
1

Compositional Verification of Agents
in Dynamic Environments: a Case Study

Catholijn M. Jonker, Jan Treur, Wieke de Vries

Vrije Universiteit Amsterdam

Department of Mathematics and Computer Science, Artificial Intelligence Group

De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands
URL: http://www.cs.vu.nl/~{jonker,treur,wieke} Email: {jonker,treur,wieke}@cs.vu.nl

Abstract. In this paper compositional verification of agents in dynamic environments is studied. Dynamic
properties of an example agent in a dynamic environment are identified in relation to the different abstraction levels
of the compositional structure of the system. The properties are formalised using temporal models. Mathematical
proofs relate the properties at the different process abstraction levels. The dynamics of the environment has several
consequences for the verification process. Properties often have to contain conditions concerning the dynamic
behaviour of the world. In the proofs, the partly unpredictable behaviour of the word has to be taken into account.
This complicates the verification process. A number of aspects of proof pragmatics (i.e., heuristics for finding
proofs) identified during this analysis and aimed at controlling the proof complexity, are discussed.

1 Introduction

With the increase of the complexity of systems and the
sensitivity of those systems with respect to security,
safety, and costs, the need for verification becomes more
important every day. The purpose of verification is to prove
that, under a certain set of assumptions, a system will
adhere to a certain set of properties, for example the design
requirements; see also, e.g., (Fensel, 1995; Fensel and
Benjamins, 1996; Fensel, Schonegge, Groenboom, and
Wielinga, 1996; Harmelen and Teije, 1997). In our
approach, a mathematical proof (i.e., a proof in the form
mathematicians are accustomed to do) is given that the
(detailed) specification of the system together with the
assumptions implies the properties that it needs to fulfil. In
this sense verification leads to a formal analysis of relations
between properties and assumptions.

Given the increasing complexity of systems to be
verified, the need for a systematic approach to verification
that leads to a comprehensible proof is paramount. The first
experiences with the compositional verification method
introduced in (Cornelissen, Jonker, and Treur, 1997) for
knowledge-based systems with a case study in diagnostic
reasoning, and in (Jonker and Treur, 1998a) for multi-agent
systems applied to a case study in reactiveness and pro-
activeness of agents acquiring information about a static
world, were very promising. The proofs are structured in
comprehensible manner and constructed by making use of
the compositional structure of the system being verified.
Although the systems verified in these first attempts are
reasonably complex, the material (or external) world
considered is static. In this paper the compositional
verification method is applied to formally analyse an agent
system with a dynamic world.

In the verification process again the different abstraction
levels of the compositional structure of the system were
used to identify dynamic properties of the agent, of the
external world and of the interaction between them.
Mathematical proofs relate the properties at the different

process abstraction levels. This mathematical style is used
because it is the most general way to formalise and verify
system behaviour; it provides maximal expressive freedom.
Using a formal logic, with a limited number of operators,
could be too constraining in the present phase of the
research. But in the future, a formal logic will be chosen to
conduct the verification. To explore demands on this logic,
the mathematical proof style is useful. The properties are
formalised using temporal models with incomplete states
(to express ignorance). The dynamics of the external world
proved to make verification more complex; more effort was
needed to create comprehensible proofs. Valuable experience
was gained during this analysis that resulted in a number of
basic assumptions and workable heuristics for finding
proofs.

This case study is used to identify possibilities as well
as problems that are encountered in the verification of
multi-agent systems in dynamic environments. The
properties verified in this paper are relevant for multi-agent
systems in dynamic environments, although their
formalization is domain-dependent. For other agent systems
in dynamic worlds, the properties only have to be adjusted
to the particular application domain. A general strategy is
used to obtain the properties and to prove them. Genericity
and reusability are of major importance. The aim of the
research is to find a general approach of verification of
multi-agent systems that are developed in a compositional
and conceptual manner. To obtain this approach, a series of
case studies is being performed, including the one described
in this paper. The approach should identify common
aspects of verification of all kinds of multi-agent systems.
For example, there are types of properties that play a role
in many multi-agent systems. Also, general applicable
heuristics to reduce the search space of the proofs to a
manageable size have been found (and more will have to be
found). Using this approach of multi-agent system
verification, the verification process will become more
structured and algorithmic in nature. Tools to execute
and/or aid with the verification could then be created.

2

Section 2 contains an overview of the compositional
verification approach, which constitutes the foundation of
the sought-for verification approach. In Section 3 a
problem description (a description of a pseudo-experiment)
of animal behaviour is presented, the basic requirements are
formulated, and the model is presented, that is to be verified
in the subsequent sections. Section 4 contains the top-level
properties of the system, that are proven in Section 5,
using assumptions on the behaviour of the dynamic world.
Some of these assumptions appear in Section 4. Section 6
discusses basic assumptions that play a central role. In
Section 7 proof heuristics that (may) play a role in the
verification of dynamic systems are identified. Section 8
discusses the interaction between design processes and
verification processes. Conclusions and further perspectives
are discussed in Section 9.

2 Compositional Verification of Dynamic
Properties

The complexity of the verification process is one of the
major concerns in verification of non-trivial systems. In
particular, for verification of dynamic properties of a
system, a huge search space has to be faced. Compositional
verification is an approach meant to handle this
complexity, by structuring proofs according to different
process abstraction levels; e.g., (Cornelissen, Jonker and
Treur, 1997; Jonker and Treur, 1998a); see also (Abadi and
Lamport, 1993; Hooman, 1994; Dams, Gerth and Kelb,
1996). A compositional multi-agent system can be viewed
at different levels of process abstraction. Viewed from the
top level, the complete system is one process (modelled by
a component S), with interfaces, whereas internal
information and processes are hidden (information and
process hiding). At the next lower level of abstraction, the
system component S can be viewed as a composition of
agents and the world, and information links between them.
Each agent is composed of its sub-components, and so on.
Compositional verification takes this compositional
structure into account: it plays a heuristic role in finding
the properties and proofs.

2.1 Verification and Levels of Process
Abstraction

Often the properties that need to be verified are not given at
the start of the verification process. Actually, the process of
verification has two main aims:

• to find the properties
• given the properties, to prove the properties

The verification proofs that connect one process abstraction
level with the other are compositional in the following
manner: any proof relating level i to level i+1 can be
combined with any proof relating level i-1 to level i, as
long as the same properties at level i are involved. This
means, for example, that the whole compositional structure
beneath level i can be replaced by a completely different
design as long as the same properties at level i are achieved.
After such a modification the proof from level i to level

i+1 can be reused; only the proof from level i-1 to level i
has to be adapted. In this sense the verification method
supports reuse of verification proofs.

