Formal Methodsin the development of
safety critical knowledge-based components

Giovanna Dondossola
ENEL-SRI, Department of Electrical and Automation Research, Electronic Technologies for Automation,
Via Volta 1, Cologno Monzese 20093 Milan, Italy
E-mail: dondossola@pea.enel.it

Abstract Thework reported in this paper is part of the ongdng Esprit projed Safe-KBS n. 22360-. A main oljedive of the projed is the definition
of a engineging methoddogy for cetifiable knowledge-based software wmporents to be enbedded into safety critical systems. Since about a
decade the use of formal methods in the development of traditional software for safety critical systems has been greatly encouraged. On the other
hand, research works in the Knowledge Engineeing field are propasing rew formal methods as a means to increase the quality of KB software
products and processes. Therefore it seems quite natural to propcse a pervasive use of formal methods from the exrly stages of the development asa
vehicle to promote the accetance of KB software in safety critical application danains. The subjea of this paper concerns bath the role of formal
methods in the Safe- KBS engineeing methoddogy and the experimentation d their application based ona general-purpaose formal method call ed
TRIO. The spedfication and V&V features of TRIO will be analysed and judged with resped to the requirements coming from the safety critical
KB software.

Keywords: knowledge based comporents, safety critical software, formal methods, temporal logic, objed-oriented concepts, spedfication,
verification, validation, certification, life cycle, methodology.

Introduction
Nowadays the advantages of formal methods! for the development and certification of safety-critical software are
widdy reamgnised by bath Software Engineeing community and standard organisations. Some safety critical domains
spedfic standards explicitly either highly reeommend [RTCA 92], [IEC 1508 95] or mandatory require [MOD 91]
the use of formal methods. The spedfic benefit recognised to formal methods is that they all ow "complex behaviour"
to be analysed (by means of prodfs or state exploration), reviewed, and analysed in their totality, rather than merely
sampled as by testing or simulation. Thus, the major benefit derives from a double appli cation of formal methods that
is by formal requirements gedfication coupled with formal verification. From the cetification point of view, formal
methods are recgnised to increase the degree of confidence in achieving software of high integrity levels [Rushby
95].
A number of industrial level applications of the most consolidated forma methods (such as VDM and Z) aready
exists [Bowen 97]. However, the state of the art about formal methods & safety critical systems esentially refers to
software developed in a traditional day
Acoording to the terminology introduced in [SafeKBS R3.2-a] a knomedge-based comporent (KBC) is a
technologically homogeneous part of a software system based on knowledge based tedhnology, whilst a knowedge-
based system (KBS) is a software system that includes one or more KBC and, eventually, other traditional software
components. A KBC includes a knawedge base, containing an explicit representation of the knowledge relevant to
some spedfic competence domain, and a reasoning mecharnism that can exploit such knowledge in order to provide
high-level problem-solving performance. Ampty systeris a KBC with an empty knowledge base.
KBC are a relatively recent type of software (sub-) systems
» whose development processes refer to specific life cycles and methodologies,
» whose spedfication, verification, validation and implementation activities ssmetimes require different, spedfically
knowledge-based methods, techniques and technologies.
Looking at the spedfication activity, it has been observed in [Vermesan 95] that requirements of KBC are typically
vague, and that it is generally hard to spedfy in advance a KBS completdy because of the incremental nature of the
knowledge dicitation process Actually spedfication is a typical incremental activity bath in conventional and KB
software. A complete and corred spedfication, bath formal and informal, can never be given in advance but it is
surely the result of an iterative process of adjusting, completing and improving of some intermediate spedfication
whose number of iterations depends on the cmmplexity of the system. On the other hands “vagueness' in the
requirements gedfication is smething risky in a safety critical context, espedally if it is a source of artificial non-
deterministic behaviours, and it should be avoided whenever posshle. In other words, vagueness $iould not be
intended as a synonymous of impredsion, but on the @ntrary vague requirements sould result into abstract and
precise specifications. Summarising, it could be affirmed that
» the posshility (really the need) to describe the system at different abstraction levels, independent from low level
design/implementation detail s and efficiency isaues, without loosing the darity and predsion essntial to the safety

L The Safe-KBS project is partially funded by the ESFRIT Programme of the Commisson of the European Communiti es as project
number 22360 The partners in the Safe-KBS project are Sextant-Avionique, Det Norske Veritas, Enel-Sri, Tecnatom,
Computas Expert Systems, Uninfo, Qualience. This paper reflects the opinions of the aithor and rot necessrily those of the
consortium.

1 The phrase “formal method” is used to mean a language whose semantics is described by using a mathematical theory. Therefore
a formal method is always equipped with a formal reasoning calculus.

2See the World Wide Web Virtual Library on Safety-Critical Systems at URL http://www.comlab.ox.ac.uk/archive/safety.html.

aspects of the KBC
« the incremental style of the specification activity
 the flexibility and exhaustivity of the analysis methods of the specification
are typical features of formal specification methods facing well the nature of KB requirements.
The advantages of formal methods (FM) in the development of KB software are beginning to be recognised by the
Knowledge Engineeing (KE) research community [Aben 95], [van Harmelen 95], [M eseguer 96]. Recent works on
FM in KE are moving towards two diredions, namely the devel opment of new KB-spedfic FM and the appli cation of
existing FM coming from the traditional Software Engineaing (SE) field. Comparative analyses of KB vs. traditional
FM can be found iMFensel 94], [Fensel 95], [Aben 95].
Given the maturity level of FM and KB technologies, a need arises for a KE methodology establi shing the role and the
scope of the FM application in safety critical and KB contexts, that is the primary aim of the present work. The Safe-
KBS engineging methodology shall represent a support to the work of bath knowledge enginees (spedfiers,
designers, programmers) and certification authorities in charge of approving safety critical systems embedding KBC.
The second contribution of the present work concerns the appli cation of a highly dedarative SE formal method termed
TRIO (Tempo Reale ImplicitO) to devel op safety critical KB software. TRIO is alanguage eguipped with a method for
the spedfication, verification and validation of industrial systems [Ciapessoni 97]. Historically, it was thought first for
the spedfication of real time systems whose time dimension is relevant. Since about ten years, the TRIO language has
been applied to the development of several industrial projeds in the energy fiedd within the long-term joint research
carried on by CISE, ENEL-Research and Politemico di Milano. A global evaluation of the TRIO method shall be
provided in terms of a classfication table by merging the FM classfication factors proposed in [Fensel 95] and [Aben
95].
The proposed Safe-KBS engineaing methodology and the spedfication features of the TRIO language have been
exercised on test cases taken from a KBS of the Safe-KBS projed in the safety critical avionics domain. The
application is termed FINDER [Safe-K BS R1.1] and consists of a support system for aircraft pilots aiding them in
deteding posshle problems that may occur during the flight and in formulating alternative routes to circumvent the
problem.

