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Abstract. We consider a Facility Location Problem in the case where an in-
stances are unbounded above independent random variables with exponential
and truncated normal distribution. A probabilistic analysis of the approxima-
tion algorithm with polynomial time complexity is presented. Explicit evalua-
tions of the performance guarantees are obtained and sufficient conditions for
the algorithm to be the asymptotically optimal are presented.
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Introduction

A class of the Facility Location Problem (FLP) is emphasized in the separate branch
of Discrete Optimization and widely distributed in Operations Research and Informat-
ics [1, 3]. The well known problem in this class is the so-called Simple Plant Location
Problem, which is one of the NP -hard problems in Discrete Optimization. For study-
ing of polynomial approximation algorithms for FLP is devoted a large amount of
literature [1, 3, 7, 14, 15]. This problem occurs by selecting locations for facilities and
customer’s service place so as to minimize the total cost for opening facilities and
service the demand.

For NP -hard problems in Discrete Optimization in the case when input data is a
random value is actual a probabilistic analysis of simple polynomial time complexity
approximation algorithms [13, 12, 9]. One of the first examples of probabilistic analysis
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was presented by Borovkov, A. [2] for Travel Salesman Problem. In order to characterize
the quality of the solution produced by the algorithm on the random input are selected
the relative error εn and failure probability δn [4].

In this paper we consider a probabilistic analysis of algorithm for solving the Un-
capacitated FLP on unbounded above random input data with the exponential and
truncated normal distribution. We obtain estimates of the relative error, the failure
probability of the algorithm and the sufficient conditions of asymptotic optimality of
the algorithm.

1 Formulation of the Problem

Consider the mathematical formulation of the Uncapacitated Facility Location Problem
(UFLP) [3]:

L(X) =
∑
i∈I

c0ixi +
∑
i∈I

∑
j∈J

cijxij−→ min
X

; (1)

∑
i∈I

xij = 1, j ∈ J ; (2)

0 ≤ xij ≤ xi, i ∈ I, j ∈ J ; (3)

xi ∈ {0, 1} , i ∈ I, (4)

I = {1, 2, ...,m} is the set of the possible facility locations;
J = {1, 2, ..., n} is the set of the demand points;
c0i is the the initial cost of the facility placing at location i;
cij is the cost of servicing a demand point j by an open facility at location i;
X = (xi)(xij) is the solution of UFLP, where xi is a boolean variable indicates

that facility at location i ∈ I is open, xij indicates that open facility i ∈ I servicing a
demand point j ∈ J .

The goal is to find a set of facilities to open Ĩ ⊆ I, Ĩ ≠ ∅ which allows to satisfy all
of the demand points with a minimum total cost.

The problem (1)–(4) is NP -hard because it reduces to the Set Covering Problem [6].
In [8] is represented a polynomial approximation algorithm for solving the prob-

lem (1)–(4) from class K̃mn(an, bn; a
0
n, b

0
n) with elements of matrix (cij), i ∈ I, j ∈ J

and vector (c0i ), i ∈ I, from intervals [an, bn] and [a0n, b
0
n], an and b0n non-negative

accordingly. Performance guarantees of the algorithm and conditions of asymptotic op-
timality are obtained when the elements of the matrix (cij) is independent identically
distributed random variables defined on a limited interval with uniform distribution
function F, where F(ξ) ≥ ξ, 0 ≤ ξ ≤ 1 for values ξij = (cij − an)/(bn − an).

The work [9] devoted to the probabilistic analysis of several greedy approximation
algorithms for UFLP with input data generated by choosing n random points in the
unit square, where each point is represented as a demand point, as well as a possible
facility location, i.e. sets I and J match. The authors proposed the conditions of
asymptotic optimality for the problem with the same opening costs of the facilities:
c0i = βn, i ∈ I.
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In this paper performed a probabilistic analysis of polynomial approximation algo-
rithm for solving UFLP in a class of the K̃nn(1,∞; b0n) under the following assumptions:

1) The locations of demand points and possible facility locations match: I = J and
m = n.

2) The initial cost for opening facilities alike: c0i = b0n, i ∈ I.
3) Off-diagonal elements of the matrix (cij) is independent identically distributed

random variables from an unbounded above interval (bn = ∞) with a lower limit,
without loss of generality, equals to 1.

4) Probabilistic analysis is performed for two distribution functions: exponential
with a parameter αn and truncated normal distribution with parameter σn.

As a result of the probabilistic analysis we obtain corresponding estimates of the rel-
ative error and the failure probability of the algorithm and present sufficient conditions
for asymptotic optimality.

Further for convenience we will have to deal with the matrix (c̃ij) which off-diagonal
elements are defined as c̃ij = cij − 1, i, j ∈ J .