2.2 The Temporal Semantics Used

In principle, verification is always relative to semantics of
the system descriptions that are verified. For our
Compositional Verification approach, these semantics are
based on compositional information states which evolve
over time. In this subsection a brief overview of these
assumed semantics is given.

An information state M of a component D is an
assignment of truth values {true, false, unknown} to the set of
ground atoms that play a role within D. The compositional
structure of D is reflected in the structure of the information
state. A formal definition can be found in (Brazier, Treur,
Wijngaards and Willems, 1996). The set of all possible
information states of D is denoted by IS(D).

A trace
�

 of a component D is a collection of
information states (Mt)t � T in IS(D) over a time structure

T. For this paper T will be chosen as a dense ordering,
e.g., the non-negative real numbers. The set of all traces is

denoted by IS(D)T, or Traces(D). If C is a sub-component
(or sub-sub-component, or ...) of D, by Traces(D)|C the
restriction of the traces to C is meant, that is, only that part
of each information state that pertains to C is considered.
Given a trace

�
 of component C, the information state of

the input interface of component C' at time point t is
denoted by state(

�
, t, input(C')), where C' is either C or a

sub-component of C, a sub-sub-component of C, etc.
Analogously, state(

�
, t, output(C')), denotes the information

state of the output interface of component C' at time point
t.

3 Problem Description

One of the most important aspects of agents (cf.
(Wooldridge and Jennings, 1995)) is their behaviour. In the
past, behaviour has been studied in different disciplines. In
Cognitive Psychology the analysis of human behaviour is
a major topic. In Biology, animal behaviour has been and
is being studied extensively. In one approach animal
behaviour is explained only in terms of a black box that for
each pattern of stimuli (input of the black box) from the
environment generates a response (output of the black box),
that functionally depends on the input pattern of stimuli;
i.e., if two patterns of stimuli are offered, then the same
behaviour occurs if the two patterns of stimuli are equal. In
this section a generic model of a purely reactive agent is
briefly presented which is an adequate agent model to
describe the (immediate) functional character of stimulus-
response behaviour (Jonker and Treur, 1998b). The black
box is represented by the agent component. The stimuli
form the input (observation results), and the response is
formed by the actions to be performed which are generated
as output.

3

In this article a concrete example domain is considered
that is taken from the discipline that studies animal
behaviour; see e.g., (Vauclair, 1996).

3.1 The Domain

One type of experiment reported in (Vauclair, 1996) is set
up as follows (see Figure 1). Separated by a transparent
screen (a window, at position p0), at each of two positions
p1 and p2 a cup (upside down) and/or a piece of food can be
placed. At some moment (with variable delay) the screen is
raised, and the animal is free to go to any position.
Consider the following three possible situations:

Situation 1 At both positions p1 and p2 an empty cup
is placed.

Situation 2 At position p2 a piece of food is placed,
which is (and remains) visible for the
animal. At position p1 there is nothing.

Situation 3 At position p1 an empty cup is placed and
at position p2 a piece of food is placed,
after which a cup is placed at the same
position, covering the food. After the
food disappears under the cup it cannot be
sensed anymore by the animal.

In situation 1 the animal will not show a preference for
either position p1 or p2; it may even go elsewhere or stay
where it is. In situation 2 the animal will go to position
p2, which can be explained as pure stimulus-response
behaviour. In situation 3 the immediate stimuli are the
same as in situation 1. Animals that react in a strictly
functional stimulus-response manner will respond to this
situation as in situation 1. Models of animals that show
delayed response behaviour (and will go to p2, where food
can be found) or other types of behaviour can be found in
(Jonker and Treur, 1998b).

p0

p1

p2

Fig. 1. Situation 3 of the experiment

3.2 The Requirements

In this paper a purely reactive agent model is described for
the experiment. The following requirements on its
behaviour are formulated: The agent should behave the
same for the situations 1 and 3 described above: doing
nothing, as if no food is present. Only in situation 2
should it go to the position of the food and eat it.

3.3 An Agent Model for Purely Reactive
Behaviour

For the design and implementation of the different models
the compositional development method for multi-agent
systems DESIRE has been used; see (Brazier, Dunin-
Keplicz, Jennings, and Treur, 1997) for more details. A
generic agent model for purely reactive behaviour developed
earlier within the DESIRE environment (and applied in
chemical process control) was reused.

3.3.1 Process Composition

The (rather simple) agent system (denoted by S) consists of
two components, one for the agent (denoted by M) and one
for the external world (denoted by EW) with which it
interacts (see Figure 2).

In the current domain, the observation information that
plays a role describes that certain objects (cup1, cup2, food,
screen, mouse, self) are at certain positions (i.e., p0, p1, p2).
This is modelled by two sorts OBJECT and POSITION and a
relation at_position between these two sorts. Moreover, two
types of actions can be distinguished: eat and goto some
position. The latter type of actions is parameterized by
positions; this can be modelled by a function goto from
POSITION to ACTION. E.g., goto(p1) is the action to go to
position p1. The action eat that is specified assumes that if
the animal is at the position of the food, it can have the
food: if a cup is covering the food, as part of the action eat

the animal can throw the cup aside to get the food.
Variables over a sort, e.g., POSITION, are denoted by a
string, e.g., P, followed by : POSITION, i.e., P : POSITION is
a variable over the sort POSITION. The unary relation
to_be_performed is used to express the information that the
agent has decided to perform an action; for example,
to_be_performed(goto(p1)) expresses that the agent has decided
to go to position p1. The relation observation_result is used to
express the meta-information that certain information has
been acquired by observation; for example,
observation_result(at_position(food, p1), pos) expresses that the
agent has observed that there is food at position p1, whereas
the statement observation_result(at_position(food, p1), neg)

expresses that the agent has observed that there is no food
at position p1.

agent external

world

top level

observation results

actions and observations

Fig. 2. A generic agent model for purely reactive behaviour

4

Within the process composition so far, the external world
has been treated as a black box. This has the advantage that
the system can easily be adapted to function either with a
simulated world or with the real world. This approach is
valuable for verification as the system can be verified up to
the external world; leaving the external world as a black
box assumed to satisfy certain properties. For a simulated
external world the verification process can continue to be
certain that the simulation has the required properties.

