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Abstract. We analyze the complexity status of one of the known discrete op-
timization problems where the optimization criterium is switched from max to
min. In the considered problem, we search in a finite set of Euclidean vectors
(points) a subset that minimizes the squared norm of the sum of its elements
divided by the cardinality of the subset. It is proved that if the dimension of the
space is a part of input then the problem is NP-hard in a strong sense. Also, if
the dimension of the space is fixed then the problem is NP-hard even for dimen-
sion 1 (on a line) and there are no approximation algorithms with guaranteed
approximation ratio unless P=NP. It is shown that if the coordinates of the
input vectors are integer then even a more general problem can be solved in a
pseudopolynomial time in case when the dimension of the space is fixed.

Keywords: Euclidean space, subset search, clustering, NP-hardness, pseudopoly-
nomial algorithms.

1 Introduction

The subject of study in the paper is one of the subset choice problems in a finite set
of Euclidean vectors (points). The aim of the study is analysis of its complexity status
and investigation of algorithmic approaches for it.

The investigation is motivated by poor (even almost no) understanding of the prob-
lem and its importance in applications, in particular, for mathematical problems of
clustering, machine learning, computer geometry, data analysis and data mining. The
problem is also interesting because the similar optimization problem with the opposite
criterium is NP-hard in a strong sense (see below), and finding out the complexity
status of the problems with opposite criteria is always an important theoretical study.

The paper is organized as follows. In the next section the formal definition of the
currently studied and related problems are given; some examples of applications (ori-
gins) of the studied problem are also presented. In Section 3 we prove two theorems
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on the complexity status of the problem (depending on whether the dimension of the
space is a part of input or not). Finally, in Section 4 we formulate the problem as
a series of integer linear programs and present a pseudopolynomial algorithm for it
in the case of fixed dimension and integer coordinates of the vectors. The algorithm
and linear programming formulation are applicable to a more general problem where
a lower bound on cardinality of the sought subset is imposed.

2 Problem Formulation, Its Origin, Motivation and Related
Problems

Everywhere below R denotes the set of real numbers, ∥ · ∥ denotes the Euclidean norm,
and ⟨·, ·⟩ denotes the scalar product.

We consider the following pair of problems.

Problem 1 (Subset with the Minimum Normalized Length of Vectors Sum). Given: a
set Y = {y1, . . . , yN} of vectors (points) from Rq. Find : a nonempty subset C ⊆ Y such
that

1

|C|

∥∥∥∑
y∈C

y
∥∥∥2 → min .

The similar maximization problem is

Problem 2 (Subset with the Maximum Normalized Length of Vectors Sum). Given: a
set Y = {y1, . . . , yN} of vectors from Rq. Find : a subset C ⊆ Y such that

1

|C|

∥∥∥∑
y∈C

y
∥∥∥2 → max .

Both problems have an evident geometrical treatment — search for a geometrical
structure with an optimal property (according to the corresponding objective function)
in a finite set of points of Euclidean space. Both problems can be interpreted as prob-
lems of optimal summing. Besides, both problems are induced by applications listed
below. Finally, note that for the objective function the equality

1

|C|

∥∥∥∑
y∈C

y
∥∥∥2 =

∑
y∈Y

∥y∥2 −
{∑
y∈C

∥y − y(C)∥2 +
∑

y∈Y\C

∥y∥2
}

(1)

holds, where y(C) = 1
|C|

∑
y∈C y is a geometric center (centroid) of the subset C.

In the right hand of the equality (1) the first sum is independent of C. Therefore,
the expression in the figure parenthesis can be considered as an objective function of
the following pair of problems (maximum and minimum) of clustering the set Y into
two subsets C and Y\C.

Problem 3 (Maximum Sum-of-Squares 2-Clustering with a Given Center). Given: a set
Y = {y1, . . . , yN} of vectors from Rq. Find : a nonempty subset C ⊆ Y such that∑

y∈C

∥y − y(C)∥2 +
∑

y∈Y\C

∥y∥2 → max .
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The similar minimization problem is

Problem 4 (Minimum Sum-of-Squares 2-Clustering with a Given Center).
Given: a set Y = {y1, . . . , yN} of vectors from Rq. Find : a subset C ⊆ Y such that∑

y∈C

∥y − y(C)∥2 +
∑

y∈Y\C

∥y∥2 → min .

It follows from (1) that Problems 3 and 4 are polynomially equivalent to Problems
1 and 2 respectively.

Recall that Problems 2 and 4 first arose in studying the problem of noise-proof
off-line search for an unknown repeating fragment in a discrete signal [1]. The strong
NP-hardness of these problems and their variations with additional restrictions on the
cardinality of the desired set was proved in [2–6]. Problems 2 and 4, their generalizations
and special cases were intensively studied in the latter decade [2–19]. Both problems
have many applications (see the cited papers). In these papers some algorithmic results
were obtained for these problems. The most important among them are following.

