
R2RML-F: Towards Sharing and Executing Domain Logic
in R2RML Mappings

Christophe Debruyne
Trinity College Dublin

Dublin 2, Ireland
debruync@scss.tcd.ie

Declan O’Sullivan
Trinity College Dublin

Dublin 2, Ireland
declan.osullivan@scss.tcd.ie

ABSTRACT
Many initiatives have emerged to aid one in publishing structured
resources as Linked Data on the Web with one of the major
achievements being the R2RML W3C Recommendation. R2RML
and its dialects assume a certain underlying technology (e.g., Core
SQL 2008). This means that domain-specific data transformations
– such as transforming geospatial coordinates – rely either on that
underlying technology or data-preprocessing steps. We argue that
one can incorporate and subsequently share that procedural do-
main knowledge in such mappings. Such an extension would
make certain pre-processing steps redundant. One can furthermore
attach metadata to these functions, which can be published as
well. In this paper, we present R2RML-F, an extension to
R2RML, that adopts ECMAScript for capturing domain
knowledge and for which we have developed a prototype. We
demonstrate the viability of the approach with a demonstration
and compare its performance with different mappings in some
initial experiments. Our preliminary results suggest that there is
little or no overhead with respect to relying on underlying tech-
nology.

CCS Concepts
H.4 [Information Systems Applications]: Miscellaneous; H.5
[World Wide Web]: Web data description languages.

Keywords
R2RML; Linked Data; Mapping.

1. INTRODUCTION
Fifteen years ago, Tim Berners-Lee wrote a Design Issue [2] sug-
gesting how to publish the information contained in relational
databases on the Semantic Web. Many tools have emerged (see
[15] for a survey) to generate RDF from these databases either via
direct mappings – based on the ideas outlined in [2] with the RDF
reflecting the database’s structure and labels – or via annotations
where tables, views and queries are related to concepts and rela-
tions in ontologies to create a knowledge base. Both approaches
ultimately led to two W3C Recommendations; a direct mapping
of relational data to RDF [1] and R2RML [6]. The R2RML speci-
fication assumes that the relational database is annotated to con-
form to the Core SQL 2008 specification.

According to [3], a model management system is “a component
that supports the creation, compilation, reuse, evolution, and exe-
cution of mappings between schemas represented in a wide range
of metamodels.” They also argued that mapping languages should
be more expressive if one wants to support various use case sce-
narios and that – provided that tractability is not a problem – one

could include construct to support the declaration of user-defined
functions (amongst others).

There are cases where the underlying database does not support
certain data manipulations because they are not expressive enough
or because procedural domain knowledge is part of the application
layer rather than the database layer. Converting units might be a
straightforward conversion that one can formulate in a SQL query,
but others are more complex and people have to resort to more
complex data processing “pipelines”; preprocessing the data and
transforming the result into RDF or transform the data into an
RDF graph and manipulate the RDF graph to create a new RDF
graph. Kovalenko et al. investigated the latter in [10] and they
observed that some techniques (e.g., SPIN [11]) support user-
defined functions. Both approaches are, however, still conducted
in two steps and that renders the whole process more complex
then it should be.

We, however, feel that such procedural knowledge can and should
be included in the mapping. Moreover, by incorporating that
knowledge in the mapping, one can also share the procedural
knowledge and events described, as well as annotate with metada-
ta (e.g., with predicates from PROV-O [12]). The requirements
we state for our approach are:

1. Ensure a minimal extension of R2RML that reuses as
much as possible existing predicates;

2. Adopt a standardized programming language to repre-
sent procedural domain knowledge for which multiple
implementations exist.

The result of taking this approach is R2RML-F, where the ‘F’
stands for “function”. R2RML-F adopts ECMAScript1 as the pro-
gramming language and we have extended the R2RML vocabu-
lary to include notions for function calls and parameter bindings.
Next to these contributions, this paper presents details of the pro-
totype and examples demonstrating the viability of the approach.

