coming out of open government directives3

and open Earth Observation (EO) data and metadata that is
currently made available by space and environment agencies
(e.g., ESA, NASA and EEA)4. This data usually consists of
measurements produced by observations with hundreds of
gigabytes of geospatial and temporal information. Making
all this data available as Linked Data and interlinking it with
semantic connections will allow the development of services
with great environmental and commercial value.

EU projects such as LEO, MELODIES and TELEIOS,
have already started exploiting this kind of data by study-
ing its whole life cycle [15]. Their final goal is to build big
knowledge bases with data from various sources and be able
to perform queries efficiently on them. Use cases from these
projects have shown that combining heterogeneous data,
especially in its spatial dimension, can be a bottleneck to
this procedure, since they significantly increase the execu-
tion time5. This happens due to the fact that most of the
spatial join operations (e.g., check of containment or non-
intersection) have by definition quadratic complexity6. This
complexity can get even higher when we first have to ho-
mogenize the joining data. Thus, computing such relations
among very complex or heterogeneous data, on query time,
can be extremely time consuming and prohibitory for real-
time applications. Therefore, there is a need for a tool that
will be able to materialize those relations (links) efficiently,
even for highly demanding workloads.

In this paper, we propose new methods for Spatial and
Temporal Link Discovery and provide the first implementa-
tion of our techniques based on the well-known framework
Silk. Silk, enhanced with the new features, allows data
publishers to generate a wide variety of spatial, temporal
and spatiotemporal relations between their data and other
Linked Open Data, dealing effectively with the common het-
erogeneity issues of such data. Furthermore, we experimen-
tally evaluate our implementation by using it in a real-world
scenario, with datasets that comprise rich spatial and tem-
poral information, and demonstrate that it discovers accu-
rately all the existing links in a time efficient and scalable
way.

The structure of the paper is organized as follows. In Sec-
tion 2 we present related work in the area of Link Discovery.

3http://www.linkedopendata.gr
4http://datahub.io/organization/teleios and
http://datahub.io/organization/leo
5http://www.melodiesproject.eu/content/
enhancing-geospatial-sparql-query-times-silk
6O(nm) where n and m are the numbers of points of the
joining spatial objects.

In Section 3 we provide the background on which the new
methods for Spatial and Temporal Link Discovery that we
propose in Section 4 are based. In Section 5 we describe the
implementation of our techniques in the framework Silk and
in Section 6 we present the experimental evaluation of them.
Finally, in Section 7 we conclude the work by discussing fu-
ture directions.

2. RELATED WORK
Up to now, little effort has been given in the research

area of Spatial and Temporal Link Discovery. Most of the
approaches on generic Link Discovery do not exploit the rich
spatial and temporal information existing in some datasets,
whereas domain specific approaches on Spatial Link Dis-
covery are able to discover only spatial similarities (spatial
duplicates). Hence, to the best of our knowledge, there are
no frameworks, either generic or domain specific, for discov-
ering spatial or temporal relations other than equivalences
among RDF datasets. Below we describe the most related
to our work state-of-the-art Link Discovery frameworks.

In the area of generic Link Discovery, the authors of [12]
propose the declarative link specification language LinQL,
which is translated to standard SQL by the framework Lin-
Quer, for discovering semantic links over relational data.

The LIMES framework [20] introduces a generic algorithm
for Link Discovery which reduces the number of comparisons
that are needed during the interlinking phase by utilizing the
triangle inequality in metric spaces. For finding link spec-
ifications, LIMES implements supervised and unsupervised
machine learning algorithms.

Similarly to LIMES, Silk [13] is also a generic framework
for discovering relationships between data items within dif-
ferent Linked Data sources. Silk, which is the only open
source generic Link Discovery framework, features a declar-
ative link specification language for specifying which types
of RDF links should be discovered between data sources as
well as which conditions entities must fulfill in order to be in-
terlinked. These linkage rules may combine various metrics
and can take the graph around entities into account, which
is addressed using an RDF path language. Silk accesses the
data sources that should be interlinked via the SPARQL pro-
tocol and can thus be used against local as well as remote
SPARQL endpoints.

In the area of Spatial Link Discovery there are some do-
main specific approaches which are able to discover only
spatial equivalences among datasets i.e., they focus on Spa-
tial Entity Resolution. In order to achieve this, they combine
the geographic distance of the geometries of the entities with
other kinds of distances e.g., with the string distance of their
labels. The supported geographic distances can be applied
either between any kind of spatial objects (e.g., Hausdorff
distance), or only between point objects (e.g., Orthodromic
distance). Some of these approaches are presented in [25,
26, 30].

From the generic frameworks, LIMES also addresses the
problem of Spatial Entity Resolution in [21]. The compu-
tation of the distance between the spatial objects lies on
a combination of Hausdorff and Orthodromic metrics. On
the other hand, Silk supports the geographic distance only
between point objects.