It was proved in [9, 14] that in the case of the fixed dimension q of the space Problems
2 and 4 are polynomially solvable in time O(N2q).

For Problem 2 in [3] an FPTAS is proposed for the case of fixed dimension q of
the space. This scheme finds a solution with relative error at most (q− 1)/8l2, in time
O(N2(l)q−1), where l is an integer parameter of the algorithm.

For the variation of Problem 2 with an additional restriction that the cardinality
of the subset equals M , heuristics based on local search ideas are proposed in [1, 2,
4]. Such algorithms having no guaranteed performance bounds are admissible for some
applications.

For the same variation of Problem 2 and for the case of fixed space dimension in
[7] and [14] exact pseudopolynomial algorithms are presented, whose time complexities
are equal to O(NM(MD)q−1) and O(N(MD)q), where D is the maximum absolute
value of the coordinates of the input vectors. In [6] an FPTAS is proposed that finds an
approximate solution with relative error ε ≤ (q − 1)/4l2, in time O(N(logN)(l)q−1),
where l is an integer parameter of the algorithm. In [13] a randomized approximation
algorithm is presented. Also in this paper some conditions under which the algorithm
is polynomial and asymptotically precise are proved.

For Problem 4 in [11] a 2-approximation polynomial algorithm of complexityO(qN2)
is constructed.

For the variation of Problem 4 with additional restriction on the cardinality of the
subset an algorithm that finds a 2-approximate solution in time O(qN2) was proposed
in [10]. A PTAS of complexity O(qN2/ε+1(9/ε)3/ε), where ε is a guaranteed relative
error is found in [15]. In [12] a randomized algorithm is presented that finds a (1 + ε)-
approximate solution of the problem in time O(qN) for a given relative error ε and
probability of malfunction γ. Also, the conditions which ensure that this algorithm is
asymptotically precise and has complexity O(qN2) are found in [12].

For the same variation of Problem 4 and for the case of fixed space dimension in
[16] an FPTAS is proposed. This scheme for a given relative error ε finds (1 + ε)-
approximate solution in time O(N2(1/ε)q/2), that is polynomial in the size of input
and 1/ε.
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As it was mentioned in the introduction, the issues of polynomial solvability and
approximability for the opposite optimization criterium are traditional in discrete op-
timization. Therefore, investigating them for Problem 1 looks interesting. On the other
hand these issues are also important for the applications where this problem arises.
Among them is, for instance, physics. Indeed, if the objective function is written as

1

|C|

∥∥∥∑
y∈C

y
∥∥∥2 =

∑
x∈C

∑
z∈C

⟨x, z⟩ ,

then the physical interpretation of Problem 1 is evident. Namely, the aim is to find a
subset C of balanced forces (vectors) in the set Y of arbitrarily directed forces. Clearly,
this problem has a wide range of technical applications. Also, under some conditions
on the meaning of the coordinates of the input points, Problem 1 can be treated as
finding a balanced by their views collective in a group of people having different views
on some subject.

In the next section we prove that Problem 1 is NP-hard in the strong sense if the
dimension of the space is a part of the input. In case of the fixed dimension of the
space, that is typical for physical and technical applications, Problem 1 becomes NP-
hard in ordinary sense even on line, i. e. even for q = 1. We also show that there
are no approximation polynomial algorithms with guaranteed approximation ratio for
Problem 1 unless P=NP. It follows from these results that all physical, technical and
other applied problems of optimal balancing inducing Problem 1 are also hard.

3 Complexity Status

In order to analyse the complexity of Problem 1 we first formulate it as a decision
problem.

Given: A set Y = {y1, . . . , yN} of Euclidean points from Rq and a positive integer
K. Question: Is there a nonempty subset C ⊆ Y such that

1

|C|
∥
∑
y∈C

y∥2 ≤ K ?

First consider the case when the dimension of the space is a part of input.

Theorem 1. Problem 1 is NP-hard in the strong sense.

Proof. We will prove that the corresponding decision problem formulated above is NP-
complete. It is evident that this problem is in NP. We reduce to it the well-known
NP-complete problem [20] Exact cover by 3-sets.

Problem Exact cover by 3-sets. Given: A finite set Z such that |Z| = 3n, and a
family X = {X1, . . . ,Xk} of its subsets each of cardinality 3. Question: Is it true that
the family X contains an exact cover of the set Z, i. e. n subsets {Xi1 , . . . ,Xin} ⊆ X ,
such that

n∪
j=1

Xij = Z ?
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For a given instance of the problem Exact cover by 3-sets construct an equivalent
instance of Problem 1 (in form of the decision problem) in the following way. Put q = 3n
and K = 0. For each subset Xi, i = 1, 2, . . . , k, introduce a corresponding vector yi of

dimension 3n, whose j-th coordinate (j = 1, . . . , 3n) is defined as follows: y
(j)
i = 1, if

j ∈ Xi, and y
(j)
i = 0 otherwise.