The remainder of this paper is organized as follows: Section 2
presents R2RML-F; Section 3 provides some details on the im-
plementation of the prototype; Section 4 is used to demonstrate
the ideas as well as to present experiments to evaluate the perfor-
mance of R2RML-F; Section 5 presents related work; and Section
6 concludes the paper.

2. EXTENDING R2RML
In this section we describe the predicates introduced and our ex-
tension of R2RML. We do assume the reader is familiar with
R2RML and will introduce the notions of the approach through a
simple example. In Listing 1 we declare a function that multiplies

1 JavaScript is a popular implementation of ECMAScript. Imple-

mentations of ECMAScript often extend the language or pro-
vide APIs. One example is JavaScript providing APIs to interact
with a Web browser.

Copyright is held by the author/owner(s).
WWW2016 Workshop: Linked Data on the Web (LDOW2016)

two arguments2:
<#Multiply>
 rrf:functionName "multiply" ;
 rrf:functionBody """
 function multiply(var1, var2) {
 return var1 * var2 ;
 }
 """ ;
.

Listing 1: Declaring a function in R2RML-F
Each function is a resource that must have two relationships: a
function name (a literal) and a function body (also a literal); the
function name and name of the function in the function body must
be identical. Each R2RML-F mapping cannot have two functions
with the same name and each function must have exactly one
function name and exactly one function body. Any errors will be
reported to the user.

Listing 2 demonstrates how functions are called from within a
Predicate Object Map. We have introduced the new term map
function call. A term map must now be exactly one of the follow-
ing: a constant-valued term map, a column-valued term map, a
template-valued term map or a function-call-valued term map. A
function call:

• must refer to exactly one function; and
• must have at most one list of parameter bindings.

When no list of parameter bindings or an empty list is provided,
they are considered to be function calls where no parameters are
being passed. The order of the parameters that are passed is im-
portant. Adopting the RDF Sequence container was not an option,
as RDF does not provide a mechanism to state a container has no
more members [5]. The RDF Collection vocabulary of classes and
properties can describe a closed collection as a list [5]. RDF Col-
lections are therefore suitable for passing arguments. The ele-
ments in this list – if any – must be term maps. Functions calls can
thus be passed the results of columns, constants, templates or
another function call.
<#TriplesMap1>
 rr:logicalTable [rr:tableName "Employee";];
 rr:subjectMap [
 rr:template "http://org.com/employee/{ID}";
] ;
 rr:predicateObjectMap [
 rr:predicate ex:salary ;
 rr:objectMap [
 rr:datatype xsd:double ;
 rrf:functionCall [
 rrf:function <#Multiply> ;
 rrf:parameterBindings (
 [rr:constant "12"^^xsd:integer]
 [rr:column "monthly_salary"]
) ;
] ;
] ;
] ;
.

Listing 2: Using function in a Predicate Object Map

3. IMPLEMENTATION
An existing R2RML processor, called db2triples, was extended.
The extension is available as a branch on GitHub.3 Prior to pro-
cessing the mappings, the R2RML-F processor first looks for and
evaluates the functions using Java’s Nashorn4 JavaScript engine.

2 http://kdeg.scss.tcd.ie/ns/rrf# is the namespace URI for the

R2RML-F predicates and is prefixed with “rrf” in this paper.
3 Available at https://github.com/CNGL-repo/db2triples
4 https://blogs.oracle.com/nashorn/

Any problems with the function results in an error that will be sent
back to the user.

Function calls are implemented as term maps and each function
call has a list of term-maps that constitute its arguments. Each
argument is evaluated before the results are passed on to the func-
tion being called. This can be compared to the greedy evaluation
strategy found in some programming languages. Any runtime
errors halt the process and the user is made aware of where the
problem resides.
We currently support no monitoring of the functions and rely on
Nashorn and the Java Runtime Environment to handle issues con-
cerning memory management and the correctness of code (e.g.,
infinite loops).