The ontents of the paper are organised as follows. Sedion 1 presents the role of FM in the Safe-KBS engineaing
methodol ogy, including the definitions of the main concepts used. Sedion 2 describes the TRIO-spedfic languages,
techniques and tods relating them to the FM-generic work pieces of the Safe-KBS methodology. Sedion 3 classfies
the TRIO method in terms of FM-related factors and compares it with other emerging FM. Sedion 4 describes the
some experiences from the appli cation of the methodology and TRIO. The @mnclusionstry to evaluate the initial results
of the experimentation activity.
1. Roleof formal methodsin the Safe-K BS engineering methodology
A firgt high-level description of the Safe-KBS methodology, together with the definitions of the ontological concepts
on which it is based, has been presented in [Safe-KBS R3.2-a]. It describes the life g/cle in a way which abstracts
from the use of FM. Theideaisthat the impact of FM on the life o/cle an be expressed as a sort of spedalisation and
refinement of that description of the methodology. Therefore the first two sub-sedions sall report the main
ontological concepts and a summary of the life g/cle structure defined in [Safe-KBS R3.2-a], whist the third sub-
section shall describe the impact of FM on that structure.

1.1 Safe-KBS life cycle ontology

e A KBClife cydeisaco-ordinated set of processes necessary to produce and exploit a KBC. A KBC life o/cle has
a temporal evolution that covers the aentire life of a KBC. The processs of a KBC life gcle, athough not
independent, are assumed to be executed in parallel. All span, at least in principle, over the entire life of a KBC.

e A KBC life cyde processis a unique logical organisation of activities necessary to achieve a spedfic issie
relevant to the production and explaitation of a KBC. The mncept of issle is used here in a generic meaning; it
denotes an oljedive to be achieved, a face to be taken into acoount, a high level requirement to be satisfied. The
issue is what characterises a process in a sense, what keeps together a set of activities to form a unique, coherent
process The oncept of processis intuitively bound to that of a spedfic, dedicated agent in charge of exeauting it,
called the processexeaitor. Different processes correspond, at least in principle, to different exeautors. A process
exeautor includes all the resources needed to exeaute a process namely a working group suppied by the necessary
tools and infrastructure.

* A KBC life cycle specified up to the level of processes is called a KBC Iife cycle model. Thus, in a KBC life
cycle model, processs are defined in detail, whil e activities are only given distinctive names and spedfied at the
level of inputs and outputs. The KBC life o/cle mode is given a predse semantics by means of a unique finite
state automaton, describing the exeaution medchanism of a generic activity in terms a set of input/output relations.
Thus the logical organisation of the whole life gscle is oltained by applying the automaton to instances of the
input/output relations associated to the activities.

e An activity is a logicaly and temporally confined component of a KBC process congtituted by a logical

2

organisation of tasks. The definition of an activity includes. the spedfication of activity inputsoutputs, the
dedaration of a set of tasks, the spedfication of posshle mnstraints to med in the exeaution of tasks (optional).
According to the definition given, an activity is not characterised by a defined exeaution schema, but allows for a
variety of different exeaution schema to be adopted. Thisis a crucial point for allowing effedive tail oring of the
methodology to specific application contexts and industrial practices.

A KBC process pedfied upto the level of activitiesis called a KBC processplan. Thus, in a KBC processplan,
activities are defined in detail, while tasks are only given distinctive names.

A KBC life g/cle in which each processis edfied upto the level of activitiesis called a KBC life cyde plan. A
KBSlife g/cle plan can therefore be viewed as the @ll edion of all the KBC processplans relevant to the KBC life
cycle processes.

A task is a coarse-grained work unit to ke arried out in order to achieve a significant advancement in the
exeadtion of an activity. A task is congtituted by a logical organisation of actions. The definition of a task
includes. the dedaration of a set of actions, the spedfication of possble mnstraints to med in the exeaution of
actions.

An action is a fine-grained, elementary work unit. The oncept of action is considered as atomic and is gedfied
only in intuitive terms. The possible internal organisation of an action is not relevant to the life cycle concept.
A suppat package is an integrated colledion of methods, techniques and tods devoted to guide and help the
exeadution of an activity, atask, or an action. The @mncepts of methods, techniques and tods are understood herein
intuiti ve terms. However, the following distinction can be made. A methodis a general and abstract spedfication
of a conceptual procedure to follow to med stated goals. A technique is a spedfic and detail ed spedfication of a
practical procedure to follow to med stated goals;, techniques are used to implement methods. A tod is a
computer-based system that can help in the appli cation of a method or atechnique. Clearly, support packages may
be defined at a variable level of detail: from a mere literature reference to a fine-grained description of an
industrial practice.

A KBC life o/cle spedfied upto the level of activities or tasks, together with a non-empty colledion of support
packages relevant to its activities, tasks or actions is called a KBC methoddogy. Note that concepts of KBC life
cyclemodel and of KBC processplan are limited to the spedfication of "what" should be done in order to produce
and exploit a KBC, while the mncept of methodology explicitly deals with "how" the spedfied activities, tasks,
and actions should be actually executed.

A KBC methodology that includes a coll edion of support packages gpedfically oriented towards a spedfied issue,
is called a dedicated KBC methoddogy. For example, dedicated KBC methodologies may be oriented towards
quality, productivity, safety, etc.

1.2 The Safe-KBS life cycle

The Safe-KBS life g/cle is an embedded KBS life gycle that is a software life g/cle relevant to the development of a
knowledge-based software component. More spedfically, it will be a dedicated KBC methodology, oriented towards
the issue of safety. It shall be developed into three steps.

Initially, the Safe-KBS life gycle shall be developed at the level of processes, thus constituting a KBC life gycle
model. At this level, the Safe-KBS life gycle will be & far as possble general and independent of any spedfic KB
techndogy (such as, for example, forward rule production rules, causal nets, event graphs, etc.). Of course it will not
be independent, however, from the basic feaures of the KB techndogy (the eistence of an empty system and a
separate knowledge base, the conceptual and logicd levels of system design, etc.) and from the fundamental isaue of
safety that is considered as the crnerstone of the whoe methoddogica framework. This first step, as developed in
[Safe-K BS R3.2-3], shall be summarised in the following of the present section.

Later, the Safe-KBS life gycle shall be developed further at the level of adivities, thus providing, for some KBC
process a detailed definition d the relevant plan. Also process plans will be mostly of general nature. This soond
step has been developed in [Safe-KBS 3.2-b] as far as the development processis concerned, and is going to be
developed for the V&V process.

