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ABSTRACT
We explore the effectiveness of a simple algorithm for adap-
tively deciding whether to further decompose a step in a line
of reasoning during tutorial dialogue. We compare two ver-
sions of a tutorial dialogue system, Rimac: one that always
decomposes a step to its simplest sub-steps and one that
adaptively decides to decompose a step based on a student’s
pre-test assessment. We hypothesize that students using the
two versions of Rimac will learn similarly but that students
who use the version that adaptively decomposes a step will
learn more efficiently. Our initial results suggest support
for our hypothesis but the sample size for the experiment
is still small and we are continuing to collect more student
interactions with the two versions of the system.

CCS Concepts
•Applied computing→ Interactive learning environ-
ments; •Computing methodologies → Discourse, dia-
logue and pragmatics;
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1. INTRODUCTION
Woods introduced the idea of contingent tutoring in the

1970s after analyzing face to face interactions between chil-
dren (the learners) and adults (the tutors) [7]. Instructional
contingency refers to the amount of help or scaffolding the
tutor offers the learner based on the student’s current or pre-
vious response, while domain contingency refers to the issue
of what the tutor should focus on next (e.g., what content
in the current task, what the next task should be, what ma-
terials to use) and can involve deciding how to decompose
a difficult task into potentially easier sub-tasks [7]. There
are also different ways in which to adapt to a student which
have been explored using tutorial dialogue systems, includ-
ing adapting to learning style [6] and deciding who should
cover a step in the tutoring [2]. However, in our current im-
plementation of a tutorial dialogue system for physics, Ri-
mac [5, 1], we focused on deciding when to decompose a task
for the learner (an aspect of domain contingency), which in-
cludes: (1) deciding whether to decompose the reasoning

Problem:

Suppose'you'aim'a'bow'horizontally,'directly'at'the'center'of'a'target'25.0'm'away'
from'you.'If'the'speed'of'the'arrow'is'60'm/s,'how'far'from'the'center'of'the'target'
will' it'strike'the'target?'That'is,'find'the'vertical'displacement'of'the'arrow'while'it'
is'in'flight.

Assume'there'is'no'air'friction.

Reflection/Question/(RQ):

Suppose the same archer shoots an identical arrow from the same spot on the 
cliff. Again he aims the arrow perfectly horizontally with an initial velocity of 60 
m/s. How does the vertical velocity of the arrow change (remains the same, 
increases, decreases)?

Figure 1: An example problem and post-problem
reflection question.

needed to answer a post-problem reflection question (RQ),
as in Figure 1, and (2) the granularity of that discussion.

Similar to Wood’s EXPLAIN, QUADRATIC and DATA
tutors [7], Rimac decides whether to discuss the line of rea-
soning (LOR) underlying a correct answer to an RQ and,
if so, at what grain size (i.e., it decides whether to decom-
pose a step in a task into simpler sub-steps). And similar to
Wood’s DATA tutor, Rimac bases decomposition decisions
on pre-test assessments. Unlike Wood’s tutors, help seek-
ing is not left to the learner in that the tutorial dialogue
system and the student are engaged in a discussion of the
line of reasoning (LOR) that leads to the answer to a re-
flection question and the system always helps the student
co-construct the next step in the LOR. To help the student
co-construct the step, Rimac uses hint strategies to elicit
the step from the student. If the hint fails, and the student
is unable to co-construct the step, then the system either
offers a more specific hint, decomposes the step further and
hints at each of its sub-steps, or simply completes the step
for the student.

In this paper we explore an initial, simple algorithm for
adaptively deciding whether to further decompose a step
after it has been successfully co-constructed. We compare
two versions of Rimac: one that always decomposes success-
fully co-constructed steps and one that adaptively decides
whether to decompose such a step based on students’ pre-
test assessment. The reason for decomposing a successfully
co-constructed step is that the student may have contributed
a correct answer using incomplete reasoning or may have
simply guessed correctly using intuition and thus it could be
beneficial to explicitly cover the underlying reasoning with
the student. We hypothesize that if our simple algorithm is



Figure 2: The Rimac Interface and an example dialogue with short answer questions.

effective then students will learn similarly from using either
version of the system but that students who use the adaptive
decomposition version will learn more efficiently.

