
Scalable Performance of FCbO Update
Algorithm on Museum Data

Tim Wray1, Jan Outrata2?, and Peter Eklund1

1 IT University of Copenhagen
2 Dept. Computer Science, Palacký University Olomouc, Czech Republic

Abstract. Formal Concept Analysis – known as a technique for data
analysis and visualisation – can also be applied as a means of creating
interaction approaches that allow for knowledge discovery within collec-
tions of content. These interaction approaches rely on performant algo-
rithms that can generate conceptual neighbourhoods based on a single
formal concept, or incrementally compute and update a set of formal
concepts given changes to a formal context. Using case studies based
on content from museum collections, this paper describes the scalabil-
ity limitations of existing interaction approaches and presents an imple-
mentation and evaluation of the FCbO update algorithm as a means of
updating formal concepts from large and dynamically changing museum
datasets.

1 Introduction

Formal Concept Analysis is best known as a technique for data analysis, knowl-
edge representation and visualisation. A number of case studies have been devel-
oped that also use FCA as a means of creating and visualising the semantic spaces
within museum collections – allowing users to visualise, explore and discover new
objects within these collections based on their associations and commonalities
with other objects. Some of these applications include Virtual Museum of the
Pacific [1], the Brooklyn Museum Canvas [2] and the A Place for Art [3] iPad
app. These case studies led to the development of a set of web services called
the CollectionWeb framework [4, 5]. Their analysis gave rise to new inter-
actions approaches based on FCA that required the use of fast algorithms for
computing the upper and lower neighbours of a formal concept, and for comput-
ing and updating a set of formal concepts based on incremental changes to their
formal contexts. These approaches are described as the conceptual neighbour-
hood approach and concept layer approach, respectively. This paper focuses on
the implementation and scalability limitations of the conceptual neighbourhood
approach, along with the FCbO update algorithm, its implementation within the
concept layer approach and its performance evaluation.

? J. Outrata acknowledges support by the grant No. IGA PrF 2016 027 of the IGA
Palacký University Olomouc.

The case studies are motivated by emerging museological movements that
have occurred since the 1970s that recognise the museum’s role in collecting,
creating and shaping knowledge in which the context of an object has become
an increasingly important part of its analysis, interpretation and communica-
tion. [6–9]. Context can refer to an object’s materials, construction, design, or-
namentation, provenance, history, environment, connection to people and human
society [9, 10]. This focus towards context reflects a shift from a classical world-
view, where objects were classed in terms of order, hierarchy and taxonomy, to
a modern perspective where objects are analysed in terms of links to other ob-
jects, people, social and cultural histories [9]. The natural association between
these modern perspectives of information and knowledge sharing within muse-
ums are in accord with the foundations of Formal Concept Analysis in its ability
to augment human thought, communication and interpretation. [11, 12]. This as-
sociation motivates the research into new design and interaction approaches that
emphasise concept generation and discovery within museum collections that rely
on fast and efficient algorithms for computing formal concepts and their concep-
tual neighbours.

2 FCA algorithms: scalability and performance evaluation

2.1 The conceptual neighbourhood approach

In the museum-based case studies reported, FCA is used to provide conceptual
structures that can be navigated by a user. The conceptual neighbourhood ap-
proach, as reported in [13], offers the ability to view individual concepts and move
between neighbouring concepts within a concept lattice. One implementation of
this approach is to compute and store a complete concept lattice that can then
be traversed by the user. However as is well known, complete concept lattices –
while adequate for visualising small datasets – are computationally prohibitive
and visually complex on medium to larger datasets typically associated with
museum collections that typically contain tens of thousands of objects [14].

The time and space complexities of pre-computing and storing a complete
concept lattice can be understood by a discussion of how the approach scales
with respect to the size of a formal context. Following an analysis of algorithms
that build complete concept lattices, Carpineto and Romano [14] identify their
time complexities: the best result being the ConceptsCover algorithm which
has a worst-case time complexity of O(|C||M |(|G| + |M |)) which is dependent,
in part, on the number of formal concepts generated from a formal context. The
number of formal concepts |C| generated from a formal context K := 〈G,M, I〉,
can be linear (in the best case) or quadratic (in the worst case) with respect
to |G| (the number of objects) or |M | (the number of attributes) within the
formal context depending on the number of attributes per object. However, even
withstanding the time and space complexities for initially computing and storing
concept lattices from a large formal context (which, if the system employed up-
date algorithms to update the concept lattice, would only need to be run once),
the worst-case time complexity for updating a pre-computed concept lattice –

i.e., only computing a portion of a concept lattice given changes to a formal
context – is quadratic with respect to the number of formal concepts |C|; al-
though experimental results [15, 16] (cited in [14]) suggest that in practice, the
growth may be linear, rather than quadratic. Despite this, updating and storing
a complete concept lattice for conceptual navigation poses major scalability and
space concerns for large formal contexts.