4. DEMONSTRATION AND EXPERIMENT
We demonstrate and evaluate our approach with a use case pro-
vided by the Ordnance Survey Ireland (OSi)5. The OSi is Ireland’s
national mapping agency and the geometries in their system are
represented using the Irish Transverse Mercator (ITM)6 coordi-
nate system. At an international level, however, World Geodetic
System 84 (or WSG 84)7 is the standard used in cartography and
navigation (amongst others). Transforming coordinates from one
coordinate system to another is a common task for which (inte-
grated) tools exist, but not all relational databases support those.

For the demonstration and experiment, we created a table repre-
senting the 26 counties of The Republic of Ireland (see Table 1),
with the following fields: “id” – an identifier stored as an integer;
“name” – the name of the county as a varchar; “geom” – a point
of that county as a geometry object (internal representation omit-
ted for this paper); and “geoms” – capturing that same point as a
varchar in WKT format.8 The table is stored in a PostgreSQL
database supporting geometries with PostGIS. The purpose of this
table is to demonstrate the transformation of the textual represen-
tation of points with our approach and compare it with a mapping
using PostGIS’ functionality.

Table 1: The table “county” in the “boundaries” database
id name geom geoms

10000 CARLOW

POINT(671989.126 676051.233)
20000 CAVAN

POINT(649270.487 796627.36)

30000 CLARE

POINT(532617.573 676288.529)
40000 CORK

POINT(159956.935 79499.879)

50000 DONEGAL

POINT(599999.588 907696.186)
60000 GALWAY

POINT(533393.941 731920.418)

70000 KERRY

POINT(480286.589 603093.557)
80000 KILDARE

POINT(683580.721 713638.655)

90000 KILKENNY

POINT(650826.971 648269.702)
100000 LAOIS

POINT(640275.125 640275.125)

110000 LEITRIM

POINT(600000.431 818660.17)
120000 LIMERICK

POINT(549077.109 638997.81)

130000 LONGFORD

POINT(616521.486 768575.569)
140000 LOUTH

POINT(698735.035 788136.627)

150000 MAYO

POINT(517850.357 795236.186)
160000 MEATH

POINT(688113.609 769372.026)

170000 MONAGHAN

POINT(662572.109 833219.834)
180000 OFFALY

POINT(633368.373 722298.005)

190000 ROSCOMMON

POINT(183556.633 277830.739)
200000 SLIGO

POINT(556553.63 833667.473)

210000 TIPPERARY

POINT(611273.837 657290.162)

5 http://www.osi.ie/
6 https://en.wikipedia.org/wiki/Irish_Transverse_Mercator
7 https://en.wikipedia.org/wiki/World_Geodetic_System
8 https://en.wikipedia.org/wiki/Well-known_text

220000 WATERFORD

POINT(634140.854 611037.497)
230000 WESTMEATH

POINT(633172.984 750116.57)

240000 WEXFORD

POINT(684871.008 639468.666)
250000 WICKLOW

POINT(706277.46 695537.898)

260000 DUBLIN

POINT(716330.154 742154.083)

Simulating a relational database that does not support geometries,
we have created a mapping M1 that maps “id”, “name” and “ge-
oms” to triples. This mapping is shown in Listing 3, but the func-
tion – which takes a fair amount of space and therefore omitted –
is based on a PHP script9 that has been ported to ECMAScript.
One can see that the mapping should result in two RDF triples for
each record.
<#TriplesMap1>
 rr:logicalTable [
 rr:sqlQuery "SELECT id, name, geoms FROM county" ;
] ;
 rr:subjectMap [
 rr:template "http://data.example.com/county/{id}" ;
] ;
 rr:predicateObjectMap [
 rr:predicate ex:name ;
 rr:termType rr:Literal;
 rr:objectMap [rr:column "name"];
] ;
 rr:predicateObjectMap [
 rr:predicate ex:point ;
 rr:objectMap [
 rr:termType rr:Literal;
 rrf:functionCall [
 rrf:function <#Transform> ;
 rrf:parameterBindings (
 [rr:column "geoms"]
) ;
] ;
] ;
] ;
.
<#Transform>
 rrf:functionName "transform" ;
 rrf:functionBody """
 // Omitted
 """ ;
.