The rationale for the hypothesis follows. First, students
using either version of the system can spend as much time
as they need to complete the assigned problems. If the stu-
dent fails to successfully co-construct a decomposable step,
then the system will respond by eliciting its sub-steps. How-
ever, if the student succeeds at co-constructing the step then
the student can progress faster through the RQ. If the deci-
sion algorithm is successful, then the adaptive system should
enable a significant number of users to complete the prob-
lem faster because it will often be accurate in its choice not
to decompose a step after it is successfully co-constructed.
Furthermore, if a significant number of steps are not decom-
posed after a successful co-construction, then less material
is explicitly covered with the student. If it is not detrimen-
tal to have “skipped” explicit mention of this material then
learning gains for students who used the adaptive system
should be similar to learning gains for students who used
the non-adaptive system.

While our initial results suggest support for this hypoth-
esis, the sample size is still small and we are continuing to
collect more student interactions with the system.

2. RIMAC
Rimac is a web-based natural-language tutoring system

that engages students in conceptual discussions after they
solve quantitative physics problems [5, 1] and was built us-

ing the TuTalk tutorial dialogue toolkit [4]. Thus the di-
alogues authored for the system can be represented with a
finite state machine. Each state contains a single tutor turn.
The arcs leaving the state correspond to possible classifica-
tions of student turns. When creating a state, the dialogue
author enters the text for a tutor’s turn and defines classes
of student responses (e.g. correct, partially correct, incor-
rect). A single student response class is defined by entering
a set of semantically similar text phrases that correspond to
how students might respond. TuTalk’s default understand-
ing module ranks the response classes defined for the current
tutor state according to the edit distance of the normalized
words in the actual student response relative to the normal-
ized words in the text phrases that define each class. It
selects the class with the minimum edit distance as the best
classification of the student’s response. However, if the mini-
mum edit distance is greater than a specified threshold, then
the system classifies the student response as unrecognizable.

Rimac’s dialogues were developed to present a directed
line of reasoning, or DLR [3]. During a DLR, the tutor
presents a series of carefully ordered questions to the stu-
dent. If the student answers a question correctly, he ad-
vances to the next question in the DLR. If the student pro-
vides an incorrect answer, the system launches a remedial
sub-dialogue and then returns to the main line of reasoning
after the sub-dialogue has completed. If the system is un-
able to understand the student’s response then it completes
the step for the student. Rimac asks mainly short answer
questions to improve the recognition of student responses as
shown in Figure 2, which illustrates the system’s follow-up



to correct, partially correct and incorrect answers.
Rimac’s dialogues are structured as hierarchical plan net-

works where a parent node abstracts over its child nodes [8].
For example, a parent node of “travel to Chicago” may be
decomposed into more detailed child nodes such as “buy an
airplane ticket to Chicago”, “go to the airport”, etc. which
in turn may be decomposed into even more detailed nodes.
In the case of tutoring physics, the upper-level parent nodes
represent the problem solving strategy. See Figure 3 for an
example of part of a plan network for one of the Rimac di-
alogues we are using in our testing.

The adaptive version of Rimac uses a decision algorithm to
decide whether, after eliciting a parent node, to expand the
parent node and elicit its child nodes. For this formative
evaluation of the algorithm, we selected the nodes where
decisions should be made instead of treating each non-leaf
node as a potential decision point.

For example, in reference to the plan network in Figure 3,
both example dialogues in Figure 4 first elicit the top child
nodes of “(2) Determine net force” and “(3) Determine verti-
cal acceleration” for the parent node “(1) Solve RQ”. Notice
that there are further decisions to make concerning how to
elicit each node. When eliciting “(2) Determine net force”
the system elicits one of the child nodes “(4) Identify forces”
instead of directly eliciting “(2) Determine net force”. For
this experiment we left the decision about how to elicit each
node to our content specialists and this was static and iden-
tical across both versions of the system.

Neither of the child nodes “(2) Determine net force” and
“(3) Determine vertical velocity” is expanded further in the
dialogue example in Figure 4 (left), which was generated by
the adaptive version of the system. Instead, the dialogue
moves on to elicit a new sibling node not shown in the plan
network. However, in the dialogue example on the right in
Figure 4, the system decides to expand all decomposeable
nodes further [i.e., “(2) Determine net force” and “(3) De-
termine vertical acceleration”]. The decision about whether
to elicit one node or multiple nodes before expanding those
nodes is again left to the content specialist and is static and
identical across both versions of the system.

