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ABSTRACT 
Many initiatives have emerged to aid one in publishing structured 
resources as Linked Data on the Web with one of the major 
achievements being the R2RML W3C Recommendation. R2RML 
and its dialects assume a certain underlying technology (e.g., Core 
SQL 2008). This means that domain-specific data transformations 
– such as transforming geospatial coordinates – rely either on that 
underlying technology or data-preprocessing steps. We argue that 
one can incorporate and subsequently share that procedural do-
main knowledge in such mappings. Such an extension would 
make certain pre-processing steps redundant. One can furthermore 
attach metadata to these functions, which can be published as 
well. In this paper, we present R2RML-F, an extension to 
R2RML, that adopts ECMAScript for capturing domain 
knowledge and for which we have developed a prototype. We 
demonstrate the viability of the approach with a demonstration 
and compare its performance with different mappings in some 
initial experiments. Our preliminary results suggest that there is 
little or no overhead with respect to relying on underlying tech-
nology. 

CCS Concepts 
H.4 [Information Systems Applications]: Miscellaneous; H.5 
[World Wide Web]: Web data description languages. 
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R2RML; Linked Data; Mapping. 

1. INTRODUCTION 
Fifteen years ago, Tim Berners-Lee wrote a Design Issue [2] sug-
gesting how to publish the information contained in relational 
databases on the Semantic Web. Many tools have emerged (see 
[15] for a survey) to generate RDF from these databases either via 
direct mappings – based on the ideas outlined in [2] with the RDF 
reflecting the database’s structure and labels – or via annotations 
where tables, views and queries are related to concepts and rela-
tions in ontologies to create a knowledge base. Both approaches 
ultimately led to two W3C Recommendations; a direct mapping 
of relational data to RDF [1] and R2RML [6]. The R2RML speci-
fication assumes that the relational database is annotated to con-
form to the Core SQL 2008 specification. 

According to [3], a model management system is “a component 
that supports the creation, compilation, reuse, evolution, and exe-
cution of mappings between schemas represented in a wide range 
of metamodels.” They also argued that mapping languages should 
be more expressive if one wants to support various use case sce-
narios and that – provided that tractability is not a problem – one 

could include construct to support the declaration of user-defined 
functions (amongst others). 

There are cases where the underlying database does not support 
certain data manipulations because they are not expressive enough 
or because procedural domain knowledge is part of the application 
layer rather than the database layer. Converting units might be a 
straightforward conversion that one can formulate in a SQL query, 
but others are more complex and people have to resort to more 
complex data processing “pipelines”; preprocessing the data and 
transforming the result into RDF or transform the data into an 
RDF graph and manipulate the RDF graph to create a new RDF 
graph. Kovalenko et al. investigated the latter in [10] and they 
observed that some techniques (e.g., SPIN [11]) support user-
defined functions. Both approaches are, however, still conducted 
in two steps and that renders the whole process more complex 
then it should be. 

We, however, feel that such procedural knowledge can and should 
be included in the mapping. Moreover, by incorporating that 
knowledge in the mapping, one can also share the procedural 
knowledge and events described, as well as annotate with metada-
ta (e.g., with predicates from PROV-O [12]). The requirements 
we state for our approach are: 

1. Ensure a minimal extension of R2RML that reuses as 
much as possible existing predicates; 

2. Adopt a standardized programming language to repre-
sent procedural domain knowledge for which multiple 
implementations exist. 

The result of taking this approach is R2RML-F, where the ‘F’ 
stands for “function”. R2RML-F adopts ECMAScript1 as the pro-
gramming language and we have extended the R2RML vocabu-
lary to include notions for function calls and parameter bindings. 
Next to these contributions, this paper presents details of the pro-
totype and examples demonstrating the viability of the approach. 

The remainder of this paper is organized as follows: Section 2 
presents R2RML-F; Section 3 provides some details on the im-
plementation of the prototype; Section 4 is used to demonstrate 
the ideas as well as to present experiments to evaluate the perfor-
mance of R2RML-F; Section 5 presents related work; and Section 
6 concludes the paper. 

2. EXTENDING R2RML 
In this section we describe the predicates introduced and our ex-
tension of R2RML. We do assume the reader is familiar with 
R2RML and will introduce the notions of the approach through a 
simple example. In Listing 1 we declare a function that multiplies 

                                                                    
1 JavaScript is a popular implementation of ECMAScript. Imple-

mentations of ECMAScript often extend the language or pro-
vide APIs. One example is JavaScript providing APIs to interact 
with a Web browser. 
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two arguments2: 
<#Multiply> 
 rrf:functionName "multiply" ; 
 rrf:functionBody """ 
  function multiply(var1, var2) { 
   return var1 * var2 ; 
  } 
 """ ; 
. 