Obviously the objective function L(X) of the original problem is associated with
the objective function F(X) the problem with shifted matrix (c̃ij)

L(X) = n+ F(X).

Denote

γn =

{
αn, in the case of exponential distribution;
2σn, in the case of truncated normal distribution.

2 Algorithm Ã in the Case of Exponential Distribution

We describe an approximate algorithm Ã, modifying itself from work [8]:

1. Calculating the parameters m0 m̃ by the formulas:

m0 =

√
nαn

b0n
,

m̃ = ⌈m0⌉ .

Next we assume that number of the points with open facilities does not exceed the
number of the point where is no facilities, i.e. at least m̃ < n/2.

2. Choosing a subset Ĩ ⊂ J , consisting of the last m̃ elements of the vector (c0i ), i ∈ J .
We assume J̃ = J \ Ĩ, ñ = |J̃ |.

3. Compute the vector of destinations (ij), j ∈ J̃ , where

ij = argmin{c̃ij |i ∈ Ĩ}, j ∈ J̃ .

4. As a result of the algorithm Ã choose solution X̃ = (x̃i)(x̃ij), where:

x̃i =

{
1, i ∈ Ĩ;
0, i /∈ Ĩ, x̃ij =

{
1, i = ij ,
0, i ̸= ij .
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By issuance of the solution X̃ and the objective function L̃ = L(X̃) algorithm Ã
completes its work.

The complexity of the algorithm Ã is :O(m̃n) [8].

3 Probabilistic Analysis of Algorithm Ã

In the analysis of the algorithm we will use the following notions [4]:

Definition 1. We say that the algorithm A has estimates εAn , δ
A
n in class Kn of min-

imization problems of dimension n if

P
{
fA >

(
1 + εAn

)
f∗} ≤ δAn ,

where εAn is the relative error and δAn is the failure probability of the algorithm A, f∗

is the optimal solution and fA is the solution found by the algorithm A.

The algorithm is called asymptotically optimal in the problem class K =
∞∪

n=1
Kn, if

there are some estimates εAn , δ
A
n for it such that εAn , δ

A
n → 0 as n → ∞.

To prove the main theorem we use:

Theorem 1. Petrov, V. [5] Let X1, . . . , Xn are independent random variables and for
some positive constants T and hj , j = 1, . . . , n, such that for all t, 0 ≤ t ≤ T

EetXj ≤ e
1
2hjt

2

, j = 1, . . . , n.

We set H =
n∑

j=1

hj and S =
n∑

j=1

Xj, then:

P{S > x} ≤

{
exp

{
− x2

2H

}
0 ≤ x ≤ HT,

exp
{
−xT

2

}
x > HT.

In the case of an exponential distribution with parameter αn, the density of the
off-diagonal elements of the matrix (c̃ij) is as follows:

p(x) =

{
1
αn

ex/αn , 1 ≤ x < ∞,

0, othewise,

the corresponding distribution function is:

F(x) = P{c̃ij < x} = 1− e−x/αn .

Lemma 1. For the expectation and variance of the random variable

Cm̃ =
∑
j∈J̃

min
1≤i≤m̃

c̃ij ,
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where c̃ij is independent random variables with the same distribution function F(x) =
1− e−x/αn , 0 ≤ x ≤ ∞, the following estimates are valid:

ECm̃ =
ñαn

m̃
, (5)

DCm̃ =
ñα2

n

m̃2
. (6)

Proof. By calculating the vector of the destination at Step 3 of the algorithm Ã we
chose minimum among of m̃ independent random variables c̃ij for a fixed j ∈ J̃ . Denote
this random variable as ξj(m̃) = min

1≤i≤m̃
c̃ij . The total cost of servicing obtained by the

algorithm Ã denote as Cm̃ =
ñ∑

j=1

ξj(m̃).

By choosing the solutions X̃ with algorithm Ã we have

F̃ = F(X̃) =
m̃∑
i=1

c0i +
ñ∑

j=1

ξj(m̃) = m̃b0n +Cm̃, (7)

The distribution function of a value ξj(m̃) equal to

F (ξj(m̃)) = 1− (1− F (x))m̃.

Eξj(m̃) =

∞∫
0

xm̃(1− F (x))m̃−1dF (x) =

∞∫
0

xm̃e−
xm̃
αn

αn
dx =

= −xe−
xm̃
αn

∣∣∣∞
0

+

∞∫
0

e−
xm̃
αn dx = −αn

m̃
e−

xm̃
αn

∣∣∣∞
0

=
αn

m̃
.

For the expectation of the value Cm̃ we have:

ECm̃ =
ñ∑

j=1

Eξj(m̃) =
ñαn

m̃
.