Thus, the dialogue for the adaptive version of the system
would range between that shown by the dialogue on the
left in Figure 4, where none of the target parent nodes is
expanded, and that shown by the dialogue on the right where
the algorithm decides to expand every target parent node.

3. CONTINGENT STEP DECOMPOSITION
In the adaptive version of Rimac that we are testing, we

use a student model that is initialized with the student’s
pre-test scores for the knowledge components (KCs) that
need to be applied to arrive at the correct answer to the
reflection questions presented to students. In future versions
of the system (but not in this current test) we will update
the student model during the discussions with the tutor in
an attempt to reflect students’ learning.

The adaptive version of the system consults the student
model at every decision point to predict whether the student
is likely to need the current step decomposed into simpler
steps. Two types of decision points occur: (1) after a re-
flection question (RQ) is answered by the student and (2)
when it is possible to further decompose a step into sub-
steps. In the former case the reflection question is the top
node in the plan network and is decomposed by engaging in

(1) Solve'RQ

(2)'Determine'net'force (3)'Determine'vertical
acceleration

(4) Identify'forces (5) Determine'''
vertical
net'force

(8) Apply'
definition' of
net'force

(9) Compute''
vertical
net'force

(11) Get'definition'
of'net'force

(6) Apply'Newton’s
Second'Law

(7) Compute''vertical
acceleration

(10) Get'definition'
of'NSL

Figure 3: Extract of plan network for responding to
the RQ in Figure 1.

a discussion of the reasoning with the student (i.e., it elicits
some subset of child nodes). For every decision point a set
of prerequisite KCs have been identified that are expected
to predict whether the student sufficiently knows the knowl-
edge expressed in the child nodes (sub-steps). The student’s
scores for that set of KCs are evaluated to decide whether
or not to decompose the node (step) further.

Let KCD be the set of KCs associated with decision point
D where KCd ∈ KCD, ai is the score ∈ {1, 0} for a pre-test
item that tests KCd and n is the number of test items testing
KCd. Let SD be the set of scores for KCs associated with
decision point D where Sd ∈ SD, Sd is the score for KCd

and Sd is defined as:

Sd = 1/n

n∑
i=1

ai (1)

Finally, let TD be the score for decision point D where TD

is defined as:

TD = min(SD) (2)

We consider a student with TD >= .8 as very knowledge-
able about the content that could be skipped, TD >= .5
as having medium-level knowledge, and TD < .5 as having
low-level knowledge.

The algorithm applied at each decision point D is defined
as:

if RQ node & node correct & TD >= .8 then
do not expand the RQ node

else if RQ node & (node incorrect OR TD < .8) then
expand the RQ node

else if node correct & TD >= .5 then
do not expand the node

else if node incorrect OR TD < .5 then
expand the node

end if

To simplify implementation for this experiment, the child
nodes of an RQ node have identical KCD and are a subset
of KCD for the RQ node. In future work, we will adjust
each node’s KCD to more specifically reflect the content of
its child nodes.

4. METHODS



Tutor/said: Let's'begin'the'same'way'that'we'started'the'
horizontal'motion'question:'by'stating'the'relevant'forces'on'the'
arrow.'Recall'that'we'looked'at'the'applied'forces'because'they'
can'cause'the'velocity'to'change.
Tutor/said: So,'can'you'please'tell'me'what'the'vertical)forces on'
the'arrow'are?
You/said: gravity
Tutor/said: Very'good.'Since'we'know'that'the'force'of'gravity'is'
acting'on'the'arrow,'what'does'that'mean'about'the'arrow's'vertical)
acceleration (zero,'nonzero,'etc)?
You/said: nonzero
Tutor/said:Okay!'Since'we'know'that'the'vertical'acceleration'of'
the'arrow'is'nonzero,'we'can'use'this'fact'to'gather'information'
about'its'vertical'velocity.

