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Abstract: in this paper the speed gradient method is applied to design an ad-

justment algorithm for parameters of neural network controller. Local quadratic 

criterion expresses generalized error of desired trajectory tracking. Continuous 

adjustment laws for neural network parameters and their discrete analogies are 

derived on base of speed gradient method. To illustrate an approach, the math-

ematical model of underwater robot is taken. Numerical experiments had con-

firmed. 
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1 Introduction 

This paper is devoted to an application of speed gradient method to derive parame-

ter adjustment (adaptation, learning) laws for multilayer neural network (NN) which is 

used to implement underwater robot (UR) control. 

Underwater robots (UR) promise great perspectives and have a widest scope of ap-

plications in the area of ocean exploration and exploitation. To provide exact move-

ment along prescribed space trajectory, UR needs a high quality control system. It is 

well known that UR can be considered as multi-dimensional nonlinear and uncertain 

controllable object. Hence, the design procedure of UR control laws is difficult and 

complex problem [4, 10].  

Modern control theory has derived a lot of methods and approaches to solve appro-

priate synthesis problems such as nonlinear feedback linearization, adaptive control, 

robust control, variable structure systems etc [1, 5, 6]. However, most of mentioned 

methods of control systems synthesis essentially use information about structure of the 

UR mathematical model. The nature of interaction of a robot with water environment 

is so complicated that it is hardly possible to get exact detailed equations of UR 

movement. Possible way to overcome control laws synthesis problems can be found in 

the class of artificial intelligence systems, in particular, based on multi-layer neural 

networks (NN) [1, 2, 7]. 
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Recently a lot of publications were devoted to the problems of NN identification 

and control, beginning from the basic paper [7]. Many papers are associated, in par-

ticular, with applications of NN to the problems of UR control [1, 2, 8]. 

Conventional applications of multi-layer NN are based on preliminary network 

learning. As a rule, this process is minimization of criterion that expresses summary 

deviations of NN outputs from desirable values with given NN inputs. Network learn-

ing results in NN weight coefficients adjustment. Such approach supposes the 

knowledge of teaching input-output pairs [7, 9]. 

The feature of NN application as a controller consists in the fact that desirable con-

trol signal is unknown in advance. Desirable movement trajectory (program signal) can 

be defined only for the whole control system [1, 2]. 

So, application of multi-layer NN in control tasks demands a development of ap-

proaches, which take into account dynamical nature of controllable objects. 

In the paper the intelligent NN based control system for UR is designed. New 

learning algorithm for intelligent NN controller that uses speed gradient method is 

proposed. Numerical experiments with control system containing designed NN con-

troller were carried out for cases of varying parameters and expressions for viscous 

torques and forces. Results of modeling are discussed. 

Note that a choice of NN regulator is connected with principal orientation of neural 

network approach to a priori uncertainty that characterizes UR. In fact, matrices of 

inertia of UR rigid body are unknown exactly as well, as these of added water masses. 

Forces and torques of viscous friction are of unknown functional structure and also 

uncertain. Hence, UR can be considered as controllable object with partial parameter 

and structure uncertainties. 

2 Underwater robot model  

UR mathematical model traditionally consists of differential equations of kinemat-

ics  

 
211 )( qqJq   (1) 

and dynamics 

 UqqGqqqBqqD  ),(),()( 2122121
  (2) 

where J the kinematical matrix; q1, q2 the vectors of generalized coordinates and 

body-fixed frame velocities of UR; U the control forces and torques vector; D the iner-

tia matrix taking into account added masses of water; B the Coriolis – centripetal term 

matrix; G the vector of generalized gravity, buoyancy and nonlinear damping forc-

es/torques [4].  

Poor a priori knowledge of mathematical structure and parameters of matrices and 

vectors of the UR model can be compensated by intensive experimental research. As a 

rule, this way is expansive and takes a long time. One of perspective alternative ap-

proach is connected with usage of intelligent NN control 
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3 Intelligent NN controller and learning algorithm derivation 

Our objective is synthesis of underwater robot NN controller to provide its move-

ment along prescribed trajectory qd1(t), qd2(t). 

First we consider the control task with respect to velocities qd(t). Define error 

 222 qqe d   (3) 

and introduce the local criterion (performance index) Q as measure of difference 

between desirable and real trajectories: 

 
22

2

1
DeeQ T  (4) 

Further we use the speed gradient method developed by [5, 6]. The main idea of 

speed gradient method consist in such adjustment of available controlled parameters 

that time derivative of chosen local or integral criterion (or their combina-

tions)calculated along a system trajectory tends to negative value. If this is a case, a 

criterion which expresses an aim of control is minimizing. According to the method, 

compute time derivative of Q: 
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as  

 222 eqq d   (6) 

one has 

 212121 )()()( eqDqqDqqD d
   (7) 

Using expression of first term from dynamics equation, one can get the following: 
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and time derivative of function Q can be written in the form 
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After terms reorganization, one get 
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As known, the matrix in last term is skew-symmetric, hence, this term is equal to 

zero and we have simplified expression: 

 ).),(),()(( 21221212 UqqGqqqBqqDeQ dd

T    (10) 

We plan to implement intelligent UR control [1] based on neural network. Without 

losing of generality of the approach, choose two-layer NN (Fig. 1). Let hidden and 

output layers have H and m neurons appropriately (m is equal to dimension of e2). For 

the sake of simplicity, one supposes that only summing of weighted signals (without 

nonlinear transformation) is realized in output layer. Input vector has N coordinates. 