At the third step the Safe-KBS life gycle shall be detailed at the level of KBC methoddogy (for some life gycle
processes). The task level will be developed as appropriate and recessary in arder to achieve afully operative
definition o thelife g/cle andto suppat a crred link with the relevant suppat padkages. This level of development
of Safe-KBS life g/cle will be independent of any spedfic KB techndogy and will focus only on those methodks,
techniques and todls generally applicable in the KBS field. The methoddogicd development step is gill i n progress
and the impad of FM here presented prepares the roct for the integration o formal and nonformal V&V methods
and techniques which is ongdng at the methoddogicd layer. Of course even the evaluation o TRIO as a candidate
FM for KBC development belongs to this methodological step.

The Safe-KBS life cycle model includes seyeacesseswhose identification is based on a concept of process which

is intended to capture an important dimension of the life g/cle, according to the requirements of KB and safety
critical software;

» is understood as a collection of activities and tasks that share a common issue;

« explicitly refers to a specific, distinct agent in charge of executing it.

The Safe-KBS life o/cle processs are the foll owing: Development, Verification and Validation, Safety Management,
Quality Management, Certification, Configuration Management, Projed Management. From a formal perspedive, all
the seven processs defined abowve are understood at the same hierarchical level. No process has a leading role with
resped to the others: al processes interact through input/output relationships. In practice, however, the devel opment
processhas a primary function in the life o/cle: thiswill be apparent bath from the complexity of itsinternal structure
and from the high number of rdationships that link it to all other life g/cle processes. All the seven processes defined
abowe span over the ettire life g/cle, from the start instant to the withdrawal instant. Due to the aim of this work the
activity decomposition is reported for the Development and V&V processes only.

The devdopment process defines the activities necessary for requirements gedfication, design, construction, release,
operation, maintenance and retirement of a KBC. It is responsible for the realisation of the main products of the life
cycle to be reviewed, approved and managed by the other processes of the life gycle according to their spedfic
competence. It is decomposed into twelve activities, namely

D1. definition of detailed development process plan: D1 includes two main tasks. tail oring of the methodology to

the @se at hand and defining the expeded duation of activities and their due dates. D1 produces in output the

detail ed development plan. D1 is also concerned with therevision of the detail ed development plan, if this turns out to

be necessary according to later revealed project management decisions.

D2. requirements specification: D2 deals with the spedfication of the functional, technical and operational

requirements of the KBC. It takes in input the spedfication of inherited requirements from the system level. D2

produces in output the requirements gedfication. Whenever appropriate, the use of a formal spedfication language

supporting D2 is greatly encouraged.

D3. conceptual design: the main goal of conceptual design is to analyse domain and problem-solving knowledge and

to develop a formal, abstract, conceptual representation, called the conceptual model. A conceptual moded describes

bath the types and organisation of domain knowledge (concepts, attributes, relations, constraints, operations, events,

etc.) and the ways it is used to solve problems (problem types considered, problem-solving strategies, etc.). The

conceptual model serves two specific purposes:

e itis the starting point used by the designers for the construction of the logical model of the KBC;

e itisthebasictod used by the knowledge engineas during the mnstruction of the knowledge base, for interpreting
and coding domain knowledge.

D4. logical design: the main goal of logical design is to focus on the technical choices necessary to implement the

KBC and to develop a complete and detailed technical description of the system, cdtigit&henodel Logical

design includes:

« the architedure, the knowledge representation techniques, and the reasoning methods adopted to design and
implement the KBC;

« the choice of the most appropriate development tools;

« the detailed technical design of the KBC.

D5. construction of the empty system: D5 includes two distinct cases: either the empty system is bought from the

market and tail ored to the spedfic application at hand, or it is built from scratch for the application considered. D5

takes in input the logical design. D5 produces in output the running empty system.

D6. construction of the knowledge base: D6 is concerned with the various tasks necessary to develop the knowledge

base of the KBC. Basically, it includes the foll owing tasks: knowledge dicitation and modelli ng, knowledge @ding

and integration and checking, knowledge base checking testing and refinement.

D7. final verification and refinement: D7 is concerned with the final verification and refinement of the cmplete

KBC with test cases proposed by the production team. Note that D7 should not be mnfused with different activities of

the verification and validation process.

D8. integration-related activity: D8 is aimed at supporting the integration of the KBC in the software system. It is

concerned with KBC level tasks that might be necessary for integration. Integration is managed and carried out at

system level. D8 also includes field verification, validation and refinement tasks.

D9. release-related activity: D9 is aimed at supporting the release of the software system as far as the KBC is

concerned. It is concerned with KBC level tasks that might be necessary for release. Release is managed and carried

out at system level. D9 also includes acceptance and refinement tasks, writing of manuals, and training of the users.

D10. operation-related activity: D10 is concerned with all KBC level tasks relevant to the operation of the software

system. In particular, it includes the foll owing tasks: coll edion of user reports, analysis of KBC history, definition of

maintenance requests.

D11. definition of a maintenance intervention: D11 analyses the outputs of D10 and defines the goals, scope, and

constraints of a maintenance intervention

D12. retirement-related activities: D12 is aimed at supporting the retirement of the software system as far as the
KBC is concerned. It is concerned with KBC leve tasks that might be necessary for retirement. Retirement is
managed and carried out at system level.

The verification andvalidation (V&V) processdefines the activities necessary for determining (i) whether the product
of an activity of the development processfulfils the stated requirements (verification), and (ii) whether the product of
an activity of the development processfulfil sits gedfic intended use (validation). The distinction between verification
and validation stems from two facts:

e in generd, one is not alowed to assume that the requirements gedfications initially stated for a KBC are a
complete, consistent and corred expresson of its gpedfic intended use, i.e. of thereal needs of the individuals and
of the organisation for which the product is developed;

e itisnot posshle, in general, to prove the equivalence of the different intermediate products of the life g/cle with
their stated requirements.

Since our focus here is on KBC life g/cle, we can assume that the original requirements gedfication includes two

components. one inherited from the system level through a formalised document and another derived at component

level diredly from the analysis of the needs of the individuals and of the organisation for which the KBC is devel oped.

We call these two components ihberited specificationand thederived specificationgespectively.

Verification applies to any product (i.e., activity output) for which a requirements edfication exists. Therefore, in

general, al the products of the development activities may be subjed to verification except the requirements

spedfication, for which no spedfication exists snce it is intended as the first initial spedfication of functional,
technical and operational requirements at KBC level. For each development activity the stated requirements are
expressed in the requirements specification plus the requirements coming out by the immediately precedent activity.

Validation applies to any product (i.e., activity output) for which an assessment against the needs diredly expressed by

the individuals/organisation for which the KBC is developed is possible and meaningful.

The V&V process is decomposed into nine activities, namely:

V1. definition of detailed verification and validation plan: V1 concerns tailoring and management tasks of the

V&V process V1 takes in input safety requirements and projed resources and produces in output a preliminary

version of the detailed V&V plan, to be submitted for revision to the safety, quality, projed management and

certification processes. V1 also handles later requests of revision coming from the project management process.

