
Choosing a Better Moment to Assign Reviewers in Peer 
Assessment: The Earlier the Better, or the Later the Better? 

Yanqing Wang 
School of Management Harbin Institute of Technology 

Harbin, Heilongjiang 150001, China yanqing@hit.edu.cn 

Haoran Wang 
Northeast Yucai Foreign Language School 
Shenyang, Liaoning 110179, China 728999801@qq.com 

Christian Schunn, Emily Baehr 
Learning Research Development Center University of Pittsburgh 

Pittsburgh, PA 15260, USA {schunn, ecb42}@pitt.edu 
 

ABSTRACT 
Peer assessment continues to be a topic of interest in the 
educational arena for decades, especially with the popularity of 
MOOC in recent years. However, the reviewer assignment 
moment, which may affect the process efficiency and learning 
proactiveness reward, lacks appropriate consideration. In this 
study, we propose three reviewer assignment algorithms, post-
assignment, pre-assignment, and submission-queue, integrated 
with the educational peer code review system developed for the 
purpose of programming language learning. We compare and 
analyze the algorithms performance qualitatively according to 
processing efficiency and proactiveness reward to learners. In 
order to measure the three algorithms quantitatively, we carry out 
one preliminary investigation involving students in a 
programming course at a Chinese university. The results indicate 
that submission-queue has predominant advantages in both 
proactiveness reward and process efficiency relative to the other 
two. Moreover, data reveals that active students are more sensitive 
to reviewer assignment moment algorithms than the inactive ones. 
Keywords 
peer assessment; peer code review (PCR); reviewer assignment 
moment (RAM); submission queue; proactiveness reward; 
processing efficiency 

1. INTRODUCTION 
Peer assessment has become more relevant and has gathered 
increasingly more attention in education, as it fits the self-directed 
and collaborative learning processes [1]. Newman and Taylor 
defined the reviewer assignment time as the time taken to assign a 
reviewer to a paper and to record the assignment by conference 
organizers [2]. However, the reviewer assignment moment (RAM), 
which may affect the process efficiency and proactiveness reward 
to learners, has not been concerned yet. In previous researches on 
academic peer review, only a few studies have gone beyond 
performing an optimized assignment of manuscripts (or proposals) 
to reviewers in consideration of the quality assurance. In the 
studies of peer code review (PCR), scholars are mainly focusing 
on its quality assurance, learning outcomes, or sharing of 
successful instruction experiences. However, in our experience, 
we find that choosing an appropriate RAM does not only improve 
the efficiency of peer review process, but also stimulates the 
students' learning. Thus, in this study, setting a PCR software as 
the context, we concentrate our attention in answering two 
important questions: (1) what is the most appropriate moment to 
assign reviewer? and (2) what benefits can we obtain from 
applying the most appropriate reviewer assignment algorithm? 
Since 2004, our team has been researching on PCR and we have 
been applying techniques for this end in two formal university 

courses: C Programming and Object Oriented Programming in 
Java. An e-learning information system dedicated to PCR in 
programming language learning, EduPCR, was developed and 
implemented by our team from 2007 for programming language 
learning and for e-learning research. 
During the last few years, we have analyzed the output data from 
EduPCR to study the students' learning behavior. The system has 
inspired us to explore the students' e-learning data in different 
areas: their competence in coding, learning attitude, compliance 
with coding standards and the capability of following schedules 
[3]. Along with the previous studies, the RAM addresses the main 
concern of this study. In order to improve both students' 
activeness and efficiency in learning a programming language, we 
have tried a series of reviewer assignment algorithms relevant to 
RAM. This study seeks to find scientific evidence in different 
reviewer assignment algorithms, from perspectives such as 
process efficiency and proactiveness reward to learners. 
The paper outlines as follows. Three RAM algorithms are 
proposed in section 2. Section 3 analyses their process efficiency 
and proactiveness reward qualitatively. These algorithms are 
studied comparatively in section 4. Discussions are made at last. 

2. THREE RAM ALGORITHMS 
So far, we have applied three practical reviewer assignment 
algorithms in the EduPCR system. Since every student plays the 
roles of reviewer and author, the final reviewer assignment result 
will build up one or several circles, namely, review rings. 
2.1 Post-assignment 
Post-assignment is a matured algorithm defined in peer review 
literature many years ago [4], for assigning resources or tasks after 
a specific phase. A networked peer assessment system for 
secondary science education utilized it [5]. In this study, we 
define post-assignment as "assigning reviewers after all students 
have submitted their source code".  
We develop our own post-assignment strategy in EduPCR. With 
it, the assignment action is completed when all participants have 
submitted their source code or the stage deadline is reached. Post-
assignment is the easiest approach of reviewer assignment for 
both, teachers' implementing and students' understanding. 
However, the disadvantage of post-assignment is that all the 
students who have submitted the source code prior to the deadline 
have to wait for the ones behind; if a single student fails to finish 
his/her source code, the rest of the students cannot start their 
review. Undoubtedly, post-assignment has a low efficiency rate. It 
is important to point out that there is no need to consider 
exceptional situations since all the students who are assigned as 
reviewers have finished and submitted their source code. 



