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Abstract. In this paper, we present a new approach for reasoning do-
main ontologies at the meta-level. This approach is based on the ap-
plication of ontology operationalization mechanisms in the context of a
particular ontology of representation defined at the meta-level. The rel-
evance of this work is illustrated in the context of two core questions
for semantic interoperability: ontology evaluation and ontology match-
ing. Our work is also compared with the OMG architecture dedicated to
model engineering.
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1 Introduction

Currently, ontologies are as the heart of many important Information Technol-
ogy issues because they enable reasoning on domain assertions. For instance, in
the context of the Semantic Web, ontologies are principally used to represent
the content of web resources in order to facilitate concept-based Information
Retrieval. However, managing multiple ontologies (for instance in a context of
semantic interoperability) or analysing an ontology from an internal point of
view (for instance for verification or validation purpose), do not require to rea-
son on domain assertions (by using an ontology) but to reason directly on the
ontologies. In other words, domain ontologies are not used as a reference system
to perform reasonings on a fact base, but they are the objects on which the
reasonings are performed. This approach requires the possibility to represent a
domain ontology in a similar way as a knowledge base, i.e. a set of assertions
which are defined according to a particular ontology O; and on which can be ap-
plied reasoning mechanisms (based on rules and constraints of O;) for deducing
news assertions.

In this paper, we claim that for reasoning on a domain ontology, it is relevant
to represent it at the meta-level, in order to consider it as a knowledge base and
thus to make any kind of reasoning possible, such as ontology mapping/matching,
ontology merging, ontology verification, ontology validation, etc. Our approach



consists in using an ontology of representation called MetaOCGL for representing
a domain ontology expressed in OCGL [1]. OCGL is a knowledge representation
language based on the Conceptual Graphs formalism'. MetaOCGL is the on-
tology of representation which describes all the modeling primitives (and their
relations) of OCGL and its formal semantics. This ontology is represented in
OCGL and this is why we call it MetaOCGL.

The rest of the paper is structured as follows. Section 2 presents the con-
text of our work: the OCGL ontology representation language, its corresponding
representation ontology MetaOCGL, and the basic fondations of the ontology
operationalization process. In section 3, the architecture we advocate for ontol-
ogy reasoning at the meta-level is presented and illustrated with an example
of ontology verification. An application of our meta-level reasoning approach to
the problem of ontology matching is also introduced. Finally, we compare our
approach to the Model Driven Architecture (MDA).

2 Context of the work

2.1 OCGL: Ontology Conceptual Graphs Language

The OCGL modeling language (Ontology Conceptual Graphs Language [1]) we
advocate for specifying an ontology (at the conceptual level) is based on three
building blocks: Concepts, Relations and Axioms. Representing an ontology in
OCGL mainly consists in (1) specifying the conceptual vocabulary of the domain
and (2) specifying the semantics of this conceptual vocabulary through axioms.

The conceptual vocabulary consists of a set of Concepts and a set of Rela-
tions which can be structured by using both well-known conceptual properties,
called Axiom Schemata, and Domain Axioms.

The Axiom Schemata proposed in OCGL are:

1. the ISA link between two concepts or two relations (subsomption property)
used to construct concept/relation taxonomies (tree or lattice);

2. the Abstraction of a concept (which corresponds to an Exhaustive-Decomposi-
tion in some works [3]);

3. the Disjunction between two concepts?;

! The Conceptual Graphs model, first introduced by Sowa [7], is an operational knowl-

edge representation model which belongs to the field of semantic networks. This
model is mathematically founded both on logics and graph theory [7]. Two ap-
proaches for reasoning with CGs can be distinguished: (1) considered CGs as a
graphical interface for logics and reasoning with logic and (2) considered CGs as a
graph-based knowledge representation and reasoning formalism with its own reason-
ing capabilities. In our work, we adopt the second approach by using the projection (a
graph-theoretic operation corresponding to homomorphism) as the main reasoning
operator; projection is sound and complete w.r.t. deduction in FOL.
Note that it is possible to define a Partition [3] by using the abstraction and
the disjunction. For instance, the decomposition of Number into (0ddNumber and
EvenNumber) is a partition because Number is an abstract concept and OddNumber
and EvenNumber are disjoint.