Dξj(m̃) = Eξj(m̃)2 − (Eξj(m̃))2 =

∞∫
0

x2(1− F (x))m̃−1dF (x)− α2
n

m2
=

=

∞∫
0

x2m̃e−
xm̃
αn

αn
dx− α2

ñ

m̃2
= −x2e−

xm̃
αn

∣∣∣∞
0

+ 2

∞∫
0

xe−
xm̃
αn dx− α2

n

m̃2
=

α2
n

m̃2
.

Estimate the variance of the random variable Cm̃:

DCm̃ =
ñ∑

j=1

Dξj(m̃) =
ñα2

n

m̃2
.
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Lemma 2. Algorithm Ã provides a solution such that for the objective function F̃ valid
the upper bounds:

F̃ ≤ m̃βn + (1 + ε′ñ)
ñαn

m̃
, m̃ <

√
ñαn/βn, (8)

F̃ ≤ (2 + ε′n)
√
ñβnαn, m̃ ≥

√
ñαn/βn, (9)

where ε′n =
√
lnn/n → 0, n → ∞.

Proof. Consider steps 2.2 and 2.3 of algorithm Ã. From Lemma 1 and equation (7)
follows

F̃ ≤ m̃βn +
ñαn

m̃
= F̂

F̂′
m̃ = βn − ñαn

m̃2

We study the behavior of the objective function with respect to the point m0 =√
nαn/βn. When m < m0 and εn =

√
lnn/n → 0, n → ∞:

F̃ = F(X̃) =
m̃∑
i=1

c0i +
∑
j∈J̃

min
1≤i≤m̃

cij = m̃βn +Cm̃ ≤ m̃βn +
nαn

m̃
= F̂

We show with high probability

F̃ ≤ m̃βn + (1 + ε′n)
nαn

m̃
= F̂.

Actually,

P{F̃ > m̃βn + (1 + ε′n)Cm̃} ≤ P{Cm̃ > (1 + ε′n)ECm̃} ≤

≤ P{|Cm̃ − ECm̃| > ε′nECm̃} ≤ DCm̃

(ε′nECm̃)2
=

1

lnn

From the mentioned above it is clear that with such select of the parameter m̃ the
upper bound of objective function F̂ derived as the result of algorithm Ã, for small εn,
is close to its minimum value.

Lemma 3. [10] For non-negative real x and γ,

1 + x+ γx2 ≤ ex · e(γ−0,5)x2

.

4 Main Result

Theorem 2. Let the elements of service costs c̃ij be an independent identically dis-
tributed random variables with values in the unbounded above interval [1,∞), having
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exponential or truncated normal distribution with parameters αn or σn. Algorithm Ã
finds the solution with conditions of asymptotic optimality

αn = o
(√

n

lnn

)
, (10)

βn = O
(√

n

lnn

)
, (11)

and with the relative error and the failure probability

εAn = O
( 1

lnn

)
, (12)

δAn = exp
{
− 3

8
n
}
. (13)

Lemma 4. Let X̃j = ξj(m̃), j = 1, . . . , ñ. Put T = m̃
2αn

and hj =
3α2

n

m̃2 , j = 1, . . . , ñ.
Then, for every j = 1, . . . , ñ and t, 0 ≤ t ≤ T , the following hold:

Eet
(
X̃j−EX̃j

)
≤ exp

(hjt
2

2

)
.

Proof.

EetX̃j =

∞∫
0

etxdF (ξj(m̃)) =

∞∫
0

m̃

αn
etxe−xm̃/αndx =

=
m

αn

e(t−m̃/αn)x

t− ˜̃m/αn

∣∣∣∞
0

=
m/αn

m̃/αn − t
=

1

1− tαn/m̃
.

Because 0 ≤ t ≤ T and T = m̃
2αn

, then using Lemma 3, we have

EetX̃j =
1

1− tαn/m̃
=

∞∑
k=0

(
tαn

m̃

)k

= 1 +
tαn

m̃
+

t2α2
n

m2

(
1

1− tαn/m̃

)
≤

≤ 1 +
tαn

m̃
+

2t2α2
n

m̃2
≤ exp (tαn/m̃) exp

(
1, 5t2α2

n/m̃
2
)
.

Thereby,

Eet
(
X̃j−EX̃j

)
≤ exp

(
1, 5t2α2

n/m̃
2
)
≤ exp

(
hjt

2/2
)
.

Proof. Theorem 2.
From Lemma 4 follows that it variables X̃ ′

j = X̃j − EX̃j , 1 ≤ m̃ ≤ ñ satisfy the
conditions of the Petrov theorem.