A detailed review on state of the art algorithms and frame-
works is performed in the surveys [2, 19] as well as in [28].

http://www.linkedopendata.gr
http://datahub.io/organization/teleios
http://datahub.io/organization/leo
http://www.melodiesproject.eu/content/enhancing-geospatial-sparql-query-times-silk
http://www.melodiesproject.eu/content/enhancing-geospatial-sparql-query-times-silk


3. BACKGROUND
In this section we provide the state-of-the-art on the rep-

resentation of spatial and temporal information in the RDF
data model and a formal definition of the problem of Link
Discovery. We also present the models and calculi on which
we base the new Link Discovery relations that we introduce.
The extended background of this paper is given in [28].

3.1 Representation of Spatial and Temporal
Information in the RDF data model

Spatial information in the RDF data model is usually rep-
resented as serializations of geometries accompanied with a
Coordinate Reference System (CRS) which defines how to
relate these serializations to real geometries on the surface
of Earth. For encoding this information, Well-Known Text
(WKT) and Geography Markup Language (GML) are used.
WKT is an OGC standard for the representation of vec-
tor geometry objects, CRSs, and transformation rules be-
tween different CRSs. On the other hand, GML, developed
by OGC as well, is the most common XML-based encoding
standard for the representation of geospatial data, that pro-
vides XML schemas for defining a variety of concepts that
are of use in Geography: geographic features, geometries,
CRSs and topologies.

The main RDF vocabularies for representing spatial as
well as temporal information are described below.

W3C GEO. W3C GEO is an RDF vocabulary for repre-
senting simple location information in RDF. It provides the
basic terminology for serializing point geometries using a
namespace for representing latitude, longitude and other
information about spatially-located things. The CRS of
this vocabulary is encoded in the namespace and it is the
WGS 847. Below, we give an example of the W3C GEO
vocabulary:

_:1 rdf:type wgs84geo:Point .
_:1 wgs84geo:lat "10"^^xsd:double .
_:1 wgs84geo:long "20"^^xsd:double .

GeoSPARQL. GeoSPARQL [22] is a recent OGC standard
that defines a vocabulary for representing geospatial data
in RDF, and an extension to the SPARQL query language
for processing geospatial data. It uses literal values to en-
code geometries and introduces two RDF datatypes, the
geo:wktLiteral and geo:gmlLiteral, for the WKT and
GML literals. An example of a geometry in GeoSPARQL
is given below:

_:1 rdf:type geo:Geometry .
_:1 geo:hasGeometry
"<epsg:4326> POINT(10 20)"^^geo:wktLiteral .

stRDF: The Spatial Dimension. The data model stRDF
[17] is an extension of the standard RDF for representing
geospatial data. Similarly to GeoSPARQL, stRDF uses the
OGC standards WKT and GML for the representation of
geospatial data and introduces two new literal datatypes,
the stdf:WKT and strdf:GML. An example of a geometry in
stRDF is shown below:

_:1 rdf:type strdf:Geometry .
_:1 strdf:hasGeometry
"POINT(10 20);<epsg:4326>"^^strdf:WKT .

7http://spatialreference.org/ref/epsg/wgs-84/

stRDF: The Temporal Dimension. An approach for the
representation of temporal information in RDF was intro-
duced with the temporal dimension of stRDF [3]. This ap-
proach assumes a discrete time line and uses the value space
of the datatype xsd:dateTime of XML-Schema8 to model
time. Two kinds of time primitives are supported: time in-
stants and time periods. Time instants are represented by
literals of the xsd:dateTime datatype and time periods by
literals of the datatype strdf:period. These literals are
used as objects of triples to represent user-defined time and
as valid time of temporal triples. A temporal triple is an ex-
pression of the form (s, p, o, t) where (s, p, o) is an
RDF triple and t is the valid time of this triple. An example
of a temporal triple in stRDF is shown below:

_:1 rdf:type strdf:Geometry .
_:1 strdf:hasGeometry
"POINT(10 20);<epsg:4326>"^^strdf:WKT
"2000-01-01T00:00:00"^^xsd:dateTime .

3.2 Definition of Link Discovery
The definition of Link Discovery based on which we define

our new methods is described as follows:

Definition 1. Let S and T be two sets of entities and R
the set of relations that can be discovered between entities.
For a relation r ∈ R, w.l.o.g., a distance function dr and a
distance threshold θdr are defined as follows:

dr : S × T → [0, 1] , θdr ∈ [0, 1]

The domain of dr is the Cartesian product of S and T and
the range is the computed distance normalized to the interval
[0, 1]. θdr is also normalized to [0, 1].