4. the Signature of a relation;

5. the Algebraic properties of a relation (symmetry, reflexivity, transitivity, ir-
reflexivity, antisymmetry);

6. the Exclusivity or the Incompatibility between two relations®;

7. the Cardinalities (Maximal and Minimal) of a relation.

OCGL has been implemented in a tool, called TooCoM* (a Tool to Opera-
tionalize an Ontology with the Conceptual Graph Model), dedicated to the edition
and operationalization of domain ontologies. Thanks to this tool, it is possible
to define the conceptual primitives (concepts and relations) and to specify the
axiom schemata in a graphical way. Figure 1 shows an extract of an ontology
dedicated to family relationships.

Domain Axioms differ from axiom schemata in the sense that they are
totally specific to the domain whereas axiom schemata represent classical prop-
erties of concepts or relations. The OCGL graphical syntax used to express such
an axiom is based on the Conceptual Graphs model. Thus, an axiom is com-
posed of an Antecedent part and a Consequent part, with a formal semantics
that intuitively corresponds to: if the Antecedent part is true, then the Conse-
quent part is true. Figure 1 shows the OCGL graph representing the axiom “The
enemy of my friend is my enemy”. In the concept hierarchy, an arrow represents
a subsomption link between a concept and one of its parent, a concept without
surround is abstract, the crossed circles represent disjunctions between concepts.
In the relation hierarchy, a crossed circle represents an incompatibility (or exclu-
sivity) between two relations, algebraic properties and cardinalities of a relation
are indicated by symbols above the name of the relation (S for symmetry, T
for transitivity, C+ and C- for the cardinalities, etc.). In the axiom part, the
bright nodes represent the antecedent part, the dark ones the consequent part.
Each part contains concept nodes (indicated by rectangles) and relation nodes
(indicated by ellipses). A concept node is described by a label and a marker that
identifies the considered instance (the marker * denotes an undefined instance).
A relation node is only described by a label. An edge between a concept and
a relation is labeled with the position of the concept in the signature of the
relation. The logical expression of the graph is automatically generated.

2.2 MetaOCGL: an ontology of representation

MetaOCGL is an ontology of the OCGL language, expressed in OCGL. MetaOCGL
can then be considered as an ontology at the meta-level [3]. As shown in figure 2,
MetaOCGL includes all the concepts of OCGL and their relations (isa relation,
exclusivity /incompatibility between relations, disjunction of concepts, links be-
tween relations and concepts in a graph that expresses an axiom). MetaOCGL

3 The incompatibility between two relations Ry and Ry is formalized by =(R1 A R2),
the exclusivity is formalized by =R1 = R».

4 TooCoM is available under GNU GPL license at
http://sourceforge.net/projects/toocom/.
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Fig. 1. Representation of OntoFamily O; in TooCoM. The upper part presents the
relation hierarchy, the bottom left part presents the concept hierarchy, and the bottom
right part presents an axiom.

also includes axiom schemata and domain axioms which express the formal se-
mantics of OCGL.

A domain ontology can be represented as a MetaOCGL instance (i.e. a
MetaOCGL graph), as domain facts can be represented by OCGL graphs. The
MetaOCGL graph that represents an ontology contains a part which is dedicated
to the representation of the concept hierarchy, a part which is dedicated to the
representation of the relation hierarchy, and as many part as axioms in the on-
tology. Figure 3 shows the MetaOCGL graphs dedicated to the representation
of the two axioms of OntoFamily Oy “the enemy of my enemy is my friend” and

“the enemy of my friend is my friend”, and their corresponding meta-graphs in
MetaOCGL.

2.3 Operationalization: basic fondations

Ontologies can be used to shared knowledge between systems or between systems
and humans, to reason on knowledge bases or to search in knowledge bases.
Thus, they have to integrate all the knowledge of a given domain, and not only
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Fig. 2. Concepts, relations and axioms of MetaOCGL.

the terminological knowledge, as in a thesaurus. Ontologies have to evolve from
lightweight ontologies, which only include some well-known properties such as
subsomptions or algebraic properties, to heavyweight ontologies, which include
all axioms that are needed to represent the semantics of the domain [8].