Listing 1: Declaring a function in R2RML-F 
Each function is a resource that must have two relationships: a 
function name (a literal) and a function body (also a literal); the 
function name and name of the function in the function body must 
be identical. Each R2RML-F mapping cannot have two functions 
with the same name and each function must have exactly one 
function name and exactly one function body. Any errors will be 
reported to the user. 

Listing 2 demonstrates how functions are called from within a 
Predicate Object Map. We have introduced the new term map 
function call. A term map must now be exactly one of the follow-
ing: a constant-valued term map, a column-valued term map, a 
template-valued term map or a function-call-valued term map. A 
function call: 

• must refer to exactly one function; and 
• must have at most one list of parameter bindings. 

When no list of parameter bindings or an empty list is provided, 
they are considered to be function calls where no parameters are 
being passed. The order of the parameters that are passed is im-
portant. Adopting the RDF Sequence container was not an option, 
as RDF does not provide a mechanism to state a container has no 
more members [5]. The RDF Collection vocabulary of classes and 
properties can describe a closed collection as a list [5]. RDF Col-
lections are therefore suitable for passing arguments. The ele-
ments in this list – if any – must be term maps. Functions calls can 
thus be passed the results of columns, constants, templates or 
another function call. 
<#TriplesMap1> 
 rr:logicalTable [ rr:tableName "Employee"; ]; 
 rr:subjectMap [ 
  rr:template "http://org.com/employee/{ID}"; 
 ] ;  
 rr:predicateObjectMap [ 
  rr:predicate ex:salary ; 
  rr:objectMap [ 
   rr:datatype xsd:double ; 
   rrf:functionCall [                                    
    rrf:function <#Multiply> ;                           
    rrf:parameterBindings (                              
     [ rr:constant "12"^^xsd:integer ]                   
     [ rr:column "monthly_salary" ]                      
    ) ;                                                  
   ] ;                                                   
  ] ; 
 ] ; 
. 

Listing 2: Using function in a Predicate Object Map 

3. IMPLEMENTATION 
An existing R2RML processor, called db2triples, was extended. 
The extension is available as a branch on GitHub.3 Prior to pro-
cessing the mappings, the R2RML-F processor first looks for and 
evaluates the functions using Java’s Nashorn4 JavaScript engine. 

                                                                    
2 http://kdeg.scss.tcd.ie/ns/rrf# is the namespace URI for the 

R2RML-F predicates and is prefixed with “rrf” in this paper. 
3 Available at https://github.com/CNGL-repo/db2triples  
4 https://blogs.oracle.com/nashorn/  

Any problems with the function results in an error that will be sent 
back to the user. 

Function calls are implemented as term maps and each function 
call has a list of term-maps that constitute its arguments. Each 
argument is evaluated before the results are passed on to the func-
tion being called. This can be compared to the greedy evaluation 
strategy found in some programming languages. Any runtime 
errors halt the process and the user is made aware of where the 
problem resides. 
We currently support no monitoring of the functions and rely on 
Nashorn and the Java Runtime Environment to handle issues con-
cerning memory management and the correctness of code (e.g., 
infinite loops). 

4. DEMONSTRATION AND EXPERIMENT 
We demonstrate and evaluate our approach with a use case pro-
vided by the Ordnance Survey Ireland (OSi)5. The OSi is Ireland’s 
national mapping agency and the geometries in their system are 
represented using the Irish Transverse Mercator (ITM)6 coordi-
nate system. At an international level, however, World Geodetic 
System 84 (or WSG 84)7 is the standard used in cartography and 
navigation (amongst others). Transforming coordinates from one 
coordinate system to another is a common task for which (inte-
grated) tools exist, but not all relational databases support those.  

For the demonstration and experiment, we created a table repre-
senting the 26 counties of The Republic of Ireland (see Table 1), 
with the following fields: “id” – an identifier stored as an integer; 
“name” – the name of the county as a varchar; “geom” – a point 
of that county as a geometry object (internal representation omit-
ted for this paper); and “geoms” – capturing that same point as a 
varchar in WKT format.8 The table is stored in a PostgreSQL 
database supporting geometries with PostGIS. The purpose of this 
table is to demonstrate the transformation of the textual represen-
tation of points with our approach and compare it with a mapping 
using PostGIS’ functionality. 