The set of discovered links for relation r (DLr) is defined as
follows:

DLr = {(s, r, t) | s ∈ S ∧ t ∈ T ∧ dr(s, t) ≤ θdr}

DLr contains triples which have as subject an entity from
dataset S, as object an entity from dataset T and as predi-
cate the relation r. A triple belongs to DLr iff the function
dr returns a distance that does not exceed the threshold θdr .

3.3 Relation Models and Calculi

Region Connection Calculus. The Region Connection
Calculus (RCC) [24] is a formalization that provides a sound
and complete set of topological relations between two spa-
tial regions. RCC-8, which is a well-known subset of RCC,
is based on eight topological relations (Figure 1(a)) where
DC stands for DisConnected, EC for Externally Connected,
TPP for Tangential Proper Part, NTPP for Non Tangential
Proper Part, and TPPi and NTPPi are the inverse relations
of TPP and NTPP.

Dimensionally Extended 9-Intersection Model. The Di-
mensionally Extended 9-Intersection Model (DE-9IM) [5] is
a well-known model for representing topological relations
between geometries. More specifically, this model captures
topological relations in R2, by considering the dimension
(dim) of the intersections involving the interior (I), the
boundary (B) and the exterior (E) of the two geometries.
Given the intersection matrix (Figure 1(b)), for any two
spatial objects that can be points, lines and/or polygonal

8http://www.w3.org/TR/xmlschema-2#dateTime
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Relation Illustration
X before Y X
Y after X Y
X meets Y X
Y isMetBy X Y
X overlaps Y X
Y isOverlappedBy X Y
X starts Y X
Y isStartedBy X Y
X during Y X
Y contains X Y
X finishes Y X
Y isFinishedBy X Y

X equals Y
X
Y

(d)

Figure 1: (a) RCC-8 Relations, (b) DE-9IM Intersection Matrix, (c) Cardinal Direction Relations and (d)
Allen’s Relations

areas, we can define relations derived from DE-9IM such as:
Intersects, Overlaps, Equals, Touches, Disjoint, Contains,
Crosses, Covers, CoveredBy and Within.

Egenhofer’s and OGC Simple Features Model. The
Egenhofer’s Model [6] and the Simple Features Model pro-
posed by OGC9 contain different subsets of the topological
relations that derive from the DE-9IM mentioned above.

Cardinal Direction Calculus. This calculus concentrates
on cardinal direction relations [11, 27] which are used to de-
scribe how regions of space are placed relative to one another
e.g., region a is north of region b (Figure 1(c)).

Allen’s Interval Calculus. A widely used algebra for tem-
poral reasoning is Allen’s Interval Calculus [1], which pro-
vides the definition of possible relations between time peri-
ods. It is based on the thirteen jointly exclusive and pair-
wise disjoint qualitative relations given in Figure 1(d). From
these basic relations, one can build new ones by taking dis-
junctions of them.

Spatiotemporal Constraint Calculus. By pairing a spa-
tial and a temporal relation model or calculus we can cre-
ate a spatiotemporal one. For example, the Spatiotempo-
ral Constraint Calculus (STCC) [9] combines RCC-8 with
Allen’s Interval Calculus. This calculus is useful when
we want to discover relations between spatial objects that
change over time (as we will see in Section 6) or between
moving objects.

4. METHODS FOR SPATIAL AND TEM-
PORAL LINK DISCOVERY

In this section we describe the new methods that we intro-
duce for Spatial and Temporal Link Discovery. Specifically,
we present the new sets of relations and transformations that
we provide and an optimization technique called Blocking.
Finally, we prove theoretically the soundness and complete-

9http://www.opengeospatial.org/standards/sfs

ness of our methods and describe how the latter has as result
their accuracy to be 100%.

4.1 Spatial and Temporal Relations
According to the definition of Link Discovery, presented

above, the set R contains all the relations that can be dis-
covered between entities. In this paper we introduce the sets
of spatial (Rs), temporal (Rt) and spatiotemporal (Rst) re-
lations. These sets contain all the relations that are included
in the models and calculi described in Section 3. Specifically,
Rs contains the relations that are included in the DE-9IM,
Egenhofer’s and OGC Simple Features Models and the Re-
gion Connection and Cardinal Direction Calculi, Rt contains
the relations included in the Allen’s Interval Calculus and
Rst contains all the per two combinations of the above mod-
els and calculi.

We consider these relations as Boolean relations (RB) i.e.,
either they hold or they do not hold (Rs, Rt, Rst ⊂ RB ⊂ R).
These relations have also been studied in the context of fuzzy
logics but this is out of the scope of this paper.
RB constitutes a special subset of R. The distance func-

tion dr and the distance threshold θdr for a relation r ∈ RB

are defined as follows:

dr(s, t) =

{
0 if r holds
1 elsewhere

, θdr = 0

dr returns 0 if r holds between two entities (e.g., relation
intersects holds between two geometries or time periods)
and 1 elsewhere. Hence, since dr is a Boolean function, θdr
as a parameter is needless, thus, in order to be compliant
with the definition, we can set it constantly to 0.