1,
2,
4

3

Tutor/said: Let's'begin'the'same'way'that'we'started'the'
horizontal'motion'question:'by'stating'the'relevant'forces'on'the'
arrow.'Recall'that'we'looked'at'the'applied'forces'because'they'
can'cause'the'velocity'to'change.
Tutor/said:/So,'can'you'please'tell'me'what'the'vertical'forces'on'
the'arrow'are?
You/said:/gravity
Tutor/said:/Sounds'good.'Since'we'know'that'the'force'of'gravity'
is'acting'on'the'arrow,'what'does'that'mean'about'the'arrow's'
vertical'acceleration'(zero,'nonzero,'etc)?
You'said:'nonzero
Tutor/said:/Excellent.'Again,'let's'make'sure'you'understand'this'
connection'by'referencing'the'definition'of'net'force.
Tutor'said:'Can'you'please'tell'me'the'definition'of''net'force'?
You/said:/sum'of'forces
Tutor/said:/Excellent.'And'knowing'that'gravity'is'the'only'vertical'
force,'what'can'you'say'about'the'vertical'net'force'on'the'arrow'
(zero,'nonzero,'etc.)?
You/said:/nonzero
Tutor/said:/Yes,'I'agree.'Now'that'we'know'the'vertical'net'force,'
we'can'find'the'vertical'acceleration.'There'is'a'law'that'can'help'
us'do'that'by'relating'net'force'and'acceleration.'What'is'that'law?
You/said:/f=ma
Tutor'said:'Very'good.'We'can'use'that'equation'which'is'Newton's'
Second'Law.

1,
2,
4

3

5,
8,
11

3,
6,
10

9

Plan/
nodes

Plan/
nodes

Figure 4: The adaptive dialogue on the left represents the non-expanded network in Figure 3 and the adaptive
dialogue on the right represents the fully expanded network (as in the control version of the system).

We are testing two versions of the system: one that always
decomposes a target parent node into simpler child nodes
regardless of the student’s knowledge of the content to be
discussed and a second one that decomposes target parent
nodes into simpler nodes or not, based on the student’s pre-
test performance on items that target the knowledge needed
to answer the RQ correctly. The second (adaptive) version
of the system follows the algorithm described in the previous
section.

4.1 Participants
The initial comparison of the two versions of Rimac was

conducted within high school physics classes at one school
in the Pittsburgh PA area. The study followed the course
unit on dynamics with a total of 44 students participating.
Students were randomly assigned to one of the two condi-
tions: the non-adaptive control condition (N= 22), and the
adaptive experimental condition (N=22). We are currently
collecting data from additional high school physics classes
in four other schools in the Pittsburgh PA area.

4.2 Materials
Students interacted with one of the two versions of Ri-

mac to discuss the physics conceptual knowledge associated
with two quantitative dynamics problems. These problems
and their associated reflective dialogues (two to three di-
alogues per problem) were developed in consultation with
high school physics teachers.

An online, automatically scored 19 item, multiple-choice
pre-test and isomorphic post-test (that is, each question was
equivalent to a pre-test question, but with a different cover
story) was used to measure learning differences in students’
conceptual understanding of physics from interactions with
the system. Each test item was assigned a grade between
0 and 1 and scores for each item were totaled so that the

maximum score possible was 19.

4.3 Procedure
On the first day, the teacher gave the on-line pre-test in

class and assigned the two dynamics problems. During the
next one to two class days (approximately 90 minutes to-
tal) and as homework, for each assigned problem students
solved the problem on paper and then watched a video of
a sample, worked-out solution in one of the two versions of
Rimac and engaged in two to three “reflective dialogues” af-
ter each problem-solving video. The videos demonstrated
how to solve the problem only (as shown in Figure 2, which
displays the end of video snapshot on the left) and did not
offer any conceptual explanations. Hence we do not believe
that the videos contributed to learning gains. Finally, at the
next class meeting, the teacher gave the on-line post-test.

5. INITIAL RESULTS
We analyzed the data to determine whether students who

interacted with the tutoring system learned, as measured
by differences from pre-test to post-test, regardless of their
treatment condition (i.e., which version of Rimac they were
assigned to use), whether there was a difference in learning
gains between conditions and whether there was a difference
in time on task between conditions to complete both prob-
lems and their associated reflection questions and dialogues.