But, for keeping the independence of an ontology from the applications where
it is used, in order to ensure its portability, the representation of the axioms must
only precise their formal semantics, which constraint the interpretation of the
conceptual primitives, without forcing their operational semantics, which fix the
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Fig. 4. The operationalization process of an heavyweight ontology. Terminological
knowledge is represented in the same way at the ontological level and the operational
level. The representation of axiomatic knowledge at the operational level depends on
a scenario of use that describes the way the axioms are used to reason in the oper-
ational ontology. The operational representation of an axiom is a set of rules and/or
constraints.

way the axioms are used in a KBS to reason [1]. For example, the axiom “the
enemy of my enemy is my friend” can be used to produce knowledge (i.e. to
deduce, when there exists an enemy of one of my enemies, that he is my friend)
or to check assertions (i.e. to check that any enemy of one of my enemies is my
enemy). An axiom can also be automatically applied by the system or explicitly
applied by the user. The combination of these two criteria produces four different
contexts of use for an axiom: (i) inferential implicit to automatically produce new
knowledge from given facts, (ii) inferential explicit to allow the user to produce
new assertions from given facts, (iii) validation implicit to automatically check



a fact base, and (iv) wvalidation explicit to allow the user to check a fact base at
his request®.

Using heavyweight ontologies in applications requires their operationaliza-
tion, which consists in (1) specifying the way the axioms will be used to reason
through a scenario of use and (2) transcribing the axioms in operational forms
(rules and/or constraints) according to the adopted scenario of use. Because the
operational semantics of each axiom have to be specified, building a scenario of
use consists in choosing, for each axiom, its context of use which defines the way
the axiom will be used®. For a given ontology, each scenario of use (i.e. a set of
contexts of use) leads to a different operational ontology, as shown in figure 4.

Operationalizing a domain ontology corresponds to building a KBS which
can be used to reason on facts on the domain. For example, operationalizing
OntoFamily O; in an inferential scenario of use produces an operational ontology
appropriated to deduction: given few persons, linked only by descendants links,
the KBS can automatically deduce parents links, brotherhood links and other
family links. Another operationalization, in a validation scenario of use, can
be used to check a fact base of family relationships, in order to evaluate its
consistency, its completeness and its conciseness.

The OntoFamily Oy, represented in OCGL, includes 3 concepts, 31 binary
relations, 11 axiom schemata and 18 axioms. Operationalizing O; for automati-
cally completing a set of facts, i.e. in an inferential implicit scenario of use, leads
to an operational ontology which includes the same terminological knowledge
(3 concepts and 31 relations) but 39 rules and 7 constraints. The operational
ontology automatically generated can be used, for example, to deduce, from a
graph that represents facts which only deals with direct parent relations (father
and mother), all the family relationships such as brotherhood relations, grandfa-
ther and grandmother relation, niece, nephew, uncle, aunt, etc. (cf. [2] for more
detail).

3 Reasoning domain ontologies at the meta-level

3.1 Operationalization at the meta-level

Since domain ontologies are conceptual representations of a domain, their op-
erationalization produces operational ontologies that enable reasoning on do-
main facts. In the same way, reasoning on ontologies themself can be done by
operationalizing the representation ontology on which they are based, i.e. a

5 Note that “deduction vs validation” and “implicit vs explicit” contexts of use are
fine-grained examples of knowledge uses. At a more general level of granularity, a
scenario of use can specify the reasoning mechanism used in a KBS (deduction,
abduction, induction), or the goal of the KBS (e.g. teaching system or corporate
memory management).

5 According to the structure of the axiom and to the context of use, the operational
form can be a rule, a constraint, or a set of rules and constraints (cf. [1] for more
detail about this transformation process).
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Fig. 5. Overview of the interactions between Domain Ontology, Ontology of Represen-
tation and KBS.

meta-ontology. More precisely, if we consider ontologies expressed in the OCGL
language (for example), operationalizing the ontology of the OCGL language
produces operational ontologies that permit to reason about the first ontolo-
gies. The ontology of OCGL, called MetaOCGL, represents knowledge about
the OCGL language, the primitives of the language, and their semantics ex-
pressed through axioms. Operationalizing MetaOCGL consists in choosing the
way the axioms will be used to reason about an ontology expressed in OCGL, for
example OntoFamily O;. To complete O1, by automatically adding subsomption
links, or by propagating inherited properties, for example, MetaOCGL have to
be operationalized in an inferential scenario of use. To validate OntoFamily ac-
cording to the OCGL formal semantics, MetaOCGL have to be operationalized
in a validation scenario of use.