4.2 Spatial and Temporal Transformations
A common issue that occurs when one tries to discover

links between datasets created by different data providers is
heterogeneity (e.g., we can have datasets expressed in differ-
ent time-zones). A preprocessing technique that addresses
this problem is the application of transformations on the
attributes of the entities before checking the existence of a
link. The transformations that we introduce are generic and
not tightly coupled to specific kind of datasets.

http://www.opengeospatial.org/standards/sfs


(a) (b)

Figure 2: Blocking technique for (a) Spatial and (b) Temporal Relations

Spatial Transformations. The spatial transformations
that we introduce are the following:

• Vocabulary Transformation. As mentioned in Sec-
tion 3, the geometries of a dataset can be expressed in
different vocabularies (e.g., W3C GEO, GeoSPARQL
or stRDF). This transformation converts the geome-
try literals of a dataset in order to be expressed in a
common vocabulary (GeoSPARQL).

• Serialization Transformation. The geometries of a
dataset can be also serialized in different ways (e.g.,
using WKT or GML). This transformation converts
the geometries of a dataset to follow a common serial-
ization (WKT).

• CRS Transformation. Although a CRS such as
WGS 84 is a comprehensive way to describe locations
on Earth, some applications work on a projection of
the Earth. In these cases, a projected CRS is used that
transforms the 3-dimensional ellipsoid approximation
of the Earth into a 2-dimensional surface. This trans-
formation reverts the CRS of a geometry from a pro-
jected one (e.g., the GGRS87 for Greece) to the World
Geodetic System (WGS 84) for better precision and
homogeneity.

• Validation Transformation. This transformation con-
verts not valid geometries (e.g., self-intersecting poly-
gons) to valid ones.

• Simplification Transformation. Some datasets have
very complex geometries, which makes the computa-
tion of spatial relations inefficient. This transforma-
tion simplifies a geometry according to a given distance
tolerance, ensuring that the result is a valid geometry
having the same dimension and number of components
as the input.

• Envelope Transformation. This transformation com-
putes the envelope (i.e., the minimum bounding rect-
angle) that contains a geometry and it is useful in cases
that we want to compute approximate spatial relations
between two datasets.

• Area Transformation. In some cases we may want to
compare the areas of two geometries to verify the exis-
tence of a relation. This transformation computes the
area of a given geometry in square metres.

• Points-To-Centroid Transformation. In crowdsourcing
datasets like OpenStreetMap10, multiple users can de-
fine the position of the same placemark. As a better
approximation of the real position of this placemark
we can compute the centroid of these positions. This
transformation computes the centroid of a cluster of
points.

Temporal Transformations. The respective temporal
transformations that we introduce are the following:

• Period Transformation. The stRDF data model sup-
ports both time instants and periods. This transfor-
mation converts a time instant to a time period with
the same starting and ending point.

• Time-Zone Transformation. Time elements (i.e., time
instants and periods) can be expressed in different
time-zones. This transformation converts the time-
zone of a given time element to the Coordinated Uni-
versal Time (UTC).

4.3 Blocking Technique
Since the size of datasets with spatial or temporal infor-

mation can be very big, approaches that perform exhaustive
checks between datasets are considered inefficient. Thus,
there is need for a scalable, yet sound and complete tech-
nique for decreasing the number of checks by dismissing
definitive non-matches prior to the actual check. The most
well-known technique to achieve this is known as Blocking
[14, 23]. Blocking is an optimization technique that effec-
tively reduces (as we will see in Section 6) the execution
time of our methods without affecting (as we prove below)
the accuracy of the discovered links.

Spatial Relations. The Blocking technique for spatial re-
lations that we propose builds blocks that divide the earth
into curved rectangles as depicted in Figure 2(a). The ref-
erence system of our technique is WGS 84 which considers
a spheroid approximation of the Earth. This approximation
requires complicated mathematics for calculations such as
areas, distances, etc. (e.g., the shortest path between two
points in the spheroid is a circle arc whereas, in a planar ap-
proximation it would be just a straight line). Nevertheless,
we chose WGS 84 because we prefer having highly accurate
calculations rather than fast ones.

The area of the created blocks is measured in square de-
grees and can be adjusted by a spatial blocking factor sbf .
The formula for the computation of the area is the following:

10http://www.openstreetmap.org
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blockArea =
1

sbf2

◦2

The bigger the value sbf gets, the more and smaller blocks
will be created. For example, if we assign to sbf the
value 10, our Blocking technique will create 6, 480, 000 non-

overlapping blocks with area 0.01◦2 that cover the whole
surface of the earth11.