Let yk+1 = (−1, . . . ,−1), N = k + 1, Y = {y1, . . . , yk, yk+1}, and

z(C) =
∑
y∈C

y .

Note that the objective function of Problem 1 is zero if and only if vector z(C) = 0.
If the problem Exact cover by 3-sets has a positive answer then, clearly, the subset

C = {yi1 , . . . , yin , yN} sums up to 0, and thus turns the objective function of Problem
1 to 0.

Now let z(C) = 0 for some subset C in Problem 1. Then the subset C must contain
the vector yN = (−1, . . . ,−1), since otherwise all coordinates of the vector z(C) are
non-negative and at least one of them is positive. But then all other vectors from the
subset C must contain altogether exactly one 1 in each coordinate. Therefore, there are
exactly n such vectors and the subsets corresponding to them form an exact cover.

Since the problem Exact cover by 3-sets is NP-hard in the strong sense and in the
instance of Problem 1 constructed above all coordinates are at most 1 by absolute
value, we proved the strong NP-hardness of Problem 1. ⊓⊔

Now assume that the dimension q of the space is fixed (not a part of input). In this
case Problem 1 remains NP-hard, but not in the strong sense. This follows from the
next theorem.

Theorem 2. Problem 1 is NP-hard even for q = 1.

Proof. Again we consider the decision form of Problem 1 and reduce to it the following
NP-complete Partition problem [20].

Problem Partition. Given: An even number n = 2k of positive integers αj , j =
1, . . . , n. Question: Is there a subset I ⊂ {1, . . . , n}, such that∑

i∈I

αi =
1

2

n∑
i=1

αi .

For a given set of positive integers α1, . . . , αn from the instance of Partitioning problem
construct an instance of Problem 1 in the following way. Put q = 1, N = n + 1, and
K = 0.

Let

L =

n∑
i=1

αi .

Clearly, we may assume that L is even. Put yi = αi for i = 1, . . . , n, yn+1 = −L/2 and,
besides, for each subset I ⊆ {1, . . . , N} define

S(I) =
∑
i∈I

yi .
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If in the problem Partition there is a desired set I, then it is easy to verify that
S(I ∪ {n+ 1}) = 0, and thus the objective function of Problem 1 is equal to 0.

Assume now the instance of Problem 1 contains a subset C∗ such that z(C∗) = 0.
Since yn+1 is the only negative number in Y, we have |C∗| = k+1 and yn+1 ∈ C∗. But
then since z(C∗) = 0, we have

∑
i∈I

αi = L/2 =
1

2

n∑
i=1

αi ,

where I = {i | yi ∈ C∗} \ {n+ 1}.
So, Problem 1 is NP-hard even in the case when q = 1. ⊓⊔

4 Algorithmic Aspects

In this section we consider algorithmic aspects of Problem 1. In fact we will consider a
more general

Problem 5 (Subset with the Minimum Normalized Length of Vectors Sum under Car-
dinality Restriction). Given: a set Y = {y1, . . . , yN} of vectors (points) from Rq and
an integer L, 1 ≤ L ≤ N .

Find : a subset C ⊆ Y such that L ≤ |C| and

1

|C|

∥∥∥∑
y∈C

y
∥∥∥2 → min .

It is easy to see that Problem 1 is a partial case of Problem 5 for L = 1, and
therefore all complexity results of the previous section are valid for Problem 5. We
will also use an auxiliary problem denoted by Problem 1(M), where the criterion of
Problem 1 needs to be minimized with an additional restriction that the size of the
sought subset C is exactly M . Obviously, any instance of Problem 5 reduces to N−L+1
instances of Problem 1(M).

Consider Problem 1(M). Let us introduce Boolean variables xi, i = 1, . . . , N , such
that xi = 1 iff the i-th vector from Y is included into the set C. Since |C| = M , the
sum of all xi must be M . By the properties of the Euclidean norm we have

1

|C|

∥∥∥∥∥
N∑
i=1

xiyi

∥∥∥∥∥
2

=
1

|C|

N∑
i=1

∥yi∥2xi +
2

|C|

N∑
k=2

k−1∑
l=1

⟨yk, yl⟩xkxl . (2)

Define the auxiliary variables zkl ≥ 0, k = 2, . . . , N, l = 1, . . . , k − 1, such that

zkl = xkxl, k = 2, . . . , N, l = 1, . . . , k − 1 .