3.3.2 The Domain Knowledge

Assuming that food is offered at most one position (for
example, position p2), the stimulus-response behaviour of
agent model A expresses that if the agent observes that
there is food at any position and that no screen at position
p0 separates the agent from this position, then it goes to
this position. Also, if the agent observes that it is at the
position of the food, the agent decides to eat the food. This
knowledge has been modelled in the following form:

if observation_result(at_position(food, P:POSITION), pos)
 and observation_result(at_position(screen, p0), neg)
 and observation_result(at_position(self, P:POSITION), neg)
then to_be_performed(goto(P:POSITION))

if observation_result(at_position(self, P:POSITION), pos)
 and observation_result(at_position(food, P:POSITION), pos)
then to_be_performed(eat)

4 Different Types of Properties

As an example of our verification method for dynamic
systems the behaviour of the system presented in Section 3
is to be verified for situations in which the food is visible
at one of the positions; the proof obligation is that the food
will disappear after the screen is gone (called screenrise).
This is formalised in the following property:

S0. The food has disappeared some time after screenrise:� � � � � � � 	
 � � � � � � � � � � � � � � � � � �

 � � � 	 � � � � � � � � � � � � � � � � � � � � �
 � � � � � �
 � � 	 	 � � � !

� � � � �
 � � � � � � " � � # � � !� � $ $ % � �
 � � � 	 � � � � $ $ � � � � � � � � � � � � � � � �
 � � � � � �
 � � 	 	 � � �
&' � $ (� �
 � � � 	 � � � � $ � � � � � � � � � � � � � � � � �
 � � � � � � " � � # � �

A heuristic to prove properties like this one is to make use
of a combination of top-down and bottom-up approaches.
Top-down: With this property in mind formulate properties
for the sub-components (behavioural properties) and for the
co-operation between those sub-components (environment
and interaction properties) that might be useful. Formalise
them, and then use a bottom-up strategy to see whether or
not these properties are enough to prove the main property.
In this case, properties of the agent, of the world, of the co-
operation between agent and world are in order.

4.1 Agent Properties

Property S0 is phrased in terms of the component EW, that
is responsible for the maintenance of the correct state of the
world. Therefore, the property describes correct behaviour
purely in terms of world situations. But to obtain this
behaviour, the agent component has to make the right

decisions. Because S0 depends on correct agent behaviour
and not just on correct world behaviour, it is a property of
the entire system S. The correct reasoning of the agent is
described with four properties.

M1. Effective moving decision making of M: decisions of
M to move are made if the circumstances are observed to be
appropriate.� � � � � � � 	
 �) � � � � � � � � � � � � �

 � � � 	 � � � � � � � � � � �) �
� *
 	 � + � � � � � � � 	
 � , � � � � � � �
 � � � � � �
 � � 	 	 � � � � � 	 - !� *
 	 � + � � � � � � � 	
 � , � � � � � � �
 � � � � � � " � � # � � � � �
 !� *
 	 � + � � � � � � � 	
 � , � � � � � � �
 � � � � � �
 	 , " � � � � 	 -

&' � $ (� �
 � � � 	 � � � � $ � � � � � � � �) � � � � * 	 � � 	 � " � � . 	 # � - � � � � �

This property states that the agent decides to perform a
goto-action when it observes that the screen is gone and
that there is food at a position different from its own.

M2. Justified moving decisions of M: decisions of M to
move are only made if the circumstances are observed to be
appropriate.� � � � � � � 	
 �) � � � � � � � � � � � � �

 � � � 	 � � � � � � � � � � � �) � � � � * 	 � � 	 � " � � . 	 # � - � � � � �
&' � $ % � �
 � � � 	 � � � � $ � � � � � � �) �

� *
 	 � + � � � � � � � 	
 � , � � � � � � �
 � � � � � �
 � � 	 	 � � � � � 	 - !� *
 	 � + � � � � � � � 	
 � , � � � � � � �
 � � � � � � " � � # � � � � �
 !� *
 	 � + � � � � � � � 	
 � , � � � � � � �
 � � � � � �
 	 , " � � � � 	 -

This property states that the agent only decides to move
when there are good reasons, these being the absence of the
screen and the presence of the food somewhere else.

M3. Effective eating decision making of M: decisions of
M to eat are made if the circumstances are observed to be
appropriate.� � � � � � � 	
 �) � � � � � � � � � � � � �

 � � � 	 � � � � � � � � � � �) �
� *
 	 � + � � � � � � � 	
 � , � � � � � � �
 � � � � � � " � � # � � � � �
 !� *
 	 � + � � � � � � � 	
 � , � � � � � � �
 � � � � � �
 	 , " � � � � �

&' � $ (� �
 � � � 	 � � � � $ � � � � � � � �) � � � � * 	 � � 	 � " � � . 	 # � 	 � �

The above property formalises that the agent decides to eat
when it observes that it is with the food.

M4. Justified eating decisions of M: decisions of M to eat
are only made if the circumstances are observed to be
appropriate.� � � � � � � 	
 �) � � ' � � � � � � � � � �

 � � � 	 � � � � � � � � � � � �) � � � � * 	 � � 	 � " � � . 	 # � 	 � �
&' � $ % � �
 � � � 	 � � � � $ � � � � � � �) �

� *
 	 � + � � � � � � � 	
 � , � � � � � � �
 � � � � � � " � � # � � � � �
 !� *
 	 � + � � � � � � � 	
 � , � � � � � � �
 � � � � � �
 	 , " � � � � �

This last agent-property states that the agent only decides to
eat when it observes that it is with the food.

The agent component M is a primitive component;
these properties can be proven directly from the knowledge
base of the agent component (see Section 3.3.2), without
using other properties. Such properties are called basic
properties. As can be seen by comparing the knowledge
base of the agent with the properties, the properties
formalise the correct functioning of the rules of the
knowledge base in the reasoning process. For each rule,
there is a property stating that the conclusion will be drawn

5

if the premises hold, and one property stating that the
conclusion will be drawn only if the premises hold.

In general, properties formalising the correct
functioning of primitive components of arbitrary systems
are very similar to the above properties.

4.2 Interaction Properties

The agent and the external world are connected through two
information links, that transfer observation results from the
world and actions for the world, respectively. Properties of
information exchange have a general format, valid for every
system containing links. There are two kinds of properties.
Interaction effectiveness states that information from the
source of a link is correctly delivered at the destination of
the link some time later, and interaction groundedness
states that when particular information is present in an
interface, corresponding information must have been
present in the source of one or more links some time
earlier. One example of information exchange will be
described, namely the information flow to the external
world, with its two properties. Other interaction properties
are analogous.