CollectionWeb implements an alternate approach that does not require
computation of the complete concept lattice and therefore negates the above
scalability issues, but still allows the user to navigate between neighbouring for-
mal concepts – via the reduction and inclusion of query attributes. This method,
called the conceptual neighbourhood approach, was used in ImageSleuth [13, 12]
and again in the Virtual Museum of the Pacific [1]. In both cases interaction fol-
lows a partial view of the concept lattices in the form of a single formal concept
and its immediate neighbours.

The algorithm used by CollectionWeb for generating conceptual neigh-
bourhoods is the NearestNeighbours algorithm [14], presented in Algorithm 1.
The conceptual neighbourhood of a formal concept can be formed by finding
both the upper and lower neighbours of a formal concept which can be com-
puted separately. In the description of the algorithm that follows, a formal con-
text is denoted by the triplet 〈G,M, I〉 with the finite non-empty sets of objects
G = {0, 1, . . . , g} and attributes M = {0, 1, . . . ,m} and I ⊆ G ×M being an
incidence relation with 〈g,m〉 ∈ I, meaning that object g ∈ G has attribute
m ∈ M . Concept-forming operators defined on I are denoted by ′ : 2G 7→ 2M

and ′ : 2M 7→ 2G [17].

The worst-case time complexity of Algorithm 1 is O(|G||M |(|G|+ |M |)), the
sum of the time to find its lower neighbours, O(|G||M |2), and the time to find
its upper neighbours, O(|G|2|M |). Hence, the maximum running time of the
algorithm is quadratic with respect to the number of objects or the number
of attributes within the formal context – whichever is larger. As implemented
in CollectionWeb, the NearestNeighbours algorithm runs dynamically at
query time – i.e., everytime a user views a formal concept or moves to an upper or
lower neighbour, the new concept and its neighbouring concepts are computed.
For ImageSleuth [13, 12] and Virtual Museum of the Pacific case studies [1] this
means that any changes to the underlying formal context – new attributes or
objects added or removed from the collection – are immediately reflected in its
underlying concept lattice, allowing the collection and the relationships among
the objects to dynamically respond to user tagging and curatorial management.

However, the advantage offered by dynamically computing the conceptual
neighbourhood – namely in that it negates the need to compute or store a po-
tentially large concept lattice while still offering the ability to dynamically expose
sections of it for user interaction – also presents another scalability limitation
as the size of the collection grows. Given the dynamic nature of the query and
the quadratic time complexity with respect to the number of objects in a col-
lection, the conceptual neighbourhood approach becomes less suited for use in
larger collections, as the response time for user interaction (in the worst case

Algorithm 1: The NearestNeighbours algorithm used for generating
a conceptual neighbourhood for formal concept 〈X,Y 〉 in formal context
〈G,M, I〉, cf. [14]

Input: Formal concept 〈X,Y 〉 of formal context 〈G,M, I〉
Output: The set of lower and upper neighbours of 〈X,Y 〉 in the concept

lattice of 〈G,M, I〉

// Returns the lower neighbours of 〈X,Y 〉
lowerNeighbours := ∅;
lNCandidates := ∅;
foreach m ∈M \ Y do

X1 := X ∩ {m}′;
Y1 := X ′

1;
if 〈X1, Y1〉 /∈ lNCandidates then

Add 〈X1, Y1〉 to lNCandidates;
count(〈X1, Y1〉) := 1;

else
count(〈X1, Y1〉) := count(〈X1, Y1〉) + 1;

if (|Y1| − |Y |) = count(〈X1, Y1〉) then
Add 〈X1, Y1〉 to lowerNeighbours;

// Returns the upper neighbours of 〈X,Y 〉
upperNeighbours := ∅;
uNCandidates := ∅;
foreach g ∈ G \X do