After the division of the space into blocks, we compute the
set of blocks into which each geometry must be inserted. In
order to achieve this, we first compute the minimum bound-
ing box (MBB) that contains each geometry, and then we
find the blocks that this MBB intersects with. Thus, each
geometry is assigned to all the blocks with which its MBB
intersects.

Temporal Relations. In the Blocking technique for tempo-
ral relations we follow a similar approach to the one for spa-
tial relations. Time is one-dimensional and thus the blocks
are one-dimensional as well. Let us suppose that all the
time elements of our data are included in the interval from
the Epoch12 until the Present (Figure 2(b)). This interval
can be manually configured according to the time range of
our data. Following the same strategy as before, we divide
the time in blocks whose length can be adjusted with a tem-
poral blocking factor tbf . The formula for the computation
of the length of the blocks is the following:

blockLength =
1

tbf
time units

where time units range from milliseconds to years.
After the division of the time into blocks, we insert in

each block all the time periods and instants that temporally
intersect with it.

Spatiotemporal Relations. The Blocking technique for
spatiotemporal relations is a combination of the techniques
mentioned above. In this case the blocks are three-
dimensional (two dimensions for space and one for time).
The formula for the computation of the volume of the blocks
is the following:

blockV olume =
1

sbf2 × tbf

◦2

× time units

4.4 Link Discovery
Given that all the entities are inserted in blocks using

the aforementioned Blocking technique, we check a relation
r ∈ Rs∪Rt∪Rst only within the scope of each block. In order
to achieve this, we use the actual spatial and/or temporal
information, computing explicitly the relation.

Since the blocks are built to be completely independent of
each other, this check can be performed in parallel with re-
spect to the blocks. Then we construct the set of discovered
links (DLr) by aggregating the respective links that have
been discovered within each block.

Spatial relation Disjoint is treated in a slightly different
way from the other relations. If two entities belong to the
same block, then we follow the previous approach and we
check explicitly the relation. If they don’t, the Disjoint re-
lation holds by definition and thus we add a link without
actually checking the relation. A similar approach is fol-
lowed for the temporal relations Before and After as well as
for the cardinal direction relations.

11The longitude range of WGS 84 is [−180◦, 180◦] and the
latitude range is [−90◦, 90◦].

12The Epoch has been set to January 1, 1970, 00:00:00 GMT.

4.5 Soundness and Completeness
The soundness and completeness of the proposed methods

for Spatial and Temporal Link Discovery is proved in two
steps. In the first step we prove that the methods are sound
and complete when performing an exhaustive check of all
the possible pairs of entities (Cartesian product) and in the
second that the Blocking technique that we propose does
not affect the accuracy of the discovered links.

Cartesian Product Technique. The proposed algorithms
that check if a spatial or temporal relation holds between
two geometries or time instants have been proven sound in
[1, 5, 24]. Also, by definition, Cartesian product denotes
that we perform an exhaustive (complete) check of all the
pairs of entities from the datasets. Hence, we can state that,
our methods are sound and complete i.e., for each relation
they discover the exact set of pairs of entities for which this
relation holds.

Blocking Technique. We prove that the application of the
Blocking technique does not affect the completeness of our
methods for Spatial Link Discovery with reduction to absur-
dity.

Proof. Let two geometries lying in different blocks with
a spatial relation r ∈ Rs\{Disjoint} holding between them.

If r holds between two geometries then they intersect at
least at one point (from the definition of the spatial rela-
tions).

If two geometries intersect at one point, so do their MBBs
(from the definition of MBB).

If the MBBs of two geometries intersect, then there is
at least one block in which they will be both inserted (as
described above).

This results in a contradiction because we assumed that
the two geometries are lying in different blocks. Therefore
the initial assumption must be false.

The above proves that if a relation other than Disjoint holds
between two geometries, then they will be placed in at least
one common block and consequently the relation between
them will be checked and discovered.

With a similar proof for the Disjoint, the temporal and the
cardinal direction relations we can state that our methods
remain complete, even after the application of the Blocking
technique.

4.6 Precision and Recall
Since we proved theoretically that our methods are sound

and complete, their accuracy is guaranteed. Metrics such as
Precision and Recall are by definition equal to 100%:

Precision =
TDL

TDL+ FDL
=

TDL

TDL
= 100%

Recall =
TDL

TDL+ FNDL
=

TDL

TDL
= 100%

TDL stands for True Discovered Links, FDL for False Dis-
covered Links and FNDL for False Not Discovered Links.
FDL and FNDL are both equal to zero as a consequence
of the soundness and the completeness of our methods.