 
X0=1 

X1 

Xi 

Xn 

i = 0…n 

… 

… 

j = 1…L 

f1 

fj 

fL 

k = 1…m 


 



… 

… 

… 

Y1 

Ym 

Input layer 
Hidden layer Output layer 

wij 

… 


 

Yk 

Wkj 

 1 

 

Fig. 1. Neural network structure 

Define wij as weight coefficient for i-th input of j-th neuron of hidden layer. So the-
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As result of nonlinear transformation f(), hidden layer output vector can be written 

in the form 
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where wk denotes k-th raw of matrix w. 

By analogy, introduce matrix W which element Wli denotes weight coefficient 

from i-th neuron of hidden l-th neuron of output layer. 

With defined NN parameters, the underwater robot control signal (NN output) is 

computed as following: 

 )x,w(Wf)x,w,W(yU   (13) 

Substitution of this control let us to get 
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To derive NN learning algorithm, apply the speed gradient method [5, 6]. For this, 

compute partial derivatives of function Q time derivative with respect to adjustable NN 

parameters – matrices w and W. 

Direct differentiation gives 

 ).,(2 xwfe
W
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 (15) 

It is easy to demonstrate that choosing of all activation functions in the usual form 
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imply property 
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Introduce additional functions 

 )](1)[()( xwfxwfxw
T

ii

T

ii

T

ii   (18) 

and matrix 
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Direct calculation gives 
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As a final stage, we can write the NN learning algorithm in following form: 

 
                

      

               
     

 
 (21) 

( is learning step, k is number of iteration). 

Now consider which components should be included in NN input vector. As NN 

controller is oriented to compensate an influence of appropriate matrix and vector 

functions, in common case the NN input vector must be composed of q1, q2, e2, qd2 and 

its time derivative. 

The NN learning procedure leads to reducing of function Q, consequently in ideal 

conditions, error e2 tends to zero and the UR movement follows to desirable trajectory 

 )()( 22 tqtq d  (22) 

If UR trajectory is given by qd1(t), one can choose  

 ))()(()()(()( 1111

1

2 tqtqktqqJtq ddd     (23) 

(k is positive constant). As follows from kinematics equation, 

 ))()(()()( 1111 tqtqktqtq dd    (24) 

and 

 0)()( 11  tkete  (25) 

where  

 )()()( 111 tqtqte d   (26) 

Hence, UR follows to the planned trajectory qd1(t). 

4 Simulation results of intelligent NN controller 

To check the effectiveness of the approach, computer simulations have been car-

ried. The UR nominal model parameters were taken from [8]. Parameters of UR are: 

ARB DDD  , where RBD  [1000 0 200; 0 1000 0; 200 0 11000] - system inertia 

matrix for the rigid body, AD [1000 0 100; 0 1100 80; 100 80 9000] - matrix of 

hydrodynamic added mass, B [210 20 30; 25 200 70; 15 33 1500], G [0; 0; 0]. 

Let consider the nominal model (with added mass) and reduced one. 

Vector q2 consists of following components (linear and angular UR velocities): 
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  Tyzx vvq 2  (27) 

Dimensions of NN input (q2 and e2) and output (control forces and torque) are 

equal to 6 and 3. 

  Tyzx MFFU   (28) 

For the NN controller containing 10 neurons in the hidden layer, the simulation re-

sults are given on Figs. 2 – 10. In the considered numerical experiments, the desired 

trajectory was taken as follows: 
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Transient processes and control for taken nominal model are shown on Fig. 2 - 4. 

 

Fig. 2. Transient processes (nominal model) 
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Fig. 3. Control signals (nominal model) 

 

Fig. 4. Performance index (nominal model) 

Fig. 5 - 7 present the same processes for the case of reduced UR added masses. 
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Fig. 5. Transient processes (reduced model) 

 

Fig. 6. Control signals (reduced model) 
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Fig. 7. Performance index (reduced model) 

The exact description of hydrodynamic forces and torques is practically impossible. 

In the nominal model [5] viscous friction was linear with respect to generalized veloci-

ties. The effectiveness of the designed NN controller was also proved and confirmed 

for quadratic (Fig. 8 - 10) function of viscous friction forces (torques). 

 

Fig. 8. Transient processes (quadratic viscous friction) 
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Fig. 9. Control signals (quadratic viscous friction) 

 

Fig. 10. Performance index (quadratic viscous friction) 

Computer experiments had demonstrated control system stability and high quality 

of transient processes for different situations of parameters and partial structure uncer-

tainties of UR dynamics. 
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For all considered cases, as seen from simulation results (Figs. 4, 7. 10), perfor-

mance index (criterion) Q is reducing during transient processes. 

5  Conclusion 

The approach based on speed gradient method is proposed and applied to design an 

intelligent NN controller for underwater robot control system and to derive its learning 

algorithm. The numerical experiments have shown that high quality processes can be 

achieved with proposed intelligent NN control. The procedure of NN learning makes 

possible for UR control system to overcome parameter and, partially, structural uncer-

tainties of dynamical object. 
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