Y2 := Y ∩ {g}′;
X2 := Y ′

2 ;
if 〈X2, Y2〉 /∈ uNCandidates then

Add 〈X2, Y2〉 to uNCandidates;
count(〈X2, Y2〉) := 1;

else
count(〈X2, Y2〉) := count(〈X2, Y2〉) + 1;

if (|X2| − |X|) = count(〈X2, Y2〉) then
Add 〈X2, Y2〉 to upperNeighbours;

scenario) grows quadratically with respect to the number of objects in the col-
lection. While the approach is well suited for dynamically presenting relatively
smaller-sized collections at a specialist or ‘exhibition’ sized scale, such as the 427
objects present in the Virtual Museum of the Pacific or the 80 objects present
in A Place for Art, the approach remains unsuited for larger collections, such as
the the Brooklyn Museum Canvas case study with many thousands of objects.

2.2 The concept layer approach

For all other case studies, CollectionWeb constructs and maintains a set of
formal concepts from a formal context of collection objects. The set of all for-
mal concepts for the formal context in CollectionWeb is called the concept
layer. The framework relies on a concept layer in order to efficiently create the
required data visualisations and semantic structures so that users can associa-
tively browse, visualise and navigate the the collection.

To create and maintain the concept layer, CollectionWeb relies on an
algorithm with a low running time for computing formal concepts from a formal
context, and for recomputing formal concepts if any objects or attributes in the
formal context changes. Specifically, the algorithm should accommodate changes
to a formal context in large museum datasets if a single object (or a relatively
small batch of objects) changes, ensuring that it can dynamically update the
concept layer for a large museum dataset in real time.

There are many high performance algorithms that compute formal concepts
from formal contexts [18–22], along with a recent evaluation study of those al-
gorithms applied to data from the Web [23]. As these algorithms offer high
performance batch computation of an entire set of formal concepts from a for-
mal context, they work well for large museum collections that do not change
over time. However, this is not a common use case: as part of their curatorial
practices, museums continually add or modify objects in their online collections,
and some require the data to be kept up-to-date as it changes. For instance, the
Brooklyn Museum dataset used for the Brooklyn Museum Canvas case study [2],
along with other large public facing datasets such as the one provided by the
Rijksmuseum 3 – also used in this evaluation – require as part of their terms
of use, that all front-facing applications or representation of content must be
up-to-date. 4 In these cases, such changes from these data sources should be
propogated to these front-facing applications as quickly as possible. In addition,
large-scale collaborative tagging efforts such as the steve.museum project [24]
and the Flickr Commons recognise museum collections as dynamic, rather than
static datasets. As discussed further in Section 2.3, the ability to quickly recom-
pute a set of formal concepts given incremental updates to its formal context
can lead to real-time interaction and visualisation of museum data-sets. Such
scenarios call for an efficient FCA algorithm that can accommodate incremental

3 https://www.rijksmuseum.nl/
4 http://www.brooklynmuseum.org/opencollection/api/docs/terms

changes to a formal context, rather than require the recomputation of the entire
set of formal concepts when one or a few of its objects changes.

CollectionWeb employs the FCbO algorithm to initially compute all con-
cepts of a formal context [22] (the algorithm is an improved version of Kuznetsov’s
Close-by-One algorithm [25, 26]) and, more importantly, a modification of that
algorithm called FCbO update [27] (earlier version also in [28]) to update for-
mal concepts as objects in the formal context are added, modified or deleted.
We briefly present FCbO update here for the purposes of self-containment. The
presentation uses a scenario where new objects are added to the formal context
which results in the algorithm producing new and updated formal concepts.

In the description of the algorithm that follows we use the same notation for
formal context and concept-forming operators that were used in Algorithm 1. In
addition, new objects to be added to 〈G,M, I〉 and not present in G are denoted
by GN = {g + 1, . . . , gU} (i.e. GN ∩ G = ∅), MN = {i, . . . , k} is the set of
attributes shared by at least one of the objects GN and either present or not
present in M (but usually MN ⊆M) and N ⊆ GN×MN is an incidence relation
between GN and MN . By the triplet 〈GU ,MU , IU 〉 we denote the formal context
which results as a union of 〈G,M, I〉 and 〈GN ,MN , N〉, both extended to GU and
MU , i.e. GU = G∪GN = {0, . . . , gU}, MU = M ∪MN = {0, . . . ,mU}, mU = k if
k > m and mU = m otherwise, and IU ⊆ GU ×MU such that IU ∩ (G×M) = I,
IU ∩ (GN ×MN) = N and IU ∩ (G× (MN \M)) = IU ∩ (GN × (M \MN)) = ∅.