V2. validation of requirements specification: V2 concerns

« the traceability of system level requirements into component level requirements

e the evauation of requirements gedfication for corredness consistency, completeness understandability,
accuracy, feasibility, testability.

V3. verification of conceptual design: V3 concerns

 the traceability of stated software requirements into conceptual design

e the evaluation of the mnceptua mode which can be inspeded by domain experts without the burner of

implementation details.

V4. verification of logical design: V4 concerns

« the traceability of KBC requirements and conceptual design into logical design

« the verification of the logical design

« the elaboration of the software test plan to be executed in the verification of the implemented KBC.

V5. verification and validation of the empty system: V5 concernes

 the traceability of KBC requirements and logical design into the empty system

e the V&V of the empty system.

V6. verification and validation of the knowledge base: V6 concerns

 the traceability of KBC requirements and conceptual design into the knowledge base

« the verification of the knowledge base supported by two (types) of techniques, namely inspedion and structural

verification. Inspedion techniques [Meseguer 96] aim at deteding semantically incorred knowledge in the KB
and are performed manually by a human who has expertise in the application domain (but independent of experts
involved in the KB construction). Structural verification techniques analyse the syntactic properties of the
knowledge base cheding for internal coherence; they support the automatic verification of types of anomalies
such as redundant, conflicting or missing knowledge

« the veification of the KB against an explicit knowledge model (structural, functional, behavioural, causal, fault,

geometrical, associative).

V7. verification and validation of the KBC: V7 concerns

« the traceability of KBC requirements into the implemented KBC

e the empirical testing [M eseguer 96] of the KBC which aims at cheding its correanessby exeaiting the KBC on a

finite set of test data. The selection of the test set is crucial to the effectiveness of the testing process

« the evaluation of the KBC behaviour against the human expert and/or other sources of knowledge: its major goal is

5

to asaure that the KBC complies with the semantics of the real world by making use of an implicit knowledge
model.
V8. verification and validation of the integrated KBC andV9. verification and validation of thereleased KBC
concern
« the traceability of integration(release) requirements (expressed at system level) into the integrated(released) KBC
« the coding and execution of tests
e the anpirical evaluation [Meseguer 96] of the integrated(released) KBC which addresses the relation between the
operational KBC and the final user. Typical evaluation issues are technical performance, acceptahility, inclusion in
the organisation, responsibility issues.

As gressd by its activity decomposition, the V&V process is tightly coupled with the development process In
particular for each activity of the production and release phases of the development process - except the activity
“definition of detailed development plan” - there &ists a correspondent activity of the verification and validation
process The V&V process activities analyse and review the development products and the results of such review
provide the aiteria for transiting from one activity of the Development processto the foll owing one. The devel opment
process can include spedfic activities or tasks dedicated to wverification or validation issues. Verification and
validation, however, is intended as a separate process in charge of a different team who carries out spedfic activities
on the products of the development process It does not overlap with the activities of the development process but
rather it pursues different issues. While Development is committed to produce good products (and, therefore, it must
include some spedfic activities or tasks dedicated to verification or validation), V&V is responsible for determining
whether these products fulfils the stated requirements (verification), or their specific intended use (validation).

In the foll owing sedion, the impact of FM on the first two steps of the life g/cle development is described. As far as

the third development step is concerned, it inherits all the methodological aspeds associated to TRIO languages and

tools. Therefore it shall be treated in Section 2 dealing with TRIO.

1.3 Impact of formal methods on the Safe-K BS life cycle

It is widely recognised that it not suitable (neither profitable) to spedfy all the requirements of a safety-critical

complex application in a formal way. On the other hands, it is indubitably true that a subset of very critical functions

of such an application can greatly benefit from a formal approach to their requirements sedfication. In his

remmmendations for the cetification of safety critical systems, Rushby suggests that the use of formal methods should

be limited to “those aspeds of design that are least well covered by present techniques. These arise in redundancy

management, partitioning, and the synchronisation and co-ordination of distributed components, and primarily

concern fault tolerance, timing, concurrency, and nondeterminjgtashby 95].

By restricting the scope of our considerations to the KB software technology, it could be observed that

« KB software ehibits all the mmplex design aspeds cited by Rushby. In particular KBC contribute to the
complexity of a system with their decision procedures and uncertainty handling

« KBS complexity is not satisfactorily dominated by currently available KBS V&V techniddieseguer 96].

The analysis of the results of the safety analysis conducted on the Safe-KBS appli cations reveals that most of times

safety requirements are expressd in terms of V&V requirements on KBS functions concerning either the inference

steps or time mnstraints of the reasoning process Sometimes sfety requirements add new functionality to existing

KBS functions.

Given the above considerations, the impact of FM on the Safe-KBS life cycle is based on the following assumptions:

» thephrase safety critical KB software hasto be intended in its restricted meaning, i.e. to refer KB software used to
implement a function or component characterised by the highest level of integrity. Therefore the term safety
critical KB software should not be used as a synonym of the term safety related KB software, which instead refers
KB software used to implement functions or components of any safety integrity level

< not all the KB software of an appli cation considered safety critical are actually safety aritical. Given a KBS in the
safety critical context, its sfety analysis reveals that in general only part of its KB software is actually safety
critical, the others being only safety related (but non safety critical) or neither that

e using any FM at its maximum potentiality is not enough to guaranteethe software integrity leve required by safety
critical KB software. In other words, the definite role of FM application in the development of safety critical KB
software is to increase the degreeof confidencein achieving fail ure rates on the order required by the atastrophic
and hazardous levels

e V&V techniques provided by FM should not replace, but supplement the existing KBS V&V practise.

The above Safe-KBS assumptions are interpreted by the foll owing certification-oriented prescriptions which shall be

used in the tailoring of the development plan to the case at hand (activity D1.)

e the use of a FM is mandaory required for the development of safety critical KBC software. FM are only
recommendetbr safety related (non safety critical) KBC software

< by merging the safety and KBS complexity assumptions, FM shall be applied to this requirements categorisation:
- functional and time-related requirements of existing KBC functions/tasks which are safety-related

- functional requirements of KBC functionality newly introduced by the safety analysis
- requirements about the dynamic of the KBC reasoning process

» the spedfic most appropriate FM for the given KBC shall be seleded among a set of reliable FM made avail able
from both the SE and KE communities

« the highest degreeof rigour in the application of the sdleded FM is proposed for safety critical KB software, i.e.
the maximum potentiality of the FM shall be used. Spedfication, validation and verification activities $all make
use of the FM and its supporting tods. Lower leveds of rigour in the application of the sdeded FM shall be used
for safety related (but non safety critical) KB software

- formal specification and V&YV techniques shall be integrated with informal KBS techniques

« asthe degreeof confidencein achieving high integrity levels can not be measured in practise, others more sound
techniques, based on different technologies providing robust forms of diversity, should be applied in conjunction
with KB software developed using FM to obtain more certain probabilities.