Table 1: The table “county” in the “boundaries” database 
id name geom geoms 

10000 CARLOW 
 

POINT(671989.126 676051.233) 
20000 CAVAN 

 
POINT(649270.487 796627.36) 

30000 CLARE 
 

POINT(532617.573 676288.529) 
40000 CORK 

 
POINT(159956.935 79499.879) 

50000 DONEGAL 
 

POINT(599999.588 907696.186) 
60000 GALWAY 

 
POINT(533393.941 731920.418) 

70000 KERRY 
 

POINT(480286.589 603093.557) 
80000 KILDARE 

 
POINT(683580.721 713638.655) 

90000 KILKENNY 
 

POINT(650826.971 648269.702) 
100000 LAOIS 

 
POINT(640275.125 640275.125) 

110000 LEITRIM 
 

POINT(600000.431 818660.17) 
120000 LIMERICK 

 
POINT(549077.109 638997.81) 

130000 LONGFORD 
 

POINT(616521.486 768575.569) 
140000 LOUTH 

 
POINT(698735.035 788136.627) 

150000 MAYO 
 

POINT(517850.357 795236.186) 
160000 MEATH 

 
POINT(688113.609 769372.026) 

170000 MONAGHAN 
 

POINT(662572.109 833219.834) 
180000 OFFALY 

 
POINT(633368.373 722298.005) 

190000 ROSCOMMON 
 

POINT(183556.633 277830.739) 
200000 SLIGO 

 
POINT(556553.63 833667.473) 

210000 TIPPERARY 
 

POINT(611273.837 657290.162) 

                                                                    
5 http://www.osi.ie/  
6 https://en.wikipedia.org/wiki/Irish_Transverse_Mercator  
7 https://en.wikipedia.org/wiki/World_Geodetic_System  
8 https://en.wikipedia.org/wiki/Well-known_text  



220000 WATERFORD 
 

POINT(634140.854 611037.497) 
230000 WESTMEATH 

 
POINT(633172.984 750116.57) 

240000 WEXFORD 
 

POINT(684871.008 639468.666) 
250000 WICKLOW 

 
POINT(706277.46 695537.898) 

260000 DUBLIN 
 

POINT(716330.154 742154.083) 
 

Simulating a relational database that does not support geometries, 
we have created a mapping M1 that maps “id”, “name” and “ge-
oms” to triples. This mapping is shown in Listing 3, but the func-
tion – which takes a fair amount of space and therefore omitted – 
is based on a PHP script9 that has been ported to ECMAScript. 
One can see that the mapping should result in two RDF triples for 
each record. 
<#TriplesMap1> 
 rr:logicalTable [ 
  rr:sqlQuery "SELECT id, name, geoms FROM county" ; 
 ] ; 
 rr:subjectMap [ 
  rr:template "http://data.example.com/county/{id}" ; 
 ] ; 
 rr:predicateObjectMap [ 
  rr:predicate ex:name ; 
  rr:termType rr:Literal; 
  rr:objectMap [ rr:column "name" ]; 
 ] ; 
 rr:predicateObjectMap [ 
  rr:predicate ex:point ; 
  rr:objectMap [ 
   rr:termType rr:Literal; 
   rrf:functionCall [ 
    rrf:function <#Transform> ; 
    rrf:parameterBindings ( 
     [ rr:column "geoms" ] 
    ) ; 
   ] ; 
  ] ; 
 ] ; 
. 
<#Transform> 
 rrf:functionName "transform" ; 
 rrf:functionBody """ 
  // Omitted 
 """ ; 
. 

Listing 3: An R2RML-F mapping transforming points in a 
text field with a function in the mapping (mapping M1). 

The execution of our processor generated 52 triples of which 
some are shown in Figure 1. We will now proceed with evaluating 
our approach with other mappings in order to analyze the impact 
of incorporating domain knowledge in the mapping. 

 
Figure 1: Partial result of the transformation. 

Before describing the experiment, we note that our experiment 

                                                                    
9 The function to transform ITM into WGS84 is based on 

http://www.nearby.org.uk/blog/2009/05/13/itm-wgs84-and-
irish-grid-and-british-national-grid-php-code/  

was run on a MacBook Pro 12.1 with an Intel Core i5 processor 
(2.7 GHz) and a memory of 8 GB (1867 MHz DDR3). The IDE 
used is the Eclipse IDE Mars Release (4.5.0) and the Java version 
1.8.0_45. 

To compare the performance of our approach, we have created 
two additional mappings. The mappings we will compare are: 

• M1 (Listing 3) mapping a text field containing points 
which are transformed via a function; 

• M2 (Listing 4) casting the geometry into a string and 
providing that field as input to the function; and 

• M3 (Listing 5) transforming the geometry into WGS84 
in the SQL query, therefore not relying on the function 
provided in the mapping. 

M2 was created to analyze the impact of casting geometries to 
strings.  