5. EXTENDING THE LINK DISCOVERY
FRAMEWORK SILK

All the proposed methods for Spatial and Temporal Link
Discovery have been implemented as extensions to the Silk
framework13. As mentioned in Section 2, Silk is the only, to
the best of our knowledge, open-source generic framework
for discovering relationships between data items within dif-
ferent Linked Data sources.

For our implementation we extended transparently the
core components of the Link Discovery Engine of Silk in the
following phases:

• Transformation Phase. In this phase, Silk reads the in-
coming entities from the data sources. As an optional
step, a transformation operator can be applied to nor-
malize the attributes of these entities. For this phase
we implemented the transformation operators that we
presented in Section 4.

• Blocking Phase. Silk employs a blocking technique
which maps entities to a multidimensional index. After
the mapping, the entities are divided into multidimen-
sional blocks which optionally overlap with each other.
For our implementation we adapted the blocking tech-
nique that we introduced in Section 4 to the one that
Silk uses, by utilizing a two-dimensional index for the
spatial blocking, a one-dimensional for the temporal
and a three-dimensional for the spatiotemporal block-
ing.

• Link Generation Phase. Finally, a distance operator
computes the distance for each pair of entities that
have been inserted in the same block and if this does
not exceed a given threshold, it writes the pair to the
output. For this phase we implemented distance oper-
ators for all the spatial14 and temporal relations that
were introduced in Section 4.

On top of the Link Discovery Engine, Silk implements
two main applications. The first is used for generating RDF
links on a single machine and is called Silk Single Machine.
The datasets that must be interlinked can either reside on
the same machine or on remote machines which are accessed
via the SPARQL protocol.

The second application is Silk MapReduce which is used
for generating RDF links between datasets using a cluster of
multiple machines. Silk MapReduce is based on Hadoop15

and it can scale out to very big datasets by distributing the
link generation to multiple machines.

In both of these applications our Blocking technique di-
vides the source datasets into blocks and then the distance
operators run in parallel with respect to the blocks. In Silk
Single Machine we have multi-thread parallelization and in
Silk MapReduce multi-machine parallelization.

13The source code of the spatial and temporal extensions
of Silk is publicly available here: https://github.com/
silk-framework/silk.

14For the cardinal direction relations, the developed oper-
ators support only points and not complex geometries as
happens with all the other relations.

15http://hadoop.apache.org

6. EXPERIMENTAL EVALUATION
In this section we experimentally evaluate the spatial and

temporal extensions of Silk by using it in a real-world sce-
nario. The datasets, detailed instructions and other use-
ful information for reproducing the experiments are publicly
available16.

6.1 Compared Frameworks
As we discussed in Section 2, to the best of our knowl-

edge, there is no related framework with which we can dis-
cover spatial or temporal relations other than equivalences
among RDF datasets. Hence, in the experiments that we
conducted, we compared against variants of Silk and the
state-of-the-art spatiotemporal RDF store Strabon [18].

Strabon is not considered as a Link Discovery framework
but since it supports the GeoSPARQL and stSPARQL query
languages, NAMED GRAPHS and CONSTRUCT queries
it can be employed for discovering spatiotemporal relations
e.g., the intersects relation, by posing Link Discovery
queries like the one depicted in Figure 3(a). The only re-
striction that we face with Strabon is that both the source
and the target datasets must be stored locally, in different
named graphs. On the other hand, with Silk, we can inter-
link a local dataset with a remote one, that is published by
another data publisher. The only access that we need to it,
is via a SPARQL endpoint.

6.2 Environment of Experiments
We conducted our experiments both in a single machine

and a distributed environment. For the single machine en-
vironment, we used a machine with two Intel Xeon E5620
processors (12MB L3 cache, 2.4 GHz), 32 GB of RAM and a
RAID-5 disk array that consists of four disks (32 MB cache,
7200 rpm). For the distributed environment we used a clus-
ter provided by the European Public Cloud Provider Inter-
oute17, in which we reserved 1 Master and 20 Slave Nodes
with 2 CPUs, 4GB RAM and 10GB disk each.

We ran our experiments using the latest version of Silk
with the spatial and temporal enhancements (v2.6.1) and
the latest version of Strabon (v3.2.10) with accordingly
tuned PostgreSQL (v9.1.13) and PostGIS (v2.0) as proposed
by the developers.

6.3 Scenario
In [16] the authors present a real-time wildfire monitor-

ing service that exploits satellite images and linked geospa-
tial data to detect and monitor the evolution of fire fronts.
This service is now operational at the National Observatory
of Athens and is being used during the summer season by
emergency managers monitoring wildfires in Greece18.