The integration of FM in the current state of development of the Safe-KBS life cycle implies:
e the selection of the processes and activities of the life cycle model which FM are relevant for
« the specialisation of those activities as required by formal methods
« the refinement of the development tasks into actions as appropriate to support a corred link with the methods,
techniques and tools related to formal methods
« the definition of the methods, techniques and tods related to FM and their association to the relevant activities,
tasks and actions.
FM mainly concern four processes of the Safe-KBS life g/cle model, namely Devel opment, V&V, Safety Management,
Certification, with a high impact on the Development and V&V. FM also impacts on some system level activities on
which the Safe-KBS life gicle mode is based. It should be remembered that the Safe-KBS life g/cle has been
conceved as an embedded KBS life g/cle whose activities interact with a set of system level activities. The system
level activities belong to the external life o/cle which isrdevant to the development of the global KBS which the KBC
is part of. The system level impact of FM involves those activities concerning the KBS specification and validation.
Let us gart from describing the impact of FM on the Development process Several Development activities have a
spedalised way to be performed that greatly benefits of the existence of a formali sed spedfication of requirements and
FM supporting tods. Some tasks of these activities are going to ke reformulated and decomposed into FM spedfic
actions, if necessary. The following amendments shall be added to the above activities formulations.
D1. definition of detailed development process plan: baoth the tailoring d the methoddogy and the activiti es'tasks
scheduling depend onthe scope of apdication FM andin turn by the safety requirements gedfic of the case at
hand The set of certification-oriented prescriptions shall guide the definition d the FM scope together with its levd
of rigour.
D2. requirements specification: the seleded FM is apgied to formally spedfy the requirements of those KBC
functions identified in D1. Formal spedficationis an iterative processconsisting in the revision andrefinement of a
(posshly incomplete) statement of the spedfication by means of formal V&V techniques, such as model generation
and hstory checking. The iteration concludes only when the spedfication becomes complete and corred. A unique
document on requirements gedfication shall be provided as a final produwct of this activity, presenting in an
integrated way the informal requirements specification endowed with their (possibly partial) formalisation.
D3. conceptual design: beingthe aucial element of a KBC spedfication, (the relevant parts of) the conceptual model
shall be formalised in the selected FM.
D7. final verification and refinement: the availahbility of formal spedfications congtitutes a valid suppat to the
verification d the safety critical parts of the implemented KBC. Spedfically formal spedfications can telp greatly in
the selection of the input data for the KBC final testing.

By interpreting the supdemental role of formal V&V techniques with resped to KBS V&V practise, the beow

amendments to V&V activities aim at capturing a twofold contribution provided by FM, that is in terms of:

e new V&V tedcniques (formal proofs) to be applied on spedfication-oriented life o/cle products, such as
requirements, conceptual model, logical model

e extended versions of existing V&V techniques for KBS (such as inspedion, structural verification, empirical
testing) to be applied on implementation-oriented life cycle products, such as empty system, KB, released KBC.

V1. definition of detailed verification and validation plan: the use of the seleded FM at the spedfied levd of

rigour radically influences V&V activities and the resources needed.

V2. validation of requirements specification: formal V&V techniques suppated by the selecded FM shall be used to
validate the preliminary version of requirements specification provided by the Development team.

V3. verification of conceptual design: formal V&V techniques suppated by the seleded FM shall be used to verify

the preliminary vesion d the mnceptual design spedfication povided by the Devdopment team. If the formal
conceptual model isto be veified according to structural properties (such as consistency andredundarey), then these
properties need to be defined in terms of the seleded FM. FM provide addtiond properties to be deckal in

7

structural verification. For example, the moduar architedure andthe dedaration d hierarchies of types provided by
languages like (ML)? and TRIO*" permit to checkthe violation d moduarity and type mis-matches. The spedfication
of KBC conceptual design in the seleded FM allows establishing the link between (formally spedfied) KBC
requirements and their corresponding conceptualisation.
V4. verification of logical design: KBC requirements/conceptual design spedfied in the FM shal suppat
traceahbility wheneve the logical design is expressed in a format compatible with that FM. Formal spedfications
shall suppat the dabaration d the software test plan for the KBC testing by helping in the seledion d the test set.
On ore hand acorred formal spedfication provides the intended 1/0 behaviour of the KBC, therefore it contains all
the information reeded to perform functiond testing. On the other hand the leve of structure in formal spedfications
can be used to support structural testing.
V5. verification and validation of the empty system: KBC requirements/conceptual design spedfied in a FM shall
support traceability whenever the empty system is implemented in a programming language compatible with that FM
V6. verification and validation of the knowledge base: KBC requirements/conceptual design spedfied in a FM shall
suppat traceability wheneva the knomedge base is implemented in a knomedge representation formalism
compatible with that FM. Furthermore FM shall suppat techniques to verify the implemented knoMedge base
aganst an explicit, formal conceptual model. As a formal conceptua model describes how the KBC 1/0 behaviour
can ke achieva, it provides, to some exent, elements of the KBC structure. After implementation, these dements can
be deckal to verify whether their functiondity meds their spedfication. Inspedion and structural verification
techniques can still be employed to detect structural discrepancies between specification levels and implementation.
V7. verification and validation of the KBC: the high degree of structure provided by a formal (KBC
requirements/conceptua design) spedfication can be used manudly to check for the detedion d correspondng
structures in the implemented KBC. Tests coding and execation geatly benefit from the exstence of formal
specifications given the possibility to synthesise test data automatically (see activity V4.).
2. TheTRIO methodological support
TRIO techniques and tools are divided here into three support packages, in order to allow a correct link with the Safe
KBS activities and tasks summarised in the previous section.
2.1 TRIO specification method
The development tasks “first statement of requirements formal spedfication” and “revision and refinement of
requirements formal specification” could be supported by the TRIO specification support package that includes:
e abasic logic language referred to as Basic TRIO for spedfying in the small [Bertani 96], whose semantics is
suitable to express system behaviours and quantitative time constraints typical of real time and reactive systems
« an objed-oriented extension referred to as TRIO™ for spedfying in the large [Ciapessoni 95], which supports
writing modular reusable specifications of complex systems
e a further ontological extension [Ciapessoni 95], which includes predefined higher level, application-oriented
notions such as events, states, processes, pre- and post-conditions.