Listing 3: An R2RML-F mapping transforming points in a
text field with a function in the mapping (mapping M1).

The execution of our processor generated 52 triples of which
some are shown in Figure 1. We will now proceed with evaluating
our approach with other mappings in order to analyze the impact
of incorporating domain knowledge in the mapping.

Figure 1: Partial result of the transformation.

Before describing the experiment, we note that our experiment

9 The function to transform ITM into WGS84 is based on

http://www.nearby.org.uk/blog/2009/05/13/itm-wgs84-and-
irish-grid-and-british-national-grid-php-code/

was run on a MacBook Pro 12.1 with an Intel Core i5 processor
(2.7 GHz) and a memory of 8 GB (1867 MHz DDR3). The IDE
used is the Eclipse IDE Mars Release (4.5.0) and the Java version
1.8.0_45.

To compare the performance of our approach, we have created
two additional mappings. The mappings we will compare are:

• M1 (Listing 3) mapping a text field containing points
which are transformed via a function;

• M2 (Listing 4) casting the geometry into a string and
providing that field as input to the function; and

• M3 (Listing 5) transforming the geometry into WGS84
in the SQL query, therefore not relying on the function
provided in the mapping.

M2 was created to analyze the impact of casting geometries to
strings.

For each mapping we have run a script that executes a mapping
110 times in the same virtual machine and measures the execution
times. The script was thus run three times, once for each mapping.
For each mapping, we ignore the first ten measurements to avoid a
bias created by cold starting the Java Virtual Machine. Even
though M3 does not use a function, we have not removed the
function from the mapping. As functions are loaded only once
(prior to executing the mappings), this creates a constant across
the three mappings allowing us to more reliably compare the exe-
cution times measured. The results are shown in Table 2.
Table 2: Average, maximum and minimum execution time in

milliseconds for 100 runs with each mapping.

 M1 M2 M3
Average 77.66 78.62 87.86
Standard Deviation 37.69 34.80 40.19
Min out of 100 runs 16.00 20.00 15.00
Max out of 100 runs 205.00 214.00 205.00

Looking at the average runtime, it is surprising to see that our
approach in M1 seemingly performs better than a mapping with
no function calls. In order to investigate whether the differences
are significant, we performed a Welch Two Sample T-Test for
each pair of mappings M1-M2, M1-M3 and M1-M2. The signifi-
cance level we adopt is 0.05. The p-values for each test are:

1. M1-M2: 0.8518 > 0.05
2. M1-M3: 0.06564 > 0.05
3. M2-M3: 0.0838 > 0.05

All p-values are above 0.05, which suggests that the differences
are not significant. This also suggests – at the moment – that our
approach, viable from a technical point of view, seems not to
cause any serious overhead for this particular use case. We notice
that the last two p-values – comparing a mapping applying the
function with a mapping that does not – are closer to the confi-
dence level than the first. M1 and M2 rely on calling the function
and their difference seems not significant.

4.1 Additional Experiments
We recognize the size of the dataset is limited and the function
very complex, so we have ran additional experiments with a larger
dataset and a simple function that are similar in setup. We created
a table with two columns (“id”, “x” and “y” – all integers) and
generated 1,000 records with random values between 0 and 100
for x and y. The first experiment mapped the multiplication of x
with x, the second the multiplication of x and y. The main differ-
ence is the number of parameters (one vs. two), with the first be-

ing more similar to the conversion of coordinates (i.e., only one
argument is passed).