The algorithm is represented by the recursive procedure UpdateFastGen-
erateFrom, presented in Algorithm 2. The procedure is a modified form of the
recursive procedure FastGenerateFrom – the core of the FCbO algorithm
as described in [22] (Algorithm 2). The procedure accepts as its arguments a
formal concept 〈X,Y 〉 of 〈GU ,MU , IU 〉 (an initial formal concept), an attribute
m ∈ MN (first attribute to be processed) and a set {Nm ⊆ MU |m ∈ MU} of
subsets of attributes MU , and uses a local variable queue as a temporary storage
for computed formal concepts and Mm (m ∈MU) as sets of attributes which are
used in place of Nm for further invocations of the procedure. When the procedure
is invoked, it recursively descends, in a combined depth-first and breadth-first
search, the space of new and updated formal concepts of 〈GU ,MU , IU 〉 resulted
by adding new objects GN described by attributes MN to 〈G,M, I〉, beginning
with 〈X,Y 〉. For a full description of the procedure, see [27] or [28], recalling that
the set MU,j ⊆MU in Algorithm 2 is defined by: MU,j = {m ∈MU |m < j}. In
order to compute all new and updated formal concepts of 〈GU ,MU , IU 〉 which
are not formal concepts of 〈G,M, I〉, each of them exactly once, UpdateFast-
GenerateFrom shall be invoked with 〈∅′, ∅′′〉, m being the first attribute in
MN and {Nm = ∅ |m ∈M} as its initial arguments.

The worst-case time complexity of Algorithm 2 remains the same as of the
original FCbO (and CbO) algorithm, O(|C||M |2|G|), because when adding all
objects to the empty formal context it actually performs FCbO.

For updating a set of formal concepts given by incremental object-by-object
updates of a formal context, there are a number of other incremental algorithms
that can be used for determine a set of formal concepts and, subsequently, for

Algorithm 2: The UpdateFastGenerateFrom(〈X,Y 〉,m, {Nm |m ∈
MU}) algorithm used for computing all new and updated formal concepts
of formal context 〈GU ,MU , IU 〉, cf. [27]

Input: Formal concept 〈X,Y 〉 of formal context 〈GU ,MU , IU 〉, attribute
m ∈MN (or a number > mU) and set {Nm ⊆MU |m ∈MU} of
subsets of attributes MU

Output: The set of all new and updated formal concepts of 〈GU ,MU , IU 〉

// output 〈X,Y 〉, e.g., print it on screen or store it

if (X ∩G)′ 6= Y then
output 〈X,Y 〉 as new;

else
if (X ∩G) ⊂ X then

output 〈X,Y 〉 as updated;
else

return

if Y = MU or m > mU then
return

for j from m upto mU do
set Mj to Nj ;
// go through attributes from MN only

if j 6∈ Y and j ∈MN and Nj ∩MU,j ⊆ Y ∩MU,j then
set X1 to X ∩ {j}′;
set Y1 to X ′

1;
if Y ∩MU,j = Y1 ∩MU,j then

put 〈〈X1, Y1〉, j + 1〉 to queue;
else

set Mj to Y1;

while get 〈〈X1, Y1〉, j〉 from queue do
UpdateFastGenerateFrom(〈X1, Y1〉, j, {Mm |m ∈MU});

return

computing the concept lattice, such as [16, 29, 30] along with the algorithms
in [14]. AddIntent [30] is considered to be one of the most efficient of these
algorithms, however, along with the other algorithms, it requires the complete
concept lattice prior to computation. The FCbO update algorithm [27] described
above, differentiates itself from other incremental algorithms in that it does not
require the concept lattice (nor the set of all formal concepts) as its input.
However, the number of concepts computed from datasets we use – even without
the complexities of storing a complete concept lattice – is of the order hundreds
of thousands (see Figures 1 and 2). In light of this, the FCbO update algorithm
not only computes changes based only on a set of objects marked for update,
but it also outputs only the new and updated formal concepts, rather than the
entire set of formal concepts. This allows for quick execution of the algorithm
and ingestion of its results where changes to formal context are relatively minor:
strengthening the algorithm’s utility in applications where datasets are large but
updated frequently and in small increments.