I1. Interaction effectiveness from M to EW:� � � � � � � 	
 � � � / � - � � � � # , � � 	 � � ,
 � � � � � � � � � � " � � � �

 � � � 	 � � � � � � � � � � � �) � / &' � $ (� �
 � � � 	 � � � � $ � � � � � � � � � � /

I2. Interaction groundedness of input information of EW:� � � � � � � 	
 � � � / � - � � � � # , � � 	 � � ,
 � � � � � � � � � � " � � � �

 � � � 	 � � � � � � � � � � � � � � / &' � $ % � �
 � � � 	 � � � � $ � � � � � � � �) � /

Interaction properties are also basic properties.

4.3 System Properties

Some properties are needed that seem to concern one
component, however, in reality depend not only of the
behaviour of that component, but also on the behaviour of
the links and components that interact with it (this is called
its environment). These properties are properties of the
whole system S.

S9 . When the environment of EW is provided with the
necessary observation results, it provides a goto-action:� � � � � � � 	
 � � � � � � � � � � � � � � � � � �

 � � � 	 � � � � � � � � � � � � � � �
� *
 	 � + � � � � � � � 	
 � , � � � � � � �
 � � � � � �
 � � 	 	 � � � � � 	 - !� *
 	 � + � � � � � � � 	
 � , � � � � � � �
 � � � � � � " � � # � � � � �
 !� *
 	 � + � � � � � � � 	
 � , � � � � � � �
 � � � � � � . � �
 	 � � � � 	 -

&' � $ (� �
 � � � 	 � � � � $ � � � � � � � � � � � � � * 	 � � 	 � " � � . 	 # � - � � � � �

S10. The environment of EW only provides a goto-action
when the necessary observation results were present:� � � � � � � 	
 � � � � � � � � � � � � � � � � � �

 � � � 	 � � � � � � � � � � � � � � � � � * 	 � � 	 � " � � . 	 # � - � � � � �
&' � $ % � �
 � � � 	 � � � � $ � � � � � � � � � � �

� *
 	 � + � � � � � � � 	
 � , � � � � � � �
 � � � � � �
 � � 	 	 � � � � � 	 - !� *
 	 � + � � � � � � � 	
 � , � � � � � � �
 � � � � � � " � � # � � � � �
 !� *
 	 � + � � � � � � � 	
 � , � � � � � � �
 � � � � � � . � �
 	 � � � � 	 -

S11. When the environment of EW is provided with the
necessary observation results, it provides an eat-action:� � � � � � � 	
 � � � � � � � � � � � � � � � � � �

 � � � 	 � � � � � � � � � � � � � � �
� *
 	 � + � � � � � � � 	
 � , � � � � � � �
 � � � � � � " � � # � � � � �
 !� *
 	 � + � � � � � � � 	
 � , � � � � � � �
 � � � � � � . � �
 	 � � � � �

&' � $ (� �
 � � � 	 � � � � $ � � � � � � � � � � � � � * 	 � � 	 � " � � . 	 # � 	 � �

S12. The environment of EW only provides an eat-action
when the necessary observation results were present:� � � � � � � 	
 � � � � � � � ' � � � � � � � � � �

 � � � 	 � � � � � � � � � � � � � � � � � * 	 � � 	 � " � � . 	 # � 	 � �
&' � $ % � �
 � � � 	 � � � � $ � � � � � � � � � � �

� *
 	 � + � � � � � � � 	
 � , � � � � � � �
 � � � � � � " � � # � � � � �
 !� *
 	 � + � � � � � � � 	
 � , � � � � � � �
 � � � � � � . � �
 	 � � � � �

4.4 Properties of the External World

Even though the world is dynamic, this doesn’t mean that
everything is possible. Strange events should not occur: for
example, the agent never ever disappears and the agent only
moves according to the actions decided upon by the agent.
These properties are formalised as follows:

W17. The mouse is always somewhere:� � � � � � � 	
 � � � � � ' � � 0 1 � 2 � 2 1 3 �

 � � � 	 � � � � � � � � � � � � � � � � � � � �
 � � � � � � . � �
 	 � �

W26. When the mouse changes position, there must have
been a goto-action on the input of EW:� � � � � � � 	
 � � � � � � 0 1 � 2 � 2 1 3 � 4 5 � � 0 1 � 2 � 2 1 3 � � �

 � � � 	 � � � � � � � � � � � � � � � � � � � �
 � � � � � � . � �
 	 � 4 !
' � $ % � �
 � � � 	 � � � � $ � � � � � � � � � � � � � � � �
 � � � � � � . � �
 	 � � &' � $ $ % � �
 � � � 	 � � � � $ $ � � � � � � � � � � � � � * 	 � � 	 � " � � . 	 # � - � � � � 4

Furthermore, the observation results provided by the
external world should correspond to the current world state.

W21. Observations from EW were facts:� � � � � � � 	
 � � � � 6 � - � � � � # � � � .
 � 7 � � , # � � � " � � � �
�
 � � � 	 � � � � � � � � � � � � � � � � *
 	 � + � � � � � � � 	
 � , � � 6 � � �

&' � $ % � �
 � � � 	 � � � � $ � � � � � � � � � � � 6 !

�
 � � � 	 � � � � � � � � � � � � � � � � *
 	 � + � � � � � � � 	
 � , � � 6 � � 	 -
&' � $ % � �
 � � � 	 � � � � $ � � � � � � � � � � � � 6

Finally, some assumptions on the behaviour of the external
world are necessary. Since, the goal is to prove the system
correct for situation 2, the external world is assumed to
behave according to situation 2, i.e., food does not move
around, food does not disappear unless it is eaten, food
remains visible at all times and the mouse is initially at
p0. This last property is given:

W18. Initially, the mouse is at p0:� � � � � � � 	
 � � � �

 � � � 	 � � � � � � � � � � � � � � � � � � �
 � � � � � � . � �
 	 � � !

� � � � � �
 � � � � � � . � �
 	 � � � !� � � � � �
 � � � � � � . � �
 	 � � �

Properties of the external world are not influenced by the
agent. In the verification process they are used as
assumptions to prove the system properties. If in the
system design the external world is the real physical world,
the properties have to be obeyed by the world in order to
obtain the desired system behaviour. In case of a simulated
external world, containing several sub-components, the
properties can be proven from properties at a deeper level of
abstraction.

6

4.5 Phase Properties

The properties in Section 4.1 through 4.4 are used to prove
the main property S0. However, the proof still needs more
structure in order to be easily comprehensible. In this case
phasing is used. Property S0 spans all of the execution of
the agent system, from time 0 when the screen was still
down, until the disappearance of the food. A number of
milestones can be distinguished in the behaviour of the
system, such as screenrise, the arrival of the agent at the
position of the food, and the disappearance of the food.
These milestones divide the processing of the system in
three phases. Each phase is formalised by one or two
properties, that each can be proven from other properties,
like those in Sections 4.1 through 4.4. The phase
properties together are sufficient to prove the main property
S0 of the system.