Two mappings were created for the first experiment: one applying
a function that multiplies x with x, and one where that multiplica-
tion is part of the SQL query.10 Again executing each mapping
110 times in the same process and only taking the last 100 times
into account, we now notice that the p-value is 0.00541 indicating
that there is strong evidence against the two mappings being
equal, with M1 performing better. Similarly, two mappings were
created for the second experiment: one passing x and y to a func-
tion and one doing the multiplication in the query. Again, there is
strong evidence that both mappings are different (p-value =
0.0000000204), and this time in favor of M2. From these addi-
tional experiments, we conclude that further experiments – both in
terms of dataset size and varying complexity of functions – are
necessary to evaluate performance

Table 3: Average, maximum and minimum execution time in
milliseconds for 100 runs with each mapping for the two addi-

tional experiments.

 1 variable 2 variables
M1 M2 M1 M2

Average 1,646.10 1,716.76 1,980.22 1,729.95
Standard Deviation 154.53 197.88 318.57 285.58
Min out of 100 runs 1,305.00 1,290.00 1,321.00 1,058.00
Max out of 100 runs 2,115.00 2,102.00 2,622.00 2,304.00

5. RELATED WORK
We have to note that functions in transformations have been stud-
ied in different domains, such as model-to-model transformations,
for which specifications have been developed. One noteworthy
example of such a specification in that domain is Que-
ry/View/Transformation (QVT) defined by the Object Manage-
ment Group allowing one access to operators, constructs and func-
tions to transform UML into, for instance, ER [14]. QVT and
similar approaches have been adopted in the Semantic Web com-
munity to transform meta-models in e.g., UML into OWL ontolo-
gies [16], but this is a different problem than the one we address.
In this study, we incorporated the notion in a W3C Recommenda-
tion for publishing data as RDF. The adoption of RDF allows one
to furthermore publish the functions that were developed.

On capturing functions in mappings. Hert et al. presented a
survey in which they investigated the capabilities of RDB-2-RDF
tools, both direct and annotated [9]. One of the aspects they inves-
tigated was “Transformation Functions”, which are user-defined
functions to transform the (syntactic) representation in RDF. In
their survey, they consider this aspect covered when the underly-
ing database technology supports these conversions. Our approach
is different as we capture those functions in the mapping.
ECMAScript provides the ability to load (external) scripts, and
hence functionality not necessarily available by the underlying
technology.

XSPARQL [4] – initially developed to mediate between XML and
RDF via SPARQL and XQuery – has recently been used as an
R2RML processor [7]. Since the XQuery specification prescribes
support for defining user-defined functions, one should be able to

10 Unlike the previous experiment, the outcome of the function

using the underlying technology does not need to be cast to a
different data type and therefore no third mapping to analyze
that overhead is needed.

create richer mappings, but limited to XML documents. The same
holds for RML [8] when mapping XML documents to RDF.

On representing functions. SPIN [11] provides concepts and
predicates for describing functions that we have decided not to
reuse. One of the important differences is that SPIN proposes the
use of predicates sp:arg1, …, sp:argn for binding the pa-
rameters. We consider the use RDF Collections more elegant. As
[10] noted, Apache Jena11 allows one to integrate functions by
extending special abstract Java classes which are then available
via a special namespace. This, however, creates a dependency on
both Java and Apache Jena. All of this also holds for SPIN as it is
built on top of Jena.

On R2RML extensions. RML [8] and xR2RML [13] extended
R2RML to provide support for generating RDF from different
types of structured resources such as XML and CSV. One can see
how the ideas presented in this paper can easily be merged with
those initiatives. At this stage, however, we choose to extend
R2RML validate our ideas and will consider RML at a later stage.

6. CONCLUSIONS AND FUTURE WORK
Capturing procedural knowledge in R2RML either relies on the
underlying relational database technology or on data pre-
processing. If one is willing to trade tractability in for richer map-
pings, sharing and declaring richer mappings is possible.

We presented R2RML-F, which extends R2RML with treating
function calls as a term map. Using a use case from the geospatial
domain, we demonstrated our approach and conducting an exper-
iment to evaluate its performance with a mapping relying on func-
tions provided by the underlying database technology. Our initial
results show that our approach is viable and that there seems to be
little impact on the performance.
Future work includes additional experiments to validate our find-
ings and developing additional scenarios and use cases to moti-
vate the need for incorporating functions in a mapping, e.g., those
calling web services.