2.3 Performance Evaluation

The algorithm was evaluated on two museum datasets: the first being the Brook-
lyn Museum collection consisting of 10,000 objects and 8,952 attributes and the
second being the Rijksmuseum collection consisting of 100,000 objects and 1,716
attributes. The purpose of the performance evaluation was to determine the total
running time and performance benefit of using the FCbO update algorithm to
incrementally update a set of formal concepts given changes to a formal context,
rather than recomputing its entire set of formal concepts.

Table 1. Running time of computing all formal concepts from a formal context using
the FCbO update algorithm, average of 10 iterations

Dataset No. of at-
tributes

No. of ob-
jects

No. of con-
cepts

Avg. running
time (ms)

Brooklyn Museum 8,952 10,000 98,547 36,218

Rijksmuseum 1,716 100,000 994,967 68,792

Table 1 shows the running time to compute the entire set of formal concepts
from the formal contexts generated from the Brooklyn Museum and Rijksmu-
seum datasets. For the sake of clarity, a batch or non-update computation –
such as the one demonstrated in the table above – is defined as a computation
that computes the entire set of formal concepts from formal context, whereas
an update formal concept computation is defined as a computation that uses a
set of objects to add, remove or update within the formal context as its input
and outputs a set of changed concepts. The above figures in Table 1 are used as
a benchmark in the evaluation of the performance benefit of the update, rather
than the batch computations of the FCbO algorithm.

An update computation can be triggered by three different events: adding
new objects to the formal context, removing existing objects from the formal
context, or updating the attribute sets of existing objects within the formal
context. Given that objects can be added, removed or updated within a museum
dataset, these three operations are defined and evaluated separately with respect
to the running time of the algorithm. Assuming a full set of formal concepts have
already been computed, each operation produces a number of modified concepts
that refer to the set of formal concepts added, removed or updated as a result of
each operation. In addition to the time it takes to perform each operation, the
number of modified concepts serves as an important indicator of complexity.

The results of a performance evaluation demonstrating add, remove and up-
date operations for the FCbO update algorithm are shown in Fig. 1 for the
Brooklyn Museum dataset, and Fig. 2 for the Rijksmuseum dataset. The figures
demonstrate how the algorithm scales with each operation for adding, removing
or updating 1, 5, 50 or 500 objects to their respective datasets. In each figure,
the horizontal axis first groups the number of objects N , which is then further
sub-divided into its three operations with respect to the formal context: incre-
mentally compute the set of formal concepts when N objects are added, removed
and updated from the formal context. As a way of comparing the running time of
the FCbO update algorithm to its batch counterpart, the performance metrics
of the update algorithm – its running time and number of modified concepts
– are shown along with the total running time and number of formal concepts
produced by the non-update algorithm, the dashed line in Figures 1 and 2.

For the smaller Brooklyn Museum collection, the number of modified concepts
and time taken to compute them is reasonable when adding 5 or 50 objects, with
running times far less than the time it takes for the algorithm to recompute the
entire set of formal concepts. However, in the larger Rijksmuseum collection –
due to the smaller number of attributes and higher context density – removing
and updating a larger batch of objects requires the re-computation of a large
number of formal concepts where in some cases, Figures 1 and 2, the time taken
to update the set of formal concepts is greater than the time to recompute the
entire set as a batch operation.

The benefits of an incremental FCbO update algorithm with a low running
time with respect to museum curation practices and visitor experiences can be
realised with respect to user interactions that lead to dynamically changing con-
texts. For example, in many online collections such as the Powerhouse Museum
Online Collection 5 and the Brooklyn Museum Online Collection 6, visitors can
add their own interpretations to the objects by adding their own keywords or
‘tags’. These interactions can introduce new perspectives on the works [24] that
can potentially reframe the way objects are related to one another [31] in that
audiences are invited to shape the context, and subsequently, the knowledge
that surrounds the objects. Given that formal concepts can be used to represent
contextual knowledge of a domain where museum objects are treated as formal

5 http://www.powerhousemuseum.com/collection/database/menu.php
6 https://www.brooklynmuseum.org/opencollection/collections/

Fig. 1. Average running time and number of modified concepts for adding, removing
or updating objects to a formal context and incrementally recomputing the set of
formal concepts using the FCbO update algorithm on the Brooklyn Museum dataset.
The top graph shows the total running time for each operation for 1, 5, 50 and 500
objects, whereas the bottom graph shows the total number of modified concepts for
each operation for 1, 5, 50 and 500 objects.