The first phase of the process is the phase before
screenrise. In this phase, the agent is at p0, as S1 states:

S1. The mouse is at p0 until screenrise:� � � � � � � 	
 � � � � � � � �

 � � � 	 � � � � � � � � � � � � � � � � � � � � �
 � � � � � �
 � � 	 	 � � � !

� � $ $ % � �
 � � � 	 � � � � $ $ � � � � � � � � � � � � � � � �
 � � � � � �
 � � 	 	 � � �
&� � $ 8 � �
 � � � 	 � � � � $ � � � � � � � � � � � � � � � �
 � � � � � � . � �
 	 � �

The next phase is the phase between screenrise and the
arrival of the agent at the position of the food. This phase
is described by properties S2 and S3. Property S2
formalises that the agent actually will arrive at the spot
where the food was some time before and S3 states that the
food is still there when the agent arrives.

S2. After screenrise, the mouse will eventually arrive at
the position of the food some time:� � � � � � � 	
 � � � � � � � � � � � � � � � � � �

 � � � 	 � � � � � � � � � � � � � � � � � � � � �
 � � � � � �
 � � 	 	 � � � !
� � � � �
 � � � � � � . � �
 	 � � !� � � � �
 � � � � � � " � � # � � !� � $ $ % � �
 � � � 	 � � � � $ $ � � � � � � � � � � � � � � � �
 � � � � � �
 � � 	 	 � � �

&' � $ (� �
 � � � 	 � � � � $ � � � � � � � � � � � � � � � �
 � � � � � � . � �
 	 � �

S3. When at time 9 : the mouse has just arrived at the
location where the food was at some time t before 9 :, then
the food has stayed at this location from t to 9 :.� � � � � � � 	
 � � � � � � � � � � � � � � � � � $ � � � % � $ �

 � � � 	 � � � � � � � � � � � � � � � � � � � �
 � � � � � � " � � # � � !

 � � � 	 � � � � $ � � � � � � � � � � � � � � � �
 � � � � � � . � �
 	 � � !

� � $ $ � ; � 8 � $ $ % � $ &
 � � � 	 � � � � $ $ � � � � � � � � � � < � � � � �
 � � � � � � . � �
 	 � � =
&� � $ $ � ; � % � $ $ 8 � $ &
 � � � 	 � � � � $ $ � � � � � � � � � � � � � � � �
 � � � � � � " � � # � � =

The last phase is the period after the arrival of the agent at
the location of the food; S4 states that the food will be
eaten at some time in this phase.

S4. The food disappears some time after both the mouse
and the food are at the same position:� � � � � � � 	
 � � � � � � � � � � � � � � � � � � � $ % � �

 � � � 	 � � � � � � � � � � � � � � � � � � � �
 � � � � � � . � �
 	 � � !
� � � � �
 � � � � � � " � � # � � !� � $ $ � ; � $ 8 � $ $ % � &
 � � � 	 � � � � $ $ � � � � � � � � � � < � � � � �
 � � � � � � . � �
 	 � � !

� � � � �
 � � � � � � " � � # � � =

&' � $ $ (� �
 � � � 	 � � � � $ $ � � � � � � � � � � � � � � � � �
 � � � � � � " � � # � �

5 Verification of Top Level Properties

Verification of the properties in Section 4 follows the
structure of Section 4. The properties of Sections 4.1 and
4.2 are basic properties. Their proof is straightforward from
the knowledge bases and information links in the
specification of the system and from the semantics of such
a specification.

5.1 Verification of the System Properties

The proof trees of the four properties of Section 4.3 are as
follows:

S9: For EW, proper
 observations cause
 a goto-action

I

I3: Interaction effectiveness
 from EW to M

M1: Correct moving
 deciding of M

I1: Interaction effectiveness
 from M to EW

S10: For EW, a goto-action
 is caused by proper
 observations

II

I2: Interactiongroundedness
 of input info of EW

M2: Justified moving
 deciding of M

I4: Interaction groundedness
 of input info of M

S12: For EW, an eat-action
 is caused by proper
 observations

IV

I2: Interaction groundedness
 of input info of EW

M4: Justified eating
 deciding of M

I4: Interaction groundedness
 of input info of M

S11: For EW, proper
 observations cause
 an eat-action

III

I3: Interaction effectiveness
 from EW to M

M3: Correct eating
 deciding of M

I1: Interaction effectiveness
 from M to EW

Every node in these trees can be proven from its children in
a straightforward manner.
A line under a leaf property means that this property is
basic. The roman numbers of the trees will be used to refer
to them from other trees.

5.2 Verification of the External World

The properties of Section 4.4 are assumptions on the first
abstraction level. In case of a simulated world, they can be
proven from properties of the next abstraction level. In this
way, the verification of the external world can be separated
from the verification of the other parts of the system. The
compositionality of the system is exploited to reduce the
complexity of the verification process.

7

5.3 Verification of the Main Property and of
the Phase Properties

The proof tree of S0 uses the above properties. The proof
comes down to chaining the phases. A roman number
underneath a leaf in a proof tree means that this leaf
property is proven in the tree with that number.

VI
S0: The food has disappeared
 some time after screenrise

S1: The mouse is at
 p0 before screenrise

S2: After screenrise, the
 mouse will reach the
 position of the food

S3: When the mouse
 reaches the postition where
 the food was earlier, the
 food is still there

S4: The food disappears
 some time after the
 mouse reaches itVII

VIII
IX

X

In this section the proof tree of property S1 is given and
discussed. The other trees are not given.

S1: The mouse is at
 p0 before screenrise

VII

II

W18: Initially,
 the mouse is

	at p0

W17: The mouse
 is always
 somewhere

W26: A change in
 position is caused
 by a goto-action in EW

S10: For EW, a
 goto-action
 is caused by proper
 observations

W21: Observations
 were facts

The proof is done by induction. The base is W18. For the
step, assume the agent was at p0 before and is not anymore
now. Then the agent must be somewhere else (W17), so
there has been a goto-action (W26) and thus there must
have been certain observations earlier (S10). One of these
observations is that the screen is gone, and this must have
been a fact earlier (W21). Contradiction, for screenrise
hasn’t happened yet.

6 Basic Assumptions

In this section some of the more fundamental assumptions
are discussed. These assumptions are basic in the sense that
they have consequences at many places in the verification
process. The first set of basic assumptions is about the
time structure, discussed in Section 6.1. The second set of
basic assumptions is about the co-ordination of the
generation and execution of successive actions, discussed in
Section 6.2.