Basic TRIO is a first order temporal logic language that supports a linear notion of time: the Time Domain is a
numeric set equipped with a total order relation and the usual arithmetic relations and operators (it can be the set of
integer, rational, or real numbers, or any interval thereof). TRIO formulae are mnstructed in the dasscal inductive
way, starting from terms and atomic formulas. Besides the usual prepositional operators and the quantifiers, one may
compose TRIO formulae by using a single basic modal operator, called Dist, that relates the current time, which is | eft
implicit in the formula, to another time instant: the formula Dist(F, t), where F is aformula and t a term indicating a
time distance spedfiesthat F holds at atime instant at t time units from the airrent instant. For convenience TRIO
items (variables, predicates, and functions) are distinguished into time-independent (T1) ones, i.e., those whose value
does not change during system evolution (e.g., the altitude of a reservair) and time-dependent (TD) ones, i.e., those
whose value may change during system evolution (e.g., the water level inside a reservoir).

Several derived temporal operators can be defined from the basic Dist operator through prepositional composition and
first order quantification on variables representing atime distance A sample list of such operatorsis given in the table
reported below, with a short definition and explanation.

Operator Definition Explanation

Futr(A, d) d>00Dist(A, d) A holds d time units in the future

Past(A, d) d>00Dist(A, -d) A holds d time units in the past

AlwF(A) 0t (t > 0 - Dist(A, t) A will always hold

Alw(A) 0d Dist(A, d) A always holds

SomF(A) [d (d>00Dist (A, d)) A holds sometimes in the future

Som(A) [d Dist (A, d) Sometimes A holds

Lasts(A, d) 0d'(0<d'<d - Dist(A, d") A will hold over a period of length d
Lasted(A, d) 0d'(0<d'<d - Past(A, d") A held over a period of length d in the past
WithinF (A,d) [t (O<t<dODist(A, t)) A will happen within d time units in the future

A sample of TRIO derived temporal operators

TRIO" enriches basic TRIO with concepts and constructs from ohjed-oriented methodology. Among the most
important added features are the ahility to partition the universe of objeds into classs, to introduce inheritance
relations among classes, and to exploit medhanisms such as genericity to support the reuse of spedfication modules
and their incremental development. TRIO™ is also endowed with a graphic representation of classes in terms of baxes,
lines, and connedions to depict classinstances and their components, information exchange, and logical equivalence
among (parts of) objeds. Classes denote all edions of objeds that satisfy a set of axioms. They can be @ther simple or
structured —the latter term denoting classes ohtained by composing simpler ones. A simple dassis defined through a
set of axioms premised by a dedaration of all itemsthat arereferred therein. Some of such items are in the interface of
the dass i.e., they may be referenced from outside it in the @ntext of a complex classthat includes a module that
belongs to that class.

On the basis of the first experiences in the application of TRIO™ to real-life industrial projeds, the language was
further enriched by means of so-called ontological constructs, which support the natural tendency to describe
industrial systems in a more operational way, i.e., in terms of states, transitions, events, etc. An event is a particular
predicate that is supposed to mode instantaneous conditions sich as a change of state or the occurrence of an external
stimulus. Events can be associated with conditions that are related causally or temporally with them. From the causal
viewpoint, a condition for an event can be necessary or sufficient; from the temporal viewpoint, conditions are divided
into precondtions, that refer to the time instants precaling the event, and postcondtions, that refer to the instants
following it. A state is a predicate representing a property of a system. A state may have a duration over a time
interval; changes of state may be associated with suitable predefined events and conditions. Altogether, events, states,
and conditions define a comprehensive model of the system evolution. As an additional refinement mechanism,
TRIO™ provides the notion of process A system entity can be viewed, at a certain level of abstraction, as an event or a
state, therefore as an atomic item having no further structure. A more predse or detailed system modeli sation may
however view such entities as combinations of other events, states, and conditions that are temporally or causaly
related to the original, more abstract notion of event or state.
The @ncepts, the syntax and the spedfication technique of the exttended TRIO formalism are supported by its
Graphical/Textual Editor. A detailed description of the features of this tod, whose new version will be released in
1998, can be found in its specification docunj&atani 97].
2.2 TRIO validation method
The development task “revision and refinement of requirements formal spedfication” and the V&V activities could be
supported by the TRIO validation support package consisting of a set of validation techniques, classified as follows:
* model generation: given a TRIO spedfication, sample models can be derived semi-automatically or in a fully
automated way, providing examples of how a system complying with the given spedfication should behave
[Ciapessoni 94]. Model generation provides a method to verify the wherence and the adequacy of a spedfication.
The model generation technique can be used to make different types of analysis on TRIO specifications:
e truth prodf: to research models which verify the spedfication. In one sense also the TRIO formulae represent
models for the spedfications, but it is not easy to understand the posshle behaviours of spedfied systems
looking at them. The Modd Generator produces interpretations of TRIO formulae using a representation
instant/event (the event is the truth value of a predicate in a time instant). It produces all, or a subset of, the
possible models of the specification, i.e. it generates possible behaviours of the system
» falsehood proofto research the models which get false the specification
« satisfiability proof to establish if the specification has at least a model, i.e. if it doesn't contain contradictions
« unsatisfiability proofto prove that a specification doesn't have any model
 validity prodf: to verify if the spedfication isatautology, i.e. in every timeinstant it admits the enpty modd (if
the spedfication admits the enpty model, then every model is a modd for it; for instance'A | ~A' admits the
empty model because 'true A' is a model and ‘'false A' is a model too)

e completion proof: to establish if a TRIO formula is in contradiction with an history and to find the posshle
completions of the history w.r.t the formula. Moreover this functionality can be used to verify that a given
partial behaviour corresponds to an interpretation where the specification formula is evaluated to true

e property prodf: to establish (by refutation) if a given property is alogical consequence of the spedfication and a
given history

* history checkng: a given system behaviour is compared with the spedficaion for compatibility. In a typicd
applicaion d this technique the designers describe aset of expeded behaviour of the system along with some
illegal behaviours and checks whether the former are compatible with the specification while the latter are not.