Fig. 2. Average running time and number of modified concepts for adding, removing or
updating objects to a formal context and incrementally recomputing the set of formal
concepts using the FCbO update algorithm on the Rijksmuseum dataset. The top graph
shows the total running time for each operation for 1, 5, 50 and 500 objects, whereas
the bottom graph shows the total number of modified concepts for each operation for
1, 5, 50 and 500 objects.

objects and tags as formal attributes, user tagging can provide the ability to up-
date representations of knowledge in real-time. Due to the low running time of
the FCbO update algorithm on small sets of objects as their input, a user could
potentially tag an object and then, through the use of incremental concept com-
putation coupled with data visualisation, immediately realise not only how their
tagging enhances the content of the objects, but also shapes the knowledge that
surrounds it in relation to other objects.

In many other cases, updates to museum collection data are provided as a
batch – i.e., whole groups of objects added or modified as a result of changes
to objects within a museum dataset. For example, the Smithsonian Cooper-
Hewitt National Design Museum uses GitHub 7 to host their collection data 8 –
allowing anyone to access, update and provide updates to the collection. Many
other museums provide a timestamp in their object records to indicate when it
was last updated, so that data harvesters can collect changes. In other situations
it may be more feasible to implement updates to the dataset as a batch rather
than as a set of small frequently occurring object updates.

3 Conclusion

Overall, the FCbO update algorithm – as implemented by CollectionWeb to
construct and maintain its concept layer – provides a fast way to update formal
concepts from large and dynamically changing museum datasets, given that the
changes within those datasets are relatively small relative to the size of the
formal context. The algorithm provides a scalable way to construct and maintain
a concept layer once the initial and potentially time costly computation of the
entire set of formal concepts from a formal context is complete. The algorithm
is less efficient at adding, removing or updating large changes to the collection
where, in such cases, it may be preferential to recompute the entire set of formal
concepts.

References

1. Eklund, P., Goodall, P., Wray, T.: Cluster-based Navigation for a Virtual Mu-
seum. In: 9th RIAO Conference – Adaptivity, Personalization and Fusion – of
Heterogeneous Information, Paris, ACM Press (April 2010)

2. Wray, T., Eklund, P.: Concepts and Collections: A Case Study using Objects from
the Brooklyn Museum. In Predoiu, L., Hennicke, S., Nurnberger, A., Mitschick, A.,
Ross, S., eds.: Proceedings of the 1st International Workshop on Semantic Digital
Archives. (2011) 109–120

3. Wray, T., Eklund, P., Kautz, K.: Pathways through Information Landscapes: Al-
ternative Design Criteria for Digital Art Collections. In: ICIS 2013 Proceedings,
Milan, Italy (2013)

7 GitHub is a popular source code management system traditionally used for making
available, committing and providing updates to, program source code.

8 See: http://www.cooperhewitt.org/collections/data

4. Eklund, P., Wray, T., Ducrou, J.: Linking Objects and their Stories: An API For
Exploring Cultural Heritage Using Formal Concept Analysis. Journal of Emerging
Technologies in Web Intelligence 3(3) (2011) 239–252

5. Eklund, P., Wray, T., Ducrou, J.: Web services and Digital Ecosystem Support
using Formal Concept Analysis. In: Proceedings of the International Conference
on Management of Emergent Digital EcoSystems. MEDES ’09, New York, NY,
USA, ACM (2009) 36–245

6. Ross, M.: Interpreting the new museology. Museum and Society 2(2) (2004) 84–103
7. Styliani, S., Fotis, L., Kostas, K., Petros, P.: Virtual museums, a survey and some

issues for consideration. Journal of Cultural Heritage 10(4) (October 2009) 520–
528

8. Skov, M.: The Reinvented Museum: Exploring Information Seeking Behaviour in
a Digital Museum Context. PhD thesis, Royal School of Library and Information
Science (2009)

9. Hooper-Greenhill, E.: Museums and the Shaping of Knowledge. Routledge (1992)
10. Pearce, S.: Thinking about Things. In Pearce, S., ed.: Interpreting Objects and

Collections. Routledge, London (1994)
11. Wille, R.: Formal Concept Analysis as Mathematical Theory of Concepts and