7. ACKNOWLEDGMENTS
This study is supported by the Science Foundation Ireland (Grant
13/RC/2106) as part of the ADAPT Centre for Digital Content
Platform Research (http://www.adaptcentre.ie/) at Trinity College
Dublin. We thank the Ordnance Survey Ireland (OSi) for permit-
ting us to use their boundaries dataset for the purposes of this
research project. Within OSi, we are especially grateful for the
input and domain expertise provided by Lorraine McNerney and
Éamonn Clinton.

8. REFERENCES
[1] M. Arenas, A. Bertails, E. Prud’hommeaux, J. Sequeda. A

Direct Mapping of Relational Data to RDF. W3C Recom-
mendation, W3C, Sep. 2012. https://www.w3.org/TR/rdb-
direct-mapping/

[2] T. Berners-Lee. Relational Databases on the Semantic Web,
1998. Via https://www.w3.org/DesignIssues/RDB-
RDF.html, last accessed January 2015.

[3] P. A. Bernstein and S. Melnik. Model management 2.0: ma-
nipulating richer mappings. In C. Y. Chan, B. C. Ooi, and A.
Zhou, editors, Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data, Beijing, China,
June 12-14, 2007, pages 1–12. ACM, 2007.

11 https://jena.apache.org/

[4] S. Bischof, S. Decker, T. Krennwallner, N. Lopes, and A.
Polleres. Mapping between RDF and XML with XSPARQL.
J. Data Semantics, 1(3):147–185, 2012.

[5] D. Brickley and R. V. Guha. RDF Schema 1.1. W3C Rec-
ommendation, W3C, Feb. 2014. https://www.w3.org/TR/rdf-
schema/

[6] S. Das, S. Sundara, and R. Cyganiak. R2RML: RDB to RDF
Mapping Language. W3C Recommendation, W3C, Sep.
2012. https://www.w3.org/TR/r2rml/

[7] D. Dell’Aglio, A. Polleres, N. Lopes, and S. Bischof. Query-
ing the web of data with XSPARQL 1.1. In R. Verborgh and
E. Mannens, editors, Proceedings of the ISWC Developers
Workshop 2014, co-located with the 13th International Se-
mantic Web Conference (ISWC 2014), Riva del Garda, Italy,
October 19, 2014, volume 1268 of CEUR Workshop Pro-
ceedings, pages 113–118. CEUR-WS.org, 2014.

[8] A. Dimou, M. Vander Sande, P. Colpaert, R. Verborgh, E.
Mannens, and R. Van de Walle. RML: A generic language
for integrated RDF mappings of heterogeneous data. In C.
Bizer, T. Heath, S. Auer, and T. Berners-Lee, editors, Pro-
ceedings of the Workshop on Linked Data on the Web co-
located with the 23rd International World Wide Web Confer-
ence (WWW 2014), Seoul, Korea, April 8, 2014, volume
1184 of CEUR Workshop Proceedings. CEUR-WS.org,
2014.

[9] M. Hert, G. Reif, and H. C. Gall. A comparison of RDF-to-
RDF mapping languages. In C. Ghidini, A. N. Ngomo, S. N.
Lindstaedt, and T. Pellegrini, editors, Proceedings the 7th In-
ternational Conference on Semantic Systems, I-SEMANTICS
2011, Graz, Austria, September 7-9, 2011, ACM Internation-
al Conference Proceeding Series, pages 25–32. ACM, 2011.

[10] O. Kovalenko, C. Debruyne, E. Serral, and S. Biffl. Evalua-
tion of technologies for mapping representation in ontolo-
gies. In R. Meersman, H. Panetto, T. S. Dillon, J. Eder, Z.
Bellahsene, N. Ritter, P. D. Leenheer, and D. Dou, editors,
On the Move to Meaningful Internet Systems: OTM 2013
Conferences - Confederated International Conferences:
CoopIS, DOA-Trusted Cloud, and ODBASE 2013, Graz,
Austria, September 9-13, 2013. Proceedings, volume 8185 of
LNCS, pages 564–571. Springer, 2013.