5.1 Learning Performance
When comparing differences from pre to post-test using

a paired samples t-test, for all students combined post-test
scores were significantly higher than pre-test scores (t(43) =
6.305, p < 0.001, d = .805) and post-test scores were signif-
icantly higher than pre-test scores for students in both the
experimental condition (t(21) = 5.881, p < .001, d = 1.017),
which adaptively decomposes the highest node in the plan
network or not (depending on students’ pre-test scores) and



selected sub-nodes, and the control condition (t(21) = 3.385,
p = .003, d = .6451), which always decomposes those nodes
that can be decomposed (i.e., all but the leaf nodes) in the
plan network. These results suggest that students in the two
conditions learned from both versions of the system.

When comparing the performance of the students who
used the control version of the system to the students who
used the experimental version of the system, using an inde-
pendent samples t-test, there were no significant differences
in the pre to post-test gain (t(42) = .995, p = .325, d =
.300) nor in the normalized gain (t(42) = 1.226, p = .113,
d = 1.124). Thus, as we hypothesized, the adaptive ver-
sion of the system was not detrimental to students’ learning,
which suggests that the adaptive version of the system may
have been decomposing just the target nodes that students
needed to have decomposed.

5.2 Efficiency of Learning
When comparing the time on task of students who used

the control version of the system to students who used the
experimental version of the system, using an independent
samples t-test, there were significant differences in the time
on task to complete both problems (t(23) = 1.879, p = .037,
d = .567). The mean time on task for the experimental con-
dition was 2653.9 seconds (about 44 minutes) and for the
control condition was 6801.5 seconds (about 1 hour and 53
minutes). The average difference in time spent between con-
ditions was about 1 hour and 9 minutes. Thus students in
the experimental condition spent significantly less time yet
learned similar amounts to students in the control condition
in which all target nodes were decomposed. This suggests
that the version of the system used in the experimental con-
dition may have accurately decided to decompose the target
nodes that individual students needed to have decomposed.

5.3 Additional Measures
We also explored the frequency with which higher-level

target nodes were actually decomposed by examining TD

values for all students in the experimental condition for the
second problem. All but 2 of the 22 students needed at
least 1 target node decomposed. The average number of
decompositions of target nodes was 5.14 with a minimum of
0 and a maximum of 10. Given that most students needed
some target nodes decomposed, this further suggests that
the decision algorithm in the experimental version of the
system may have been accurate in its decisions about when
to decompose target nodes.

In future work, we also need to explore the degree to
which the algorithm may be deciding unnecessarily that tar-
get nodes need to be decomposed (e.g., the thresholds need
to be adjusted or the pre-test is not a good measure for
determining when a node needs to be decomposed). Miss-
ing a necessary decomposition is likely to be detrimental to
student learning. We can test for this possibility in future
work by creating another control version of the system that
never decomposes a target node when a student is able to
answer it correctly. If the algorithm is unnecessarily de-
composing nodes infrequently, we hypothesize that students
who use the experimental version of the system will learn
significantly more than students who use the new control
version.

6. PRELIMINARY CONCLUSIONS AND FU-
TURE WORK

We are exploring the effectiveness of a simple algorithm
that decides whether or not to decompose a step in a line of
reasoning during tutorial dialogue. We developed two ver-
sions of the Rimac system to test its effectiveness: one con-
trol version that always decomposes a step regardless of the
student’s knowledge level on the content involved and one
experimental version that decides whether or not to decom-
pose a step based on the student’s knowledge of the content
involved in the step.

We found that students who used the experimental (adap-
tive) version of the system, which incorporates the simple
decision algorithm, learned similarly to those students who
used the control (non-adaptive) version of the system, but
that the students who used the experimental version of the
system were able to complete the same number of problems
in less than half the time that it took students who used
the control system. This suggests that the algorithm was
effective in deciding when a step should be decomposed.

In future work we will continue to analyze the number of
node decompositions that occur for students who use the
adaptive system and we will test a version of the system
in which there are never any decompositions of target nodes
that are answered correctly to further test the validity of our
decision algorithm. We will also explore additional adapta-
tions that traverse the plan network in different ways. After
we have fine-tuned and validated our decision algorithm, we
will explore whether the algorithm will transfer to other tu-
torial dialogue domains.
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