6.1 The Time Structure

Different variants can be considered for time structures. The
first choice is that we use incomplete (three-valued) states
(instead of the more commonly used complete (two-valued)
states), to be able to model the absence of information in
an agent. The second choice we made is for linear temporal
models and not for branching time models. The main
reason for this choice is that linear structures are easier to
handle, from a technical perspective. However, it is quite
well possible that our approach in principle can be worked
out for branching time models as well. The third choice we
made is for a variant of dense time temporal models (e.g.,
based on the non-negative rational or real numbers) and not
for discrete time models (e.g., based on the natural
numbers). Discrete time structures would have the

advantage that all processes can be modelled from step to
step, using the next operator, and induction over time steps
can be performed in proofs. An important disadvantage,
however, is that all events have to be projected onto the
discrete time scale, which would entail a more synchronous
approach than desired, and/or a rather elaborate bookkeeping
of all events at the specific discrete time points. An
advantage of a dense time approach is that asynchronous
events can be modelled in a more natural manner. A
disadvantage may be that the possibility to use the next
operator is lost, and induction over time steps cannot be
used. Because the domain in our case study in principle has
asynchronous events, we made the choice for dense time.
However, we impose an additional constraint on the
temporal models that allow us to do some forms of
induction over courses of events.The constraint imposed
is meant to exclude pathological models in which on a
finite time interval, an infinite number of changes is
possible. Roughly spoken, at each time point we require
that the state of a component X is always persistent over an
interval, in the following sense:

� � � � � � � 	
 � � � � � � $ (� �

 � � � 	 � � � � � > � ? !
 � � � 	 � � � � $ � > < ?

&' � � � � � � � @ � � 8 � � % � � % � @ 8 � $!� � $ $ � ; � � 8

� $ $ % � � &
 � � � 	 � � � � $ $

� > � ? !
� � 8 � $ $ 8 � @ &
 � � � 	 � � � � $ $

� > < ? =

This assumption states that if a change occurs, then a time
point exists such that before this time point there is an
interval in which the situation before the change persists,
and an interval after this time point in which the new
situation persists for a while. In (Barringer, Kuiper, and
Pnueli, 1985), for the case of temporal logic with two-
valued states, the assumption is called finite variability. In
our case, due to the incomplete states a variant of this
assumption has to be imposed as well:

� � � � � � � 	
 � � � � � � $ (� �

 � � � 	 � � � � � > < ? !
 � � � 	 � � � � $ � > � ?

&' � � � � � � � @ � � 8 � � % � � % � @ 8 � $!� � $ $ � ; � � 8

� $ $ % � � &
 � � � 	 � � � � $ $

� > < ? !
� � 8 � $ $ 8 � @ &
 � � � 	 � � � � $ $

� > � ? =

These basic assumptions look rather natural; they exclude
processes in which changes can occur in succession in
arbitrarily small intervals. Moreover, continuous changes,
such as, for example, in Newtonian mechanics, are excluded
as well. For the case study in this paper, where only a
small number of discrete events can change the world, the
assumptions are reasonable. An advantage is that the
assumptions imply that induction can be performed over a
course of events: in a countable number of successive
events the whole dense time frame is covered.

6.2 Co-ordination of Successive Actions

For a human agent interacting with a system, sometimes it
is not clear whether an action that was initiated already was
performed (invisible effects or invisible action initiation),
or is still under execution; especially visitors of Web-sites

8

experience this often. As long as an initiated action is still
under execution, initiating a next action may disturb the
process to such an extent that nothing reasonable results
(e.g., due to interference of the two actions). Moreover, as
long as the effects of the previous action are not clear to the
agent, it is doubtful whether an action that is chosen next
is justified. In addition to the basic assumptions discussed
in Section 6.1, a basic assumption is made to guarantee
that the interaction between agent and external world is
transparent. The agent is assumed to refrain from generating
a new action as long as it has not noticed that the previous
action has led to the expected (observable) changes in the
world. Also, until the result of the action is observed by
the agent, there is no change in the observations, which
means that no events happen in the external world while
the action is still being executed. In this system, the
assumption pertains to two kinds of actions, namely eat-
and goto-actions. These different actions lead to different
observable outcomes. So, the assumption is formalised in
two parts:
� � � � � � � 	
 � � � � � 4 � 0 1 � 2 � 2 1 3 � � � 1 A B � C �

�
 � � 2 D 3 � 6 5 - � � � � � � � � � $ $ (� �
 � � � 	 � � � � � � � � � � � �) � � � � * 	 � � 	 � " � � . 	 # � - � � � � � !
' � $ % � � � $ $ $ � ; � $ 8 � $ $ $ % � &
 � � � 	 � � E � $ $ $ E � � � � � � �) < � � � * 	 � � 	 � " � � . 	 # � - � � � � � = !

 � � � 	 � � � � $ $ � � � � � � �) �
� *
 	 � + � � � � � � � 	
 � , � � � � � � �
 � � � � � �
 	 , " � � � � �
 !� � $ $ $ � ; � 8 � $ $ $ % � $ $ &
 � � � 	 � � � � $ $ $ � � � � � � �) <
� *
 	 � + � � � � � � � 	
 � , � � � � � � �
 � � � � � �
 	 , " � � � � �
 =

&� � $ � ; � % � $ 8 � $ $ &
 � � � 	 � � � � $ � � � � � � � �) � � � � * 	 � � 	 � " � � . 	 # � - � � � � � !

 � � � 	 � � � � $ � � � � � � � �) < � � � * 	 � � 	 � " � � . 	 # � 6 = !

; ' � $ $ $ � � 8 � $ $ $ % � $ $!
 � � � 	 � � � � $ $ $ � � � � � � �) �
� *
 	 � + � � � � � � � 	
 � , � � � � � � �
 � � � � � � � � 4 �
 &� � $ � � � 8 � $ % � $ $ &
 � � � 	 � � � � $ � � � � � � �) �
� *
 	 � + � � � � � � � 	
 � , � � � � � � �
 � � � � � � � � 4 �
 =

� � � � � � � 	
 � � � � � 4 � 0 1 � 2 � 2 1 3 � � � 1 A B � C �
�
 � � 2 D 3 � 6 5 	 � � � � � � $ $ (� �
 � � � 	 � � � � � � � � � � � �) � � � � * 	 � � 	 � " � � . 	 # � 	 � � !

' � $ % � � � $ $ $ � ; � $ 8 � $ $ $ % � &
 � � � 	 � � E � $ $ $ � � � � � � � �) < � � � * 	 � � 	 � " � � . 	 # � 	 � � = !