Concept Hierarchies. In Ganter, B., Stumme, G., Wille, R., eds.: Formal Concept
Analysis. Volume 3626 of Lecture Notes in Computer Science. Springer Berlin /
Heidelberg (2005) 47–70

12. Ducrou, J.: Design for conceptual knowledge processing: case studies in applied
formal concept analysis. PhD thesis, University of Wollongong (2007)

13. Ducrou, J., Vormbrock, B., Eklund, P.: FCA-based Browsing and Searching of a
Collection of Images. In: Proceedings of 14th International Conference on Concep-
tual Structures. LNAI 4068, Springer (2006) 203–214

14. Carpineto, C., Romano, G.: Concept data analysis: Theory and applications. J.
Wiley (2004)

15. Carpineto, C., Romano, G.: A lattice conceptual clustering system and its appli-
cation to browsing retrieval. Machine Learning 24(2) (1996) 1–28

16. Godin, R., Missaoui, R., Alaoui, H.: Incremental concept formation algorithms
based on Galois (concept) lattices. Computational Intelligence 11(2) (1995) 246–
247

17. Wille, R., Ganter, B.: Formal Concept Analysis: Mathematical Foundations.
Springer-Verlag, Berlin (1999)

18. Andrews, S.: In-Close2, a High Performance Formal Concept Miner. In Andrews,
S., Polovina, S., Hill, R., Akhgar, B., eds.: Conceptual Structures for Discovering
Knowledge. Volume 6828 of Lecture Notes in Computer Science. Springer Berlin
Heidelberg (2011) 50–62

19. Krajca, P., Outrata, J., Vychodil, V.: Advances in algorithms based on CbO. In
Kryszkiewicz, M., Obiedkov, S., eds.: Proceedings of the 7th International Confer-
ence on Concept Lattices and Their Applications, Sevilla, Spain (October 2010)
71–82

20. Krajca, P., Outrata, J., Vychodil, V.: Computing formal concepts by attribute
sorting. Fundamenta Informaticae 115(4) (2012) 395–417

21. Krajca, P., Outrata, J., Vychodil, V.: Parallel algorithm for computing fixpoints of
Galois connections. Annals of Mathematics and Artificial Intelligence 59(2) (2010)
257–272

22. Outrata, J., Vychodil, V.: Fast Algorithm for Computing Fixpoints of Galois
Connections Induced by Object-Attribute Relational Data. Information Sciences
185(1) (2012) 114–127

23. Kirchberg, M., Leonardi, E., Tan, Y.S., Link, S., Ko, R.K.L., Lee, B.S.: Formal
Concept Discovery in Semantic Web Data. In: Formal Concept Analysis. Volume
7278 of Lecture Notes in Computer Science. (2012) 164–179

24. Trant, J.: Tagging, Folksonomy and Art Museums: Results of steve.museum’s
research. Technical report, University of Toronto (2009)

25. Kuznetsov, S.O.: A fast algorithm for computing all intersections of objects in a
finite semi-lattice. Nauchno-tekhnicheskaya Informatsiya (1) (1993) 17–20

26. Kuznetsov, S.: Learning of Simple Conceptual Graphs from Positive and Negative
Examples. In: PKDD 1999. (1999) 384–391

27. Outrata, J.: A lattice-free concept lattice update algorithm. International Journal
of General Systems 45(2) (2016) 211–231

28. Outrata, J.: A lattice-free concept lattice update algorithm based on ∗CbO. In
Ojeda-Aciego, M., Outrata, J., eds.: Proceedings of the 10th International Con-
ference on Concept Lattices and their Applications, La Rochelle, France (2013)
261–274

29. Norris, E.M.: An Algorithm for Computing the Maximal Rectangles in a Binary
Relation. Revue Roumaine de Mathématiques Pures et Appliquées 23(2) (1978)
243–250

30. van der Merwe, D., Obiedkov, S., Kourie, D.: AddIntent: A New Incremental
Algorithm for Constructing Concept Lattices. In: Proceedings of the International
Conference on Formal Concept Analysis. Volume 2961 of Lecture Notes in Artificial
Intelligence. Springer Berlin Heidelberg (2004) 205–206

31. Cairns, S.: Mutualizing Museum Knowledge: Folksonomies and the Changing
Shape of Expertise. Curator: The Museum Journal 56(1) (January 2013) 107–
119