Denote S =
ñ∑

j=1

X̃ ′
j . Put T = m̃

2αn
and H =

ñ∑
j=1

hj =
3ñα2

n

m̃2 , we have

HT =
3ñαn

2m̃
.
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Let us estimate the failure probability δAn of algorithm Ã with the obvious inequal-

ities F∗ ≥ ñ and EF̃ ≤ m̃βn + ECm̃ = ÊF̃:

P
{
FÃ > (1 + εAn )F

∗} ≤ P
{
F̃ + ñ > (1 + εAn )ñ

}
≤ P

{
m̃βn +

ñ∑
j=1

X̃j > ñεAn
}
≤

≤ P
{ ñ∑

j=1

X̃j > εAn ñ− m̃βn

}
≤ P

{ ñ∑
j=1

X̃ ′
j > εAn ñ− (m̃βn +

ñαn

m̃
)
}
. (14)

Since m0 ≤ m̃ ≤ m0 + 1 and m0 =
√

nαn

βn
, we have

(m̃βn +
ñαn

m̃
) ≤ (m0 + 1)βn +

ñαn

m0
= 2

√
ñαnβn + βn

.

We extend inequality (14), by denoting εAn ñ− (2
√
ñαnβn + βn) =

3n
2 lnn :

P
{
S > εAn ñ

(
m̃βn +

ñαn

m̃

)
} ≤ P

{
S > εAn ñ− (2

√
ñαnβn + βn

}
= P

{
S >

3n

2 lnn
}.

Furthermore, to hence also the relative error of the algorithm we obtain

εAn =
3

2 lnn
+ 2

√
αnβn

ñ
+

βn

ñ
=

3

2 lnn
+ 2

√
αnβn

ñ
+

βn

ñ
.

With the conditions on αn and βn we have

εAn = O
( 1

lnn

)
→ 0 n → ∞.

Because

HT =
3ñαn

2m̃
≤ 3nαn

2m0
= 3/2

√
nαnβn ≤ 3n

2 lnn
= x

xT =
3n

2 lnn

m̃

2αn
≥ 3n

2 lnn

m0

2αn
=

3n

2 lnn

1

2

√
n

αβn
≥ 3n

4
,

by Petrov Theorem we have:

P {S > x} ≤ e−
xT
2 ≤ e−

3n
8 = δn.

So as εAn → 0, δAn → 0 when n → ∞, algorithm Ã is asymptotically optimal. Thus,
in the case of exponential distribution for independent identically distributed random
variables c̃ij holds Theorem 2, where γn = αn.
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4.1 Case of the Truncated-Normal Distribution

In the case of truncated normal law consider a symmetrical right half of the normal
law with density parameter σn for the off-diagonal elements of the matrix (c̃ij), having
the following form:

p(x) =

{
2√
2πσ2

n

e−u2/(2σ2
n), when an ≤ x < ∞,

0, otherwhise,

for the corresponding distribution function:

G(x) = P{c̃ij < x} =

x∫
0

2√
2πσ2

n

e−u2/(2σ2
n)du.

Definition 2. [11] We say that the distribution function F1(x) majorizes the distri-
bution function F2(x), if F1(x) > F2(x) for any x.

Lemma 5. [10] For any x ≥ 0 and σ > 0 inequality holds

x∫
0

√
2

πσ2
exp

(
− u2

2σ2

)
du ≥ 1− exp

(
− x

2σ

)
.

Lemma 6. [11] Let ξ1, . . . , , ξm be an independent identically distributed random
variables with the distribution function F(x), F̂(x) is a function of random variable
ξ = min

1≤i≤m
ξi, let η1, . . . , ηm be an independent identically distributed random variables

with the distribution function G(x), Ĝ(x) is function of random variable η = min
1≤i≤m

ηi.

Then, for any x
F(x) ≤ G(x) ⇒ F̂(x) ≤ Ĝ(x).

Lemma 7. [11] Let Pξ,Pη,Pχ,Pζ be a distribution functions of random variables
ξ, η, χ, ζ accordingly and ξ and η be independent, χ and ζ be independent. Then

(∀x Pξ(x) ≤ Pη(x)) ∧ (∀y Pζ(y) ≤ Pχ(y)) ⇒ (∀z Pξ+η(z) ≤ Pχ+ζ(z).

Lemma 8. [11] Let the distribution function F (x) of the random value c̃ij be such as

F (x) ≥ F ′(x). Then for algorithm Ã hold the same performance guarantees (εAn , δ
A
n )

in the case of input with the distribution function F ′(x).

Let F ′(x) = F(x) and F = G(x), from Lemmas 5 – 8 follows the validity of the
Theorem 2 in the case of a truncated-normal distribution.

5 Conclusion

In this paper a probabilistic analysis of approximation algorithm Ã presented by using
Petrov Theorem for Uncapacitated Facility Location Problem in the case when the
matrix of the elements of the costs is an independent identically distributed variables
from the unbounded above interval with exponential and truncated normal distribution.

The performance guarantees of the algorithm: the relative error and the failure
probability and sufficient conditions for its asymptotic optimality are presented.
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