 � � � 	 � � E � $ $ � � � � � � �) �

� *
 	 � + � � � � � � � 	
 � , � � � � � � �
 � � � � � � " � � # � � � � 	 - !� � $ $ $ � ; � 8 � $ $ $ % � $ $ &
 � � � 	 � � � � $ $ $ � � � � � � �) <
� *
 	 � + � � � � � � � 	
 � , � � � � � � �
 � � � � � � " � � # � � � � 	 - =

&� � $ � ; � % � $ 8 � $ $ &
 � � � 	 � � � � $ � � � � � � � �) � � � � * 	 � � 	 � " � � . 	 # � 	 � � !

 � � � 	 � � � � $ � � � � � � � �) < � � � * 	 � � 	 � " � � . 	 # � 6 = !

; ' � $ $ $ � � 8 � $ $ $ % � $ $!
 � � � 	 � � � � $ $ $ � � � � � � �) �
� *
 	 � + � � � � � � � 	
 � , � � � � � � �
 � � � � � � � � 4 �
 &� � $ � � � 8 � $ % � $ $ &
 � � � 	 � � � � $ � � � � � � �) �
� *
 	 � + � � � � � � � 	
 � , � � � � � � �
 � � � � � � � � 4 �
 =

Whether or not this assumption holds, depends on the
behaviour of the external world. Only if actions can be
executed without being interrupted by events, it can be
guaranteed that the system behaviour is as desired.

7 Proof Pragmatics

First, in Section 7.1, some specific issues are identified
that result from the dynamics of the world, and make the
verification process difficult. Later on, in Section 7.2
heuristics will be discussed that were identified to overcome
these difficulties.

7.1 Aspects Entailed by Dynamic Worlds

A system with a dynamic world has far more possible
behaviours (formalised by traces) than a comparable system
with a static world. In the dynamic world, events happen
that do not lie inside the range of influence of the system.
The system can register these events, but it doesn’t know
what to expect. When the world would be static, all events
happening were caused by and restricted to the system, and
this would reduce the complexity of the verification
process. Systems interacting with a dynamic world need
more flexible knowledge, that can deal with any situation
arising in the world. The behaviour of these systems is
more diverse, and therefore harder to describe in properties.
The system is reacting to situations occurring in the world.
So, in properties there will often be conditions describing
the situations for which the properties hold. This
considerably complicates the formalization of the system
behaviour.

As a natural consequence, the proving process also
becomes more intricate. Using a property is only possible
when its conditions are fulfilled. When proving that
something holds at some time t, it is very well possible
that the conditions of the property you want to use refer to
a time point earlier than t. You are then forced to “prove
backwards” that those conditions held earlier, and this can
be a lot of work. Especially when the basic assumptions
introduced in Section 6.2 about co-ordination of successive
actions are not fulfilled, a lot of actions may be initiated in
the past and still are due to have their effects. There is a
danger that you are regularly doing retrospection in a
branching time past, to see whether all possible pasts
satisfy some conditions, which may lead to a combinatorial
explosion of histories. This may seem strange, because
usually the future is branching, uncertain and unpredictable
as it is. But in a dynamic system, there can be many
scenarios that have caused the current situation as well as
many scenarios to follow the current point. One of the
reasons to introduce the basic assumptions of Section 6.2
was this problem of exploding histories.

7.2 The Proof Heuristics Identified

During the verification process the following heuristics
were identified:

• identify a number of phases of the process and
milestones reached after these phases

For the example system phases are identified in Section
4.5.

• define each of the milestones by pinpointing the
moment of the essential change

This means identification of the statement that holds for the
milestone and the moment that it started to hold (i.e.,
before which in a time interval it does not hold).

• design a form of causal chains from one milestone to
another

9

It seems natural to reason in terms of causes and effects.
Something (X) happens because of some reason, and the
reason induces the effect. When there is nothing to cause X,
then X won’t happen. To find proofs, frequently, causal
chains were traced back. Although in our current way of
formalising using temporal models, causal relations cannot
be expressed directly, it can be expressed that something
(X) always happens before something else (Y), but this
may not be the same as saying that X is the cause of Y.
Nevertheless, the notion of causality can serve as a
heuristic to find proofs that are expressed using temporal
models. Whether or not an appropriate notion of causality
could be formalised by other means remains open.

• use forward or backward induction over chains of events

A number of times induction turned out a valuable proof
technique, not induction over time points, but induction
over chains of events. Both induction to the future and
induction to the past may be useful.

• abstract from the history by assuming all effects of past
actions have been obtained

This can be done using the basic assumptions of Section
6.2.

• distinguish different types of properties according to the
compositional structure

For example, properties were distinguished in (combined)
system properties, (material) world properties, (mental)
agent properties and interaction properties.

• distinguish a separate initial phase, and let time start
after initialisation of the system

Initialisation of the system is a rather deviant type of
process. If it is not separated then many properties get
additional conditions that make them less transparent.

8 Interaction between Design and
Verification Processes

A central aim of verification is to explicit the assumptions
under which a system design is appropriate, with respect to
the requirements imposed. Another aim is to discover
flaws, in order to improve the design: the design process
and the verification process may go hand in hand. A more
specific interaction between design and verification
processes occurs when a design is improved in order to
support the verification process; e.g., to make it more
transparent and more structured, and increase flexibility in
the context of maintenance and reuse. A gain that is
achieved on these aspects, however, may entail a loss on
other aspects; e.g., the proofs may become larger if they are
made more compositional, due to the explicit treatment of
the interaction steps between components. A trade-off may
occur between aspects related to the current system that is

designed and future work involving maintenance and reuse.
In previous experiences, in compositional verification of
diagnostic reasoning, information gathering agents, and
negotiating agents (described, respectively in (Cornelissen,
Jonker and Treur, 1997; Jonker and Treur, 1998a; Brazier,
Cornelissen, Gustavsson, Jonker, Lindeberg, Polak, and
Treur, 1998)) at some points designs have been adapted to
support transparency and reusability of verification.

In this respect, in the example discussed in this paper, a
point of discussion is whether the interface of EW should
represent the world state (choice 1), or should be restricted
to actions and observation results only, thereby hiding the
world state within EW (choice 2). For the example design
as such, the direct information about the world state is not
used (only in the form of observation results), so choice 2
would be possible. However, then the verification process
would have to take into account the internal structure of
EW. Choice 1 has been made, because then it is possible to
abstract from the internal structure of EW, and thus it
supports reuse of the verification proof, for different fillings
of EW, either as the real world or as a simulated world.