Figure 5 shows the interactions that exist between Domain Ontology, On-
tology of Representation and KBS. It also underlines the three main activities
related to the integration of ontologies into KBS: Modelling, Operationalization
and Representation.

At the domain level, an ontology (called Domain Ontology in figure 5) of a
particular domain (called Domain in the figure) is built via a modelling process.
Reasoning about facts on this domain in a KBS is allowed by operationalizing
the ontology according to a particular scenario of use which describes the way
the axiomatic part of the ontology is used in the KBS. Then, the generated oper-
ational ontology can be used to reason about facts which are representations of
instances of the domain. To sum-up, the modelling of a domain leads to a domain



ontology including Concepts, Relations and Azioms (both axiom schemata and
domain axioms). The Operationalization of a domain ontology leads to the de-
velopment of the ontological level of a KBS, including Terminological Knowledge
(concepts and relations) and Reasoning Knowledge, i.e. rules and constraints cor-
responding to the operational forms of the axioms in the context of use which
has been choosen. Finally, the Representation of a domain leads to the construc-
tion of the Assertional Level of the KBS, i.e. facts which are defined according
to the Terminological Knowledge, and which are manipulated by the Reasoning
Knowledge.

This three-step process (Modelling, Operationalization, Representation) can
also be applied at the meta-level (cf. figure 5). The Ontology of Representation
modelizes the language used to express the Domain Ontology. This ontology of
representation is also expressed with the considered language. It can be opera-
tionalized in a KBS, and the generated operational ontology enables reasoning
on the Domain Ontology. In this KBS defined at the meta-level, a fact is the
representation of a particular domain ontology, for example a graph which rep-
resents OntoFamily O; in MetaOCGL. Because the ontology of representation is
a meta-representation, modelizing this ontology in the same language produces
the same ontology of representation. But this ontology can be represented as a
fact in a KBS which implements an operational version of it, in order to reason
on the ontology of representation itself.

3.2 Operationalization of MetaOCGL: an application to ontology
evaluation

In order to use the MetaOCGL ontology for ontology evaluation (which includes
verification, validation and assessment activities [3]), it is necessary to opera-
tionalize it in a validation and explicit scenario of use, i.e. all the axioms are used
to validate a fact base. In the example of the figure 6, this fact base is the graph
which represents an extract of the OntoFamily O;. An error has been voluntar-
ily introduced in the signature of the “aunt(Woman, Universal)” binary relation:
this relation is a sub-relation of the “relation_involving a Man(Woman, Hu-
man)” relation. So, the signature of “aunt” is not in conformity with those of
“relation_ involving _a_ Man”. The application of the signature conformity ax-
iom (¢f. figure 2), in a validation context of use, reveals the problem: the dark
part of the graph is those which corresponds to the breaking of the axiom.

Note that our approach allows the knowledge engineer to explicitly define,
through the definition of axioms at the meta-level, the criteria used to evaluate
the content of ontologies in terms of consistency, completeness and conciseness.
This declarative definition of criteria at the conceptual level increases both the
portability and the modularity of the evaluation criteria, which, in most of the
similar works, are directly hard-coded in the tools.
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Fig. 6. Operationalization of MetaOCGL for ontology verification.

3.3 Operationalization of MetaOCGL: an application to ontology
matching

The objective of ontology matching is to discover and evaluate identity links
between conceptual primitives (concepts and relations) of two given ontologies
supposed to be built on connected domains. Our approach relies on the use
of the axiomatic level of the ontologies to discover semantic analogies between
primitives, in order to reveal identities between them and to calculate the sim-
ilarity coefficient of these identities, i.e. a coefficient that indicates how closely
two concepts or relations are related. The comparison of axioms is based on
their representation at the meta-level, in order to preserve their formal seman-
tics but to erase their syntactical differences, while existing matching algorithms
are essentially based on syntactical comparison [5].