A part of the processing chain of the service is to improve
the thematic accuracy of the detected fires (hotspots) by cor-
relating them with auxiliary geospatial data. More specifi-
cally, the service finds the land cover of each area which is
threatened at a specific time by a hotspot, in order to avoid
false alarms from fires started e.g., by farmers as part of
their agricultural practices. Also, it finds the municipalities
that a hotspot threatens and thus, competent authorities
are made aware about the existence of a fire in their area of

16http://silk.di.uoa.gr
17http://www.interoute.com
18http://ocean.space.noa.gr/fires

https://github.com/silk-framework/silk
https://github.com/silk-framework/silk
http://hadoop.apache.org
http://silk.di.uoa.gr
http://www.interoute.com
http://ocean.space.noa.gr/fires


CONSTRUCT {?s strdf:intersects ?t .} WHERE{

GRAPH ex:source{?s geo:hasGeometry/geo:asWKT ?sg.

?s strdf:hasValidTime ?st.}

GRAPH ex:target{?t geo:hasGeometry/geo:asWKT ?tg.

?t strdf:hasValidTime ?tt.}

FILTER(geof:sfIntersects(?sg, ?tg) &&

strdf:intersects(?st, ?tt))}

(a)

Geometries Time Elements

Dataset #Entities Type #Points Type #Instants

HG 37,048 Polygons 148,192 Instants 37,048

CLCG 4,868 Polygons 8,004,058 Periods 9,736

GAG 325 Polygons 979,929 Periods 650

(b)

Figure 3: (a) Example of a Link Discovery Query and (b) Characteristics of the Datasets

responsibility.
Below, we provide a short description of the datasets of the

scenario, whilst in Figure 3(b) we present some quantitative
characteristics of them. These datasets also constitute a
subset of the datasets used in the state-of-the-art benchmark
for Geospatial RDF Stores, Geographica [8]:

• Hotspots of Greece (HG). The HG dataset contains the
location and the acquisition time of detected fires for
each fire season as produced by the National Observa-
tory of Athens19 after processing appropriate satellite
images.

• CORINE Land Cover of Greece (CLCG). The Corine
Land Cover project20 is an activity of the European
Environment Agency that provides data regarding the
land cover of European countries. The CLCG is a
subset of the dataset that contains all the available
information about Greece.

• Greek Administrative Geography (GAG). The GAG
dataset contains an ontology that describes the admin-
istrative divisions of Greece (prefectures, municipali-
ties, districts, etc.) which has been populated with
relevant data that is publicly available in the Greek
open government data portal21.

With Silk, the above scenario can be translated into two
interlinking tasks between the HG and the CLCG and the
GAG datasets respectively. In these tasks, Silk discovers
the spatiotemporal relation intersects between the datasets.
For this, it first applies a CRS transformation to normal-
ize the heterogeneous geometries and a Period and a Time-
Zone transformation to normalize the heterogeneous time
elements of the datasets. Finally, it populates the three-
dimensional spatiotemporal blocks and discovers the rela-
tion intersects within each one of them. Thus, if a hotspot
threatens a municipality or a land cover area, then the out-
put of this procedure will contain the respective entities from
the HG, GAG and CLCG datasets, interlinked with an ap-
propriate predicate (e.g., hg:threatens).

6.4 Parameters sbf and tbf
As we have discussed in Section 4, sbf and tbf adjust the

area and the length of the blocks in which we divide the
space and the time respectively. The bigger they get, the
more and smaller blocks are created.

The optimal value for sbf depends on the distribution and
the size of the geometries which are not known in advance
in the case of our scenario. On the other hand, given the

19http://www.noa.gr
20http://www.eea.europa.eu/publications/COR0-landcover
21http://geodata.gov.gr

metadata of the datasets, we can easily compute the optimal
value for tbf . The temporal resolution of HG dataset is 15
minutes22, while the one of GAG and CLCG is a multiple of
a year (e.g., 5 years). By constructing blocks with temporal
dimension equal to 1 year, we can guarantee that, for all the
pairs of entities of the datasets HG-GAG and HG-CLCG
respectively which belong to the same block, the temporal
relation intersects holds by design (i.e., we do not have to
check it explicitly between each pair). Hence, the optimal
value for tbf is 1 year.

6.5 Experiment 1: Adjusting the Spatial
Blocking Factor

Since we know the optimal value for tbf , in this experi-
ment we try to approximate the optimal value for sbf . In
order to achieve this, we analyze the performance of the sin-
gle machine implementation of Silk with respect to different
values of sbf . Particularly for this experiment, we use the
full datasets of the scenario and we measure separately the
computation times of HG-GAG and HG-CLCG. Further-
more, we count the total number of discovered links in each
of these executions.

The graph of Figure 4(a) summarizes the results of this
experiment. When sbf takes values close to 0, the blocks
are spanning big surfaces of the earth. Hence, most of the
geometries of the datasets are inserted in the same block,
making the link discovery procedure almost as time con-
suming as the computation of the Cartesian product.