This is equivalent to

zkl ≤ xk, zkl ≤ xl, k = 2, . . . , N, l = 1, . . . , k − 1 ,
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zkl ≥ xk + xl − 1, k = 2, . . . , N, l = 1, . . . , k − 1 .

Put

Ci =
1

M
∥yi∥2, Bkl =

2

M
⟨yk, yl⟩ . (3)

Then due to (2) and (3) the objective function of Problem 1 can be written as

1

|C|

∥∥∥∑
y∈C

y
∥∥∥2 =

N∑
i=1

Cixi +
N∑

k=2

k−1∑
l=1

Bklzkl .

So, we have reduced Problem 1(M) to the following mixed integer linear programming
problem (note that all zkl are Boolean automatically, i. e. we may not require this in
the statement).

N∑
i=1

Cixi +

N∑
k=2

k−1∑
l=1

Bklzkl → min ,

where

zkl ≤ xk, k = 2, . . . , N, l = 1, . . . , k − 1 ,

zkl ≤ xl, k = 2, . . . , N, l = 1, . . . , k − 1 ,

zkl ≥ xk + xl − 1, k = 2, . . . , N, l = 1, . . . , k − 1 ,

and
N∑
i=1

xi = M ,

xi ∈ {0, 1}, i = 1, . . . , N ,

zkl ≥ 0, k = 2, . . . , N, l = 1, . . . , k − 1 .

Note that the size of this integer program does not depend on q. Such a formulation
can be helpful for applying various heuristics for Problem 5 in the case when q is a
part of input.

Note that for any r > 0 there is no sense in finding polynomial r-approximation
algorithms for Problem 5. Indeed, for any instance whose minimum of objective function
is 0, an r-approximation algorithm must find an exact solution. In particular, it would
find the optimal solution of the instances with K = 0 used in proofs of Theorems 1
and 2, i.e. it would solve problems Exact cover by 3-sets and Partition in a polynomial
time, and this is impossible unless P=NP.

However, in case of a fixed dimension q of the space and integer coordinates of
vectors from Y Problem 5 can be solved in a pseudopolynomial time.

For arbitrary sets P,Q ⊂ Rq define their sum as

P +Q = {x ∈ Rq | x = y + y′, y ∈ P, y′ ∈ Q} . (4)

For every positive integer r denote by B(r) the set of all vectors in Rq whose coordinates
are integer and at most r by absolute value. Then |B(r)| ≤ (2r + 1)q.
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Let b be the maximum absolute value of all coordinates of the input vectors y1, . . . , yN .
Our algorithm for Problem 5 successively computes the subsets Sk ⊆ B(bk), k =
1, . . . , N , that can be obtained by summing different elements of the set {y1, . . . , yk}.

For k = 1 put S1 = {0, y1}. Then we compute

Sk = Sk−1 + ({0} ∪ {yk})

for all k = 2, . . . , N , using the formula (4).
For each element z ∈ Sk we store an integer parameter nz and a subset Cz ⊆ Y

such that
z =

∑
y∈Cz

y ,

where |Cz| = nz and nz is the maximum possible number of addends that can be used
to produce z.

Finally, find in the subset SN an element z∗ ∈ SN such that nz ≥ L and the
value ∥z∗∥2/nz∗ is minimum, and output the subset Cz∗ corresponding to this z∗.

Computation of Sk takes O(q · |Sk−1|) operations. So, we have proved the following

Theorem 3. If the coordinates of the input vectors from Y are integer and each of
them is at most b by the absolute value then Problem 5 is solvable in O(qN(2bN +1)q)
time.

Note that in case of fixed dimension q the running time of the algorithm isO(N(bN)q),
i. e. it becomes pseudopolynomial. So, we have the following

Corollary 1. If the dimension q of the space is fixed, the coordinates of the input
vectors from Y are integer and each of them is at most b by the absolute value then
Problem 5 is solvable in pseudopolynomial time O(N(bN)q).

5 Conclusion

It follows from the obtained results that Problem 1 has neither polynomial nor pseu-
dopolynomial exact algorithms unless P=NP. It also cannot be solved by a polynomial
algorithm with a guaranteed approximation ratio. In the case of fixed dimension the
problem remains NP-hard even for the line; however, it can be solved by a pseudopoly-
nomial algorithm if the coordinates of the vectors are integer and the dimension is
fixed.

The obtained results show that in spite of the easy looking formulation of the
problem, finding effective algorithms for it looks hopeless except for the case when the
dimension of the space is bounded by a constant and the coordinates of the input vectors
are bounded by a polynomial in N . It seems also that obtaining positive results for
this problem may be perspective in special cases modeling the specifics of applications
excluding 0 from possible values of the objective function.
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