For each mapping we have run a script that executes a mapping 
110 times in the same virtual machine and measures the execution 
times. The script was thus run three times, once for each mapping. 
For each mapping, we ignore the first ten measurements to avoid a 
bias created by cold starting the Java Virtual Machine. Even 
though M3 does not use a function, we have not removed the 
function from the mapping. As functions are loaded only once 
(prior to executing the mappings), this creates a constant across 
the three mappings allowing us to more reliably compare the exe-
cution times measured. The results are shown in Table 2. 
Table 2: Average, maximum and minimum execution time in 

milliseconds for 100 runs with each mapping. 

 M1 M2 M3 
Average 77.66 78.62 87.86 
Standard Deviation 37.69 34.80 40.19 
Min out of 100 runs 16.00 20.00 15.00 
Max out of 100 runs 205.00 214.00 205.00 

 

Looking at the average runtime, it is surprising to see that our 
approach in M1 seemingly performs better than a mapping with 
no function calls. In order to investigate whether the differences 
are significant, we performed a Welch Two Sample T-Test for 
each pair of mappings M1-M2, M1-M3 and M1-M2. The signifi-
cance level we adopt is 0.05. The p-values for each test are: 

1. M1-M2:  0.8518  > 0.05 
2. M1-M3:  0.06564 > 0.05 
3. M2-M3:  0.0838 > 0.05 

All p-values are above 0.05, which suggests that the differences 
are not significant. This also suggests – at the moment – that our 
approach, viable from a technical point of view, seems not to 
cause any serious overhead for this particular use case. We notice 
that the last two p-values – comparing a mapping applying the 
function with a mapping that does not – are closer to the confi-
dence level than the first. M1 and M2 rely on calling the function 
and their difference seems not significant.  

4.1 Additional Experiments 
We recognize the size of the dataset is limited and the function 
very complex, so we have ran additional experiments with a larger 
dataset and a simple function that are similar in setup. We created 
a table with two columns (“id”, “x” and “y” – all integers) and 
generated 1,000 records with random values between 0 and 100 
for x and y. The first experiment mapped the multiplication of x 
with x, the second the multiplication of x and y. The main differ-
ence is the number of parameters (one vs. two), with the first be-



ing more similar to the conversion of coordinates (i.e., only one 
argument is passed). 

Two mappings were created for the first experiment: one applying 
a function that multiplies x with x, and one where that multiplica-
tion is part of the SQL query.10 Again executing each mapping 
110 times in the same process and only taking the last 100 times 
into account, we now notice that the p-value is 0.00541 indicating 
that there is strong evidence against the two mappings being 
equal, with M1 performing better. Similarly, two mappings were 
created for the second experiment: one passing x and y to a func-
tion and one doing the multiplication in the query. Again, there is 
strong evidence that both mappings are different (p-value = 
0.0000000204), and this time in favor of M2. From these addi-
tional experiments, we conclude that further experiments – both in 
terms of dataset size and varying complexity of functions – are 
necessary to evaluate performance 

Table 3: Average, maximum and minimum execution time in 
milliseconds for 100 runs with each mapping for the two addi-

tional experiments. 

 1 variable 2 variables 
M1 M2 M1 M2 

Average 1,646.10 1,716.76 1,980.22 1,729.95 
Standard Deviation 154.53 197.88 318.57 285.58 
Min out of 100 runs 1,305.00 1,290.00 1,321.00 1,058.00 
Max out of 100 runs 2,115.00 2,102.00 2,622.00 2,304.00 
 

5. RELATED WORK  
We have to note that functions in transformations have been stud-
ied in different domains, such as model-to-model transformations, 
for which specifications have been developed. One noteworthy 
example of such a specification in that domain is Que-
ry/View/Transformation (QVT) defined by the Object Manage-
ment Group allowing one access to operators, constructs and func-
tions to transform UML into, for instance, ER [14]. QVT and 
similar approaches have been adopted in the Semantic Web com-
munity to transform meta-models in e.g., UML into OWL ontolo-
gies [16], but this is a different problem than the one we address. 
In this study, we incorporated the notion in a W3C Recommenda-
tion for publishing data as RDF. The adoption of RDF allows one 
to furthermore publish the functions that were developed.  

On capturing functions in mappings. Hert et al. presented a 
survey in which they investigated the capabilities of RDB-2-RDF 
tools, both direct and annotated [9]. One of the aspects they inves-
tigated was “Transformation Functions”, which are user-defined 
functions to transform the (syntactic) representation in RDF. In 
their survey, they consider this aspect covered when the underly-
ing database technology supports these conversions. Our approach 
is different as we capture those functions in the mapping. 
ECMAScript provides the ability to load (external) scripts, and 
hence functionality not necessarily available by the underlying 
technology. 