As sbf gets bigger, Silk seems to perform better. However,
this improvement continues until a certain value (value 10)
and then, as the sbf increases, the computation time deteri-
orates. This is due to the fact that a big value for sbf causes
the division of space into very small blocks and thus each
geometry is inserted into a big number of them. If two ge-
ometries are inserted into multiple blocks, then the check of
the spatial relation is performed independently in each block
that they appear. Hence, in this case we have redundant
checks of the same relation that decrease the performance
of Silk.

Another useful outcome from this experiment is the com-
parison of the time consumed for the link discovery task
between HG-GAG and HG-CLCG. Figure 4(a) shows that
the HG-CLCG interlinking takes orders of magnitude more
than the respective HG-GAG. In Figure 3(b) we observe that
the CLCG dataset has more geometries than GAG, whereas
GAG has more complex ones (with respect to the number of
points and not necessarily to their shape). Hence, in cases
of spatial relations like intersects, the bottleneck is the
number and not the complexity of the geometries.

One final observation from this experiment is the number

22METEOSAT Second Generation (MSG) satellites return
images every 15 minutes.

http://www.noa.gr
http://www.eea.europa.eu/publications/COR0-landcover
http://geodata.gov.gr
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Figure 4: Experiments of adjusting (a) the Spatial Blocking Factor and (b) the Entities per Dataset

of discovered links. This number remains the same inde-
pendently from the value of sbf . This is expected, since
we have already proven in Section 4 that the Blocking tech-
nique that we propose does not affect the accuracy of the
discovered links which remains 100%.

6.6 Experiment 2: Adjusting the Entities per
Dataset

In the second experiment we analyze the performance of
three variants of Silk and Strabon with respect to differ-
ent number of entities per dataset. For that reason, we use
four different subsets of the datasets of the scenario23 and
we measure the total execution time for performing the in-
terlinking tasks i.e., we don’t distinguish between HG-GAG
and HG-CLCG.

The first variant (Silk (Baseline)), which we consider as
baseline, computes the full Cartesian product of the entities
and then it checks if the spatiotemporal relation intersects
holds between them. The second variant (Silk (Best sbf)),
utilizes the Blocking technique with the best sbf , as the
latter occurred from the previous experiment. The third
one (Silk (MR)), is the distributed variant of Silk, which
also utilizes the Blocking technique with the best sbf . In
the case of Strabon, the datasets are stored locally and a
CONSTRUCT query like the one we described in Figure 3(a) is
performed.

The results of this experiment can be seen in Figure 4(b).
As we can see from the graph, Silk (Baseline) is the most
inefficient implementation, since even for the 1000 entities
per dataset it is more time consuming that all the other
implementations are for the full datasets.

On the other hand, Strabon seems to be faster for small
number of entities per dataset whereas Silk (Best sbf) is
faster when interlinking the full datasets. This happens be-
cause Silk fully utilizes the cores of the running machine by
assigning the workload of each block it creates into a new
thread. For big datasets, where the total workload is big
enough, the Blocking approach of Silk seems to be the most
efficient.

The effect of the massive parallelization is more remark-
able with the distributed variant of Silk (Silk (MR)). With

23The GAG dataset contains less than 1000 entities (Fig-
ure 3(b)) and thus for the third measurement of the experi-
ment (Figure 4(b)) we used the full dataset.

Silk (MR) the total workload is divided into different ma-
chines and in each machine it is divided into different cores.
Also, we observe that, the computation time of Hadoop for
small datasets is negligible with respect to the initialization
time and the time consumed to copy the data from the local
file system to the Hadoop Distributed File System (HDFS)
and vice versa. Hence, Silk (MR) outperforms the other Silk
variants and Strabon only for the measurement with the full
datasets. Also, we can observe from the graph that it has
the best scaling factor. Hence, we can claim that, for large
datasets it is the only viable solution.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we proposed new methods for Spatial and

Temporal Link Discovery and provided the first implemen-
tation of our techniques based on the well-known frame-
work Silk. Silk, enhanced with the new features, allows
data publishers to generate a wide variety of spatial, tem-
poral and spatiotemporal relations between their data and
other Linked Open Data, dealing effectively with the com-
mon heterogeneity issues of such data. Furthermore, we ex-
perimentally evaluated our implementation by using it in a
real-world scenario, with datasets that comprise rich spatial
and temporal information, and demonstrate that it discov-
ers accurately all the existing links in a time efficient and
scalable way.

Future work concentrates on extending Silk with more
spatial and temporal relations. These relations will be based
on algebras and calculi that appear frequently in the rele-
vant bibliography and are useful for specific use cases. We
will also examine how we can estimate the optimal value of
the blocking factor, for both the spatial and the temporal
dimension, by posing preprocessing queries on the datasets
that we want to interlink. Finally, we will try approximate
blocking techniques which are more efficient than the one
we propose but not 100% accurate.
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