Our algorithm takes as input two ontologies O; and Oy (represented in
OCGL) and provides as output potential similarities between two concepts or
two relations: the result is a set of matchings (P, P/, C), where P; and P; are
respectively conceptual primitives (concepts and relations) of O; and O, and
C the similarity coefficient between P; and Pj( . Both axiom schemata and do-
main axioms are used to evaluate or discover primitive matchings. Of course,
the weight of each OCGL property is used to modulate its influence on the
evaluation of the matching.

As introduced in figure 3, domain axioms are represented in MetaOCGL, in
order to compare their structures independently of their syntax. For each axiom
couple (a1, az), where a1 € O7 and as € Oa, the representations of a; and as
in MetaOCGL, meta(a;) and meta(az), are built. These representations can be
enriched by adding information about the nodes: for instance, in figure 3, the



two relations enemy of the axiom in OCGL are represented in MetaOCGL by
the two concepts Antecedent R which are linked by the meta-relation called
type_ identity.

Two types of topological equivalence are then considered: the equivalence,
that occurs when projections (in the context of the CG model) exist from
meta(ay) to meta(az) and from meta(az) to meta(ay), without considering the
type _identity relations, and the typed equivalence that occurs when the two
projections exist with the type identity relations. Of course, the weight of a
typed equivalence is higher than those of an equivalence. A typed equivalence
(resp. equivalence) between two axioms increases the coefficient of nodes linked
by projection by the weight of the axiom typed equivalence (resp. equivalence).
For example, the two axioms of figure 3 are equivalent because two projections
exist between their meta-graphs without considering the type-identity relations.
When considering the type-identity relations, there exists no projection, so they
are not typed equivalent.

We have applied these principles to the matching of two ontologies related to
the family domain [2]. This experiment has shown the relevance of the compari-
son of two ontologies at the meta-level, even if the algorithm has to be improved,
in particular by taking the subsumption links into account.

4 Conclusion

In this paper, we have presented a new approach for reasoning domain ontologies
at the meta-level, approach which mainly relies on the application of ontology
operationalization mechanisms to an ontology of representation. We have also
illustrated the relevance of our work in the context of two core questions for
semantic interoperability: ontology evaluation and ontology matching.

In the field of model engineering, the OMG has defined a complete architec-
ture called MDA (Model Driven Architecture) [6]. In the MDA, a specific model
(level M1) captures each aspect of a system, a meta-model (level M2) captures
a model and a meta-meta-model (level M3) captures a meta-model (¢f. figure
7). For example, an UML model modelizes an application, UML modelizes this
UML model and the MOF modelizes UML. The MO level is the “real world”,
that is the applications in software engineering. A similar architecture can be
considered in the field of ontology engineering: an ontology (level M1) is a model
of a knowledge domain, a meta-ontology (level M2) is a model of ontology and a
meta-meta-ontology (level M3) is a model of meta-ontology. For example, Onto-
Family O; is a model of the family relationship domain, OCGL is a model of
01, and Meta-OCGL is a model of OCGL.

What we claim is that reasoning the M1 level (for ontology validation or ver-
ification, ontology querying, ontology mapping, etc.) can be done by using ter-
minological and axiomatic representations at the M3 level. This approach, based
on a specific operationalization process (which can be compared to a transfor-
mation in model engineering), provides a more portable and modular method
for reasoning domain ontology than methods which are only defined at the M2
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Fig. 7. Standard OMG layered organization illustrated with UML and comparison
with ontology engineering and OCGL.

level and thus totally specific to a predefined knowledge representation language.
This approach can also increase the efficiency of ontology mapping, by enabling
axiom comparison and primitive matching at the meta-level, independently from
syntactical considerations.

Moreover, a link can be etablished between our approach in ontology en-
gineering and model engineering techniques. Ontologies currently evolve from
lightweight ontologies, used as simple descriptions of domains, to heavyweight
ontologies, used to reason on domains. In a similar way, models evolve from de-
scriptions of systems to sources for automatic application building [4]. In this
context, ontology engineering and model engineering both focus on using more
and more abstract representations, in order, on the one hand, to improve model
or ontology building and (re)using and, on the other hand, to increase their
independence from platforms.
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