XSPARQL [4] – initially developed to mediate between XML and 
RDF via SPARQL and XQuery – has recently been used as an 
R2RML processor [7]. Since the XQuery specification prescribes 
support for defining user-defined functions, one should be able to 

                                                                    
10 Unlike the previous experiment, the outcome of the function 

using the underlying technology does not need to be cast to a 
different data type and therefore no third mapping to analyze 
that overhead is needed. 

create richer mappings, but limited to XML documents. The same 
holds for RML [8] when mapping XML documents to RDF. 

On representing functions. SPIN [11] provides concepts and 
predicates for describing functions that we have decided not to 
reuse. One of the important differences is that SPIN proposes the 
use of predicates sp:arg1, …, sp:argn for binding the pa-
rameters. We consider the use RDF Collections more elegant. As 
[10] noted, Apache Jena11 allows one to integrate functions by 
extending special abstract Java classes which are then available 
via a special namespace. This, however, creates a dependency on 
both Java and Apache Jena. All of this also holds for SPIN as it is 
built on top of Jena. 

On R2RML extensions. RML [8] and xR2RML [13] extended 
R2RML to provide support for generating RDF from different 
types of structured resources such as XML and CSV. One can see 
how the ideas presented in this paper can easily be merged with 
those initiatives. At this stage, however, we choose to extend 
R2RML validate our ideas and will consider RML at a later stage. 

6. CONCLUSIONS AND FUTURE WORK 
Capturing procedural knowledge in R2RML either relies on the 
underlying relational database technology or on data pre-
processing. If one is willing to trade tractability in for richer map-
pings, sharing and declaring richer mappings is possible.  

We presented R2RML-F, which extends R2RML with treating 
function calls as a term map. Using a use case from the geospatial 
domain, we demonstrated our approach and conducting an exper-
iment to evaluate its performance with a mapping relying on func-
tions provided by the underlying database technology. Our initial 
results show that our approach is viable and that there seems to be 
little impact on the performance. 
Future work includes additional experiments to validate our find-
ings and developing additional scenarios and use cases to moti-
vate the need for incorporating functions in a mapping, e.g., those 
calling web services. 
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APPENDIX 
Here we provide listings referred to in the text. 
<#TriplesMap1> 
 rr:logicalTable [ 
  rr:sqlQuery """SELECT id, name, ST_AsText(geom)  
                 AS geom FROM boundaries.county""" ; 
  ] ; 
 rr:subjectMap [ 
  rr:template "http://data.example.com/county/{id}" ; 
 ] ; 
 rr:predicateObjectMap [ 
  rr:predicate ex:name ; 
  rr:termType rr:Literal; 
  rr:objectMap [ rr:column "name" ]; 
 ] ; 
 rr:predicateObjectMap [ 
  rr:predicate ex:point ; 
  rr:objectMap [ 
   rr:termType rr:Literal; 
   rrf:functionCall [ 
    rrf:function <#Transform> ; 
    rrf:parameterBindings ( 
     [ rr:column "geom" ] 
    ) ; 
   ] ; 
  ] ; 
 ] ; 
. 
<#Transform> 
 rrf:functionName "transform" ; 
 rrf:functionBody """ 
  // Omitted 
 """ ; 
. 

Listing 4: An R2RML-F mapping transforming points from a 
geometry cast to a string with a function captured in the map-
ping (mapping M2). Differences wrt Listing 3 are highlighted. 
<#TriplesMap1> 
 rr:logicalTable [ 
  rr:sqlQuery """SELECT id, name, 
                 ST_AsText(ST_Transform(geom,4326))  
                 AS geom FROM boundaries.county""" ; 
  ] ; 
 rr:subjectMap [ 
  rr:template "http://data.example.com/county/{id}" ; 
 ] ; 
 rr:predicateObjectMap [ 
  rr:predicate ex:name ; 
  rr:termType rr:Literal; 
  rr:objectMap [ rr:column "name" ]; 
 ] ; 
 rr:predicateObjectMap [ 
  rr:predicate ex:point ; 
  rr:objectMap [ 
   rr:objectMap [ rr:column "geom" ]; 
  ] ; 
 ] ; 
. 
<#Transform> 
 rrf:functionName "transform" ; 
 rrf:functionBody """ 
  // Omitted 
 """ ; 
. 

Listing 5: An R2RML-F mapping transforming points from a 
geometry using a database’s built-in function, which is then 
cast to a string (mapping M3). Differences wrt Listing 3 are 

highlighted. 
 