The techniques described abowe are actually complementary and in principle wuld be integrated in a unique validation
method/tod. Currently they are implemented as two separate tods, namely the Model Generator and the History
CheckefMandrioli 95].
2.3 TRIO verification method
The development task “KBC final testing”, and the V&V activities “verification of logical design” and “V&V of the
KBC” could be supported by the TRIO support package fote$tecase generation
Oncea system has been implemented, it must undergo a verification phase in order to assssits corredness The most
used technique eanployed to verify a software product is testing. However, the most critical point is to sded the input
data that will be used to test the softwarein an appropriate way. Sincea TRIO spedfication is also a description of the
functionality of the system, it is quite straightforward to use the spedfication to seled the input data to be used as test
cases. Moreover, the exeautahility of a TRIO spedfication makes possble to compute the expeded output, and thus to
compare it to the output produced by the actual system.
The TRIO approach to the mnstruction of a test suite ansists in the definition of appropriate filtering and strategy
medhanisms to alow the generation (that can be automatic or interactive) of a set of models relevant to test the
implementation. The problem of generating only relevant models has been studied in [Mandrioli 95]. The main idea
presented there mnsists in dividing the problem into two sequential steps: the interactive generation and composition
of partial test casesSuch an idea is supported by the Test Case Generator.
3. Comparison of TRIO with others FM
A classfication of the TRIO method is herein proposed in terms of a set of evaluation dimensions, which represents
the union of those dimensions proposed in [Aben 95] and [Fensel 95]. A brief explanation of some dimensions
anticipates the dassfication table and some TRIO-related comments. The seledion of FM to be included in the table
was based on a homogeneous orientation criterion that is only model-oriented methods have been included.
A first group of dimensions concerns generic FM features, such as SE vs. KE origins (native fidd). The domain
spedrum defines the scope of application of the FM with resped to the application area (narrow vs. broad). The
method spedrum defines the scope of application o the FM with resped to the activities of the software engineaing
process (narrow vs. broad). Orientation is defined as the FM viewpoint which may be model-oriented, property
oriented and behaviour oriented. The main mathematical basis are algebra, process algebra, logic and set theory.
The seaond group concerns criteria characterising the purpose of a FM. Horizontal structuring refers here to the
composition of a formal specification from a number of smaller specifications
The third group concerns features of the mnceptual modd underlying a FM. The last two are about the representation
of dynamics in terms of the daracterisation of a state and its transitions, and the definition of control. Non-
constructive and constructive means to spedfy control over state transitions are distinguished. A non-constructive
spedfication of control defines constraints for legal control flows. They exclude posshle wntrol flows but do not
define actual ones. Constructive spedfications of control flow define diredly the actual contral flow of a system and
apply a variant of the dosed-world assumptions. Two variants can be distinguished for the @nstructive definition of
control: globally by procedural languages and locally by rules.

VDM Z TRIO DESIRE KARL (ML)?
Native Field SE SE SE KE KE KE
Domain spectrum broad broad broad Narrow narrow narrow
Method spectrum broad narrow broad broad broad narrow
Orientation model model model model model model
Mathematical basis logic Set theory logic logic logic logic
Specification type functional & | Functiona| functional & | Dynamics dynamics dynamics

dynamics I dynamics

Conceptual model no no no Yes (own) yes (KADS) | yes (KADS)
Horizontal no yes yes yes yes yes
structuring
Proof obligations yes yes yes no no no
Refinement calculus yes no? no no no nd
Prototyping no no no yes yes no

1C

Terminological poor poor poof poor rich poor

knowledge

Generic inferences yes yes yes yes yes yes

Object/meta level no no no yes limited yes

Notion of state record of state state Termination| fixed set of fixed set of
dynamic schemas| predicates states of | dynamic logic| dynamic
variables modules variables variables

Control constructive non- Constructive| constructive &| constructive
& global constructive & local global & global

a. Only discussed in [Wood 93].
b. A refinement calculus related to (Mihas been defined in [Aben 95].

C. The terminological level of TRIO is classified as poor due to the lack of a pre-defined conceptual model. However, thanks to its temporal and
process-oriented constructs TRIO is much more expressive than all FM based on order sorted first order logic.
From the @mparison of TRIO with some KBS-purpose FM it emerges that TRIO nature shares more with (ML)? than
others. They bath offer the same support for the terminological knowledge modélli ng. Even though (ML)? has been
developed having the KAD S expertise model clear in mind, the primitives it provides are strictly based on a logic-
oriented ontology (it makes use of sorts, functions, predicates, logical operators and quentifiers). TRIO and (ML)?
shares the idea that expressve power is of primary concern in spedfication languages with resped to exeautability.
They bath are based on a modd-theoretical semantics of predicate logic whose exeaution supports the spedfication
evaluation by automatic generation of formal prodfs (they bath do not support prototyping). Given their high levd of
expressvity, they bath have to face with the dficiency issues arisen by the automatic prodfs on real-sized
specifications.
Differently from (ML)? and dwe to its origins in traditional software, TRIO provides a functional spedfication of the
entire system which is not based on any pre-identified (informal) conceptual model. However, even though the KBC
conceptual model underlying TRIO has never been stated explicitly, for sure it could be derived from the conceptual
level of its emantics and could resemble to the Objed-oriented Modéelli ng Technique OMT from SE [Rumbaugh 91].
The general-purpose mnceptual model underlying TRIO can be used to formali se spedal-purpose mnceptual models,
such as those defined in the KE field. This is exactly one aim of the present work. A typical KE conceptual model
distinguishes gatic domain knowledge from dynamic control knowledge. Generic knowledge-level control over the use
of functionally spedfied sub-steps during the reasoning processcan be oktained in TRIO by either combining its basic
logical, temporal and process operators, or defining new operators in terms of them.
Again differently from (ML)? (and pertialy similarly to KARL) TRIO integrates ohjed-oriented and processoriented
consgtructs into alogical framework which does not distinguish the objed(domain)-level from the meta(domain)-leve.
However this is considered a reasonable trade-off to accept when efficiency of automatic prodfs is pursued as the
second aim (together expressivity) substantiating the existence of TRIO.

4. Experiences from the application of the Safe-K BS methodology and TRIO to a safety-critical KBC

4.1 Brief description of the FINDER application

The misson of a commercial aircraft is to transport pasengers or fret safely and economically from a departure
airport to a destination airport. To do this the aew prepares a flight plan composed of a list of navigation points
(called waypoaints) from the departure airport to the destination airport. Additional information describes the vertical
profil e (cruise altitude and speed, descent profil e, etc). The number of waypoints depends on the distanceto cover and
on the complexity of the airspace to overfly. This flight plan is agreed with Air Traffic Control before departure.
FINDER is a knowledge based prototype of a future on-board dedsion-aid system which would assst the aew with
respect to the flight plan management. Today this management task is fully supported by the crew.

This task includes acquisition and interpretation of contextual data, situation analysis (impact of an event on flight
plan), implementation of a flight plan modification strategy (search for aternatives, evaluation of alternatives,
sdedion and exeadtion of an alternative). When performing this task there is an important demand of cognitive
resources metimes combined with a high level of stress FINDER helps analysing the situation and proposes
solutions. However FINDER is not supposed to make dedsion in place of the aew or to give orders to the aew. To be
exeauted these solutions have to be agreed by ATC and validated by the aew. To reach FINDER oljedive four main
functions have been identified, namely Monitor, Replan, Manage dialogue and Negotiate.

4.2 Description of the experimentation with TRIO

FINDER functions <all be implemented by a software architedure wmmposed by a set of technologicaly
heterogeneous ftware modules [Safe-KBS R1.4]. According to such technological design, FINDER can be
considered a KBS composed of six KBC performing all event monitoring and several flight replanning sub-tasks.
Following the Safe-KBS prescriptions introduced in sedion 1.3, the minimal scope of FM in the FINDER KBS is
given by the safety critical parts of its KBC. By considering the SIL produced by the Prdiminary System Safety
Analysis, it follows that FM should be mandatory applied at least in the development of five KBC. The KBC

11

performing event monitoring and situation deteding has been chosen to present the peadliar aspeds of the Safe-KBS
methodology and TRIO. Such a KBC is characterised by five safety critical sub-components performing the foll owing
sub-tasks. Monitor airport weather, Monitor enroute weather, Monitor trajedory, Monitor airports adequation, Assess
situation.