9 Discussion

One of the central difficulties in verification of real world
systems is the complexity of the verification process, both
for humans and automated verifiers. Especially, for
verification of dynamic properties of a system, the search
space for properties and proofs is often enormous. Some
approaches have been put forward to handle this
complexity, one of which, compositional verification,
structures proofs according to different process abstraction
levels; cf. (Cornelissen, Jonker and Treur, 1997; Jonker and
Treur, 1998a). Using this method, the compositional
system structure plays a heuristic role in finding the
properties and proofs; actually the search space is composed
of a number of smaller subspaces. This case study of an
agent acting in a dynamic world, described in this paper,
aims at identification of more detailed proof structures and
heuristics for multi-agent systems within a dynamic world.
However, at least some of these structures and heuristics are
expected to be more generally applicable, which will be a
topic of future research.

The properties proven for this system clearly are
domain-dependent. This is both a strength and a weakness:
though the desired system behaviour can be precisely
expressed using these properties, they are not immediately
reusable for other systems. But for other agent systems in
dynamic domains, many properties (for example, those
related to actions and their effects) will be similar. These
properties only need to be adjusted to a new domain. Also,
there are classes of properties that are essential in verifying
every multi-agent system. For example, the basic
properties of primitive components and links have a general
format. Also, by identifying heuristics to find and
formulate the appropriate properties, the system-dependency
can be alleviated. As an instance of this, the heuristic of
causal chaining can be used to semi-automatically generate
properties. Future research will take these issues into
further consideration.

10

The results obtained in this case study can be a starting
point for the development of an interactive verifier to verify
dynamic properties in which it is possible to explicitly
express proof heuristics of the type as identified.

References

Abadi, M. and Lamport, L., (1993). Composing
Specifications, ACM Transactions on Programming
Languages and Systems, Vol. 15, No. 1, p. 73-132.

Barringer, H., Kuiper, R., and Pnueli, A., (1986). A Really
Abstract Concurrent Model and its Temporal Logic. In:
Conference Record of the 15th ACM Symposium on
Principles of Programming Languages, POPL’86, pp. 173-
183.

Brazier, F.M.T., Cornelissen, F., Gustavsson, R., Jonker,
C.M., Lindeberg, O., Polak, B., and Treur, J., (1998).
Compositional Design and Verification of a Multi-Agent
System for One-to-Many Negotiation. In: Proc. of the Third
International Conference on Multi-Agent Systems, ICMAS-
98, IEEE Computer Society Press, pp. 8, to appear.

Brazier, F.M.T., Dunin-Keplicz, B., Jennings, N., and Treur,
J., (1997). DESIRE: Modelling Multi-Agent Systems in a
Compositional Formal Framework. International Journal of
Cooperative Information Systems, vol. 6, Special Issue on
Formal Methods in Cooperative Information Systems: Multi-
Agent Systems, (M. Huhns and M. Singh, eds.), pp. 67-94.

Brazier, F.M.T., Treur, J., Wijngaards, N.J.E., and Willems,
M., (1996). Temporal semantics of complex reasoning
tasks. In: B.R. Gaines, M.A. Musen (Eds.), Proceedings of
the 10th Banff Knowledge Acquisition for Knowledge-based
Systems workshop, KAW’96, Calgary: SRDG Publications,
Department of Computer Science, University of Calgary, pp.
15/1-15/17. Extended version to appear in Data and
Knowledge Engineering (1998).

Cornelissen, F., Jonker, C.M., and Treur, J., (1997).
Compositional verification of knowledge-based systems: a
case study in diagnostic reasoning. In: E. Plaza, R.
Benjamins (eds.), Knowledge Acquisition, Modelling and
Management, Proceedings of the 10th EKAW’97, Lecture
Notes in AI, vol. 1319, Springer Verlag, pp. 65-80.

Dams, D., Gerth, R., and Kelb, P. (1996). Practical Symbolic
Model Checking of the full µ-calculus using Compositional
Abstractions. Report, Eindhoven University of Technology,
Department of Mathematics and Computer Science.

Fensel, D. (1995). Assumptions and limitatons of a problem
solving method: a case study. In: B.R. Gaines, M.A. Musen
(Eds.), Proceedings of the 9th Banff Knowledge Acquisition
for Knowledge-based Systems workshop, KAW'95, Calgary:
SRDG Publications, Department of Computer Science,
University of Calgary.

Fensel, D., and Benjamins, R. (1996) Assumptions in model-
based diagnosis. In: B.R. Gaines, M.A. Musen (Eds.),
Proceedings of the 10th Banff Knowledge Acquisition for
Knowledge-based Systems workshop, KAW'96, Calgary:
SRDG Publications, Department of Computer Science,
University of Calgary, pp. 5/1-5/18.

Fensel, D., Schonegge, A., Groenboom, R., and Wielinga, B.
(1996). Specification and verification of knowledge-based
systems. In: B.R. Gaines, M.A. Musen (Eds.), Proceedings of
the 10th Banff Knowledge Acquisition for Knowledge-based
Systems workshop, KAW'96, Calgary: SRDG Publications,
Department of Computer Science, University of Calgary, pp.
4/1-4/20.

Harmelen, F. van, and Teije, A. ten (1997). Validation and
verification of diagnostic systems based on their conceptual
model. In: J. Vanthienen, F. van Harmelen (Eds.),
Proceedings of the Fourth European Symposium on the
Validation and Verification of Knowledge-based Systems,
EUROVAV'97, Katholieke Univerisiteit Leuven, pp. 117-
128.

Hooman, J. (1994). Compositional Verification of a
Distributed Real-Time Arbitration Protocol. Real-Time
Systems, vol. 6, pp. 173-206.

Jonker, C.M., and Treur, J., (1998a). Compositional
Verification of Multi-Agent Systems: a Formal Analysis of
Pro-activeness and Reactiveness. In: W.P. de Roever, A.
Pnueli et al. (eds.), Proceedings of the International
Workshop on Compositionality, COMPOS’97, Springer
Verlag.

Jonker, C.M., and Treur, J., (1998b). Agent-based simulation
of reactive, pro-active and social animal behaviour. In: Proc.
of the 11th International Conference on Industrial and
Engineering Applications of AI and Expert Systems,
IEA/AIE98. Lecture Notes in AI, Springer Verlag, pp. 12.

Vauclair, J., (1996). Animal Cognition. Harvard Univerity
Press, Cambridge, Massachusetts, 1996.

Wooldridge, M.J., and Jennings, N.R., (1995). Intelligent
Agents: theory and practice. In: Knowledge Engineering
Review, 10(2), pp. 115-152.