[11] H. Knublauch, J. A. Hendler, K. Idehen. SPIN – Overview
and Motivation. W3C Member Submission, W3C, Feb. 2011.
https://www.w3.org/Submission/spin-overview/

[12] D. McGuinness, T. Lebo, and S. Sahoo. PROV-O: The
PROV ontology. W3C Recommendation, W3C, Apr. 2013.
http://www.w3.org/TR/2013/REC-prov-o-20130430/.

[13] F. Michel, L. Djimenou, C. Faron-Zucker, and J. Montagnat.
Translation of relational and non-relational databases into
RDF with xR2RML. In V. Monfort, K. Krempels, T. A.
Majchrzak, and Z. Turk, editors, WEBIST 2015 - Proceed-
ings of the 11th International Conference on Web Infor-
mation Systems and Technologies, Lisbon, Portugal, 20-22
May, 2015, pages 443–454. SciTePress, 2015.

[14] The Object Management Group. Meta Object Facility (MOF)
2.0 Query/View/-Transformation Specification, 2007.

[15] J. Unbehauen, S. Hellmann, S. Auer, and C. Stadler.
Knowledge extraction from structured sources. In S. Ceri and
M. Brambilla, editors, Search Computing - Broadening Web

Search, volume 7538 of LNCS, pages 34–52. Springer, 2012.

[16] J. Zedlitz, J. Jörke, and N. Luttenberger. Knowledge Tech-
nology: Third Knowledge Technology Week, KTW 2011, Ka-
jang, Malaysia, July 18-22, 2011. Revised Selected Papers,
chapter From UML to OWL 2, pages 154–163. Springer Ber-
lin Heidelberg, Berlin, Heidelberg, 2012.

APPENDIX
Here we provide listings referred to in the text.
<#TriplesMap1>
 rr:logicalTable [
 rr:sqlQuery """SELECT id, name, ST_AsText(geom)
 AS geom FROM boundaries.county""" ;
] ;
 rr:subjectMap [
 rr:template "http://data.example.com/county/{id}" ;
] ;
 rr:predicateObjectMap [
 rr:predicate ex:name ;
 rr:termType rr:Literal;
 rr:objectMap [rr:column "name"];
] ;
 rr:predicateObjectMap [
 rr:predicate ex:point ;
 rr:objectMap [
 rr:termType rr:Literal;
 rrf:functionCall [
 rrf:function <#Transform> ;
 rrf:parameterBindings (
 [rr:column "geom"]
) ;
] ;
] ;
] ;
.
<#Transform>
 rrf:functionName "transform" ;
 rrf:functionBody """
 // Omitted
 """ ;
.

Listing 4: An R2RML-F mapping transforming points from a
geometry cast to a string with a function captured in the map-
ping (mapping M2). Differences wrt Listing 3 are highlighted.
<#TriplesMap1>
 rr:logicalTable [
 rr:sqlQuery """SELECT id, name,
 ST_AsText(ST_Transform(geom,4326))
 AS geom FROM boundaries.county""" ;
] ;
 rr:subjectMap [
 rr:template "http://data.example.com/county/{id}" ;
] ;
 rr:predicateObjectMap [
 rr:predicate ex:name ;
 rr:termType rr:Literal;
 rr:objectMap [rr:column "name"];
] ;
 rr:predicateObjectMap [
 rr:predicate ex:point ;
 rr:objectMap [
 rr:objectMap [rr:column "geom"];
] ;
] ;
.
<#Transform>
 rrf:functionName "transform" ;
 rrf:functionBody """
 // Omitted
 """ ;
.

Listing 5: An R2RML-F mapping transforming points from a
geometry using a database’s built-in function, which is then
cast to a string (mapping M3). Differences wrt Listing 3 are

highlighted.