It should be noted that most of the Safety Parameters identified by the Functional Failure Analysis of FINDER [Safe-

KBS R1.3] expressrequests towards the V&V processand about the reasoning knowledge. For instance, they expli cit

the neal to check the mrredness of the logic used to deted alarming situations (hazadous airport weather, bad

enroute weather, restricted air space), the exrapdation d data used to deted alarming situations, the algorithm used

to detect alarming situations.

In the experimentation, temporal and oljed-oriented constructs have been used to structure the functional, temporal

and performance requirements, whilst the high level conceptual design is oltained as a spedalisation of formal
requirements. The abstraction and ontological constructs have been combined to describe the @mnceptual design at two
abstraction levels: events that are viewed as atomic at the first level become structured processes at the second leve

Conclusions

The very final objedive mativating the work presented in this paper is to stressthe need of using formal methods in
the devel opment of knowledge-based software components embedded into safety critical appli cations. The application
of formal methods thus represents a good chance to have the KB technology accepted bath by designers/devel opers of
safety critical software and by Certification Authorities in charge of approving software systems embedding KBC. At
this aim the basic Safe-KBS methodol ogy has been defined which makes explicit the role of formal methods by means
of a disciplined schemata.

The TRIO formal method has been experimented on a safety critical KBS in the avionics field at the aim to evaluate it
as a candidate support package of the Safe-KBS methodology. The TRIO experimentation consisted in use of the
TRIO language to formali se some aitical parts of the application. It is the base on which TRIO formal prodfs sall be
exercised in order to demonstrate that the specification actually fulfils the requirements stated by the safety analyser:

References

M. Aben, Formal Methods in Knowledge EngineerjiRhD dissertation, University of Amsterdam, February 1995.

A. Bertani, E. CiapessorRIO Model Generator: User Manydbeliverable D3.1 of ARTS Trial Application of the ESPRIT project n. 20695, 1996.

A. Bertani, E. Ciapesni, Syedfica del requisiti per I’ adeguamento dell’ Editor Grafico d TRIO+* (TGE), CISE/ENEL Reasearch Report (in Italian),
1997.

J.P. Bowen, M.G. Hinchey,he Use of Industrial-Strength Formal Methp@997.

E. Ciapesoni, E. Corsetti, E. Crivelli, M. Migliorati, Checking satisfiahility of TRIO spedfications, in Procealings of the Workshop ontemporal logic
associated to the ITLC 94, Bonn, Germany 1994.

E. Ciapessoni, D. Mandrioli, A. Morzenti, P. San Pigitanuale di TRIO+* ENEL Research Report, (in Italian) November 1995.

E. Ciapesoni, A. Coen-Porosini, E. Crivelli, D. Mandrioli, P. Mirandda, A. Morzenti, From formal models to formally-based methods: an industrial
experienceaccepted to Transaction on Software Engineering and Methodologies, 1997.

E. Ciapesoni, A. Coen-Porosini, TRIO: an environment suppating the veification/validation o real-time systems requirements, paper unpubli shed,
1997.

D. Fensd, F. van Harmelen, A comparison o languags which operaziondise and formalise KADS model of expertise, Knowledge Engineeing
Review, Vol. 9, 105-146, 1994.

D. FenselFormal Specification Languages in Knowledge and Software Engine&ingviedge Engineering Review, Vol. 10, No. 4, December 1995.

IEC 1508 95IEC, International Eledrotechnical Commisson, Draft International Standard 1508 Functiond Sdety: Sdety-Related Systems, Geneva,
Switzerland, 1995.

D. Mandrioli, S. Morasca, A. Morzenti, Generating Test Cases for Real-Time Systems from Logic Spedfications, ACM Transactions on Computer
Systems, Vol. 13, No. 4, pg. 365-398, November 1995.

P. Meseguer, A.D. Preece Asessdng the Role of Formal Spedfications in Verification andValidation o Knowledge-Based Systems, Proc 3rd IFIP
International Conference on "Achieving Quality in Software" (AQuIS'96), pg. 317-328, Chapman and Hall, 1996.

UK Minigtry of Defence Interim Defence Standad 00-55: The procurement of safety critical software in defence ejuipment, Part 1, Isue 1
Requirements; Part 2, Issue 1: Guidance, April 1991.

A. Morzenti, D. Mandrioli, C. Ghez, A Model Parametric Real-Time Logic, ACM Transactions on Programming Language and Systems, 14, 4, pg.
521-573, October 1992.

Safe-KBS R1.1, Esprit Programme Project No. 22360, Task 1.1 r8pfiiare Functional Requiremeni96.

Safe-KBS R1.3, Esprit Programme Project No. 22360, Task 1.3 rEpantional Failure Analysis1997.

Safe-KBS R1.4, Esprit Programme Project No. 22360, Task 1.4 rBpelitninary System Safety Analysis Fol|dE997.

Safe-KBS R3.2-a, Esprit Programme Project No. 22360, Task 3.2 r8p&etKBS life-cycle model description documg®7.

Safe-KBS R3.2-b, Esprit Programme Project No. 22360, Task 3.2 repysttSafe-KBS development process plego7.

RTCA/Eurocae DO178B/ED-12B: Sdtware cnsiderations in airborne systems and equipment certifi cation, Requirements and Technical Concepts
for Aviation, Washington, DC, December 1992. This document is known as EUROCAE ED-12B in Europe.

J. RushbyfFormal Methods and the Certification of Critical Syste®RI Technical Report CSL-93-7, December 1993 (300 pages).

J. Rushby, Formal Methods andtheir Role in the Certification o Critical Systems, SRI Technical Report CSL-95-1, March 1995(300 pages). Thisisa
shorter (50 pages) and lesstechnical treatment of the material in [Rushby 93]. It will become a chapter in the FAA Digital Systems Validation
Handbook (a guide to assist FAA Certification Specialists with advanced technology issues).

F. van Harmelen, J. BaldéNIL)% A formal language for KADS models of expertkeowledge Acquisition, 4 127-161, 1992.

F. van Harmelen, D. Fensélprmal Methods in Knowledge Engineerjiowledge Engineering Review, Vol. 10, No. 4, December 1995.

A.l. Vermesan, T. Bench-Capon Techniquesfor the Verificationand Validation d Knowledge-Based Systems: A Survey Based onthe Symba/Knowledge
Level Distinction, Software Testing, Verification and Reliability, VVol. 5, 233-271 (1995) John Wiley & Sons, Inc.

12