2.2 Pre-assignment 
When the low efficiency of post-assignment was realized, pre-
assignment became an alternative assignment method. It is a 
common algorithm widely applied to solve schedule problems; for 
instance, Tànfani & Testi proposed a pre-assignment algorithm to 
solve the Master Surgical Schedule Problem [6]. Pre-assignment 
is also used in educational peer review to achieve a certain goal in 
specific research [7].  
Following these studies, we created our own pre-assignment 
algorithm in EduPCR. We define this algorithm as "reviewer 
assignment is finished the moment a programming task is released 
by teacher". Since every student can begin the review work as 
soon as the source code is submitted, this algorithm seems to be 
more efficient than post-assignment. 
However, the pre-assignment algorithm is not without flaws. Due 
to the random review assignment in advance, eventually a 
reviewer has to experiment long waiting times for the manuscript 
of the assigned author. Additionally, one situation that often 
occurs is when one or more students miss the deadline of 
submitting their source code. For an instance in 1-to-1 assignment, 
see (a) of Figure 1, the student #2 who fails to submit source code 
on time will affect his/her two peers: the assigned reviewer #1 has 
no code to review and the author #3 has no reviewer. 
In order to remedy this, the ideas of compact algorithm (see 
Figure 1) and merge algorithm (see Figure 2) are utilized so that 
the computer compacts the review ring by eliminating the students 
who do not submit their source code. When there is only one 
student left in a review ring, that student is labeled as a "lost" one, 
and will be merged to another review ring. Note that the merging 
position will be carefully chosen to make sure that the previous 
reviewer has not yet started his/her review work at the merging 
moment. In Figure 2, before merging, student #4 is the reviewer 
of student #5. If student #4 has not started the review work when 
the computer tries to merge, the merging can address this position, 
i.e. inserting student #3 between student #4 and student #5. 

2
1

5 4

3

(a) student #2 misses 
the first deadline

(b) student #2 is removed 
from the ring

2
1

5 4

3

 Figure 1. Illustration of the compact algorithm 

(a) only student #3 
is remained after 

compacting
(b) another 
reviewer 

assignment ring

2

1 3

4

7 6

5

(c) student #3 is 
merged into that 

ring

3
4

7 6

5

 Figure 2. Illustration of the merge algorithm 
When the system cannot find a position to merge a "lost" student 
into because all assigned reviewers have started (or finished) their 
review work, the system will collect all the "lost" students in all of 
the review rings and build up a new one. If there is only one "lost" 

student incapable of being merged, the system will notify with the 
message "You can revise your program upon your own idea since 
system fails to assign a reviewer for your work". 
2.3 Submission Queue 
Making use of the well-known scheduling strategy "first come, 
first served" in service policy or queuing law [8, 9], an "first 
submit, first assigned" algorithm (namely, submission queue), was 
implemented to overcome the problems brought by the post-
assignment and pre-assignment algorithms. With the timer 
function, the computer checks who has submitted the source code 
at a predefined time interval (i.e. every 30 minutes). When the 
time is reached, the computer scans the number of students who 
have submitted their source code in the previous interval (let this 
variable be X), and the number of students who have not 
submitted their source code (let this variable be Y). Then there are 
three possible cases, called assignment conditions, as follows: 
Case 1: X<3. If the source code deadline has not been reached, no 
action is needed. Otherwise, if X=2, the two students build up the 
smallest possible review ring (they are assigned as reciprocal 
reviewers); and if X=1, the merge algorithm is invoked (see 
Figure 2). 
Case 2: X≥3 and Y≥2. The reviewer assignment will be 
performed among those X students. 
Case 3: X≥3 and Y=1. In order to give a chance to the last 
student to submit the source code (we call him/her student L), we 
will let the penultimate student (we call him/her student W) who 
has submitted the source code, wait for L. In this case, our 
reviewer assignment will be performed among those X students, 
except for W. Even if X=3, the two students except for W can 
build up the smallest possible review ring. Finally, student W will 
not be assigned until student L submits his/her source code. 
It is possible for only one student being unassigned by the first 
deadline. In Case 2, only one among all Y students submits his/her 
work before the deadline which will make the single student 
dangling. In Case 3, L has not submitted the source code when the 
1st deadline is reached, student W will be dangling. To deal with 
dangling students, the merge algorithm (Figure 2), would be 
necessary. Theoretically, there is an additional scenario, in which 
all students in the last-built review ring have started their review 
work when the computer tries to merge. Despite having a very low 
probability, the system will notify the dangling student revise the 
source code according to his/her own understanding. Certainly, 
we can improve this algorithm by searching for an appropriate 
position in all review rings in the future. 
2.4 Exceptional Cases and Solutions 
Generally, most students can finish the 3 stages on time, but 
exceptional cases may occur occasionally, not only in source code 
stage, but in the reviewing and revising stage. The possible 
exceptional cases and their solutions are listed in Table 1. 

3. EFFICIENCY AND PROACTIVENESS 
REWARD 
From a managerial viewpoint, different algorithms may have 
different performances. The following section provides a 
capability analysis of the three RAM algorithms from two 
different perspectives: processing efficiency and proactiveness 
reward. 



Table 1. The exceptional situations and corresponding solutions of three algorithms 
Situations Has influence on peers? Solutions 

fail to submit 
source code 

post-assignment No The author who fails to submit source code is considered to quit the current program task. 
The assigned reviewer gets review marks automatically. 

pre-assignment Yes 
Compact a review ring by eliminating the students who fail to submit the source code. 
When the number of students in one review ring minimizes to one, the single student will 
be merged into another review ring. 

submission-queue Yes Only one student is still waiting to be assigned when the first deadline is reached. The 
student is merged into the last-built review ring. 

fail to finish 
review Yes When the review deadline is reached, computer prompts the author to revise the program 

by himself/herself. 
fail to revise No The corresponding marks of the author will be deduced. 

 
3.1 Processing Efficiency 
Whether a reviewer is active or passive, the possible starting point 
to review is critical because it bottlenecks the entire process. The 
assignment algorithm plays an important role in facilitating an 
active reviewer to start a review job as early as possible. The 
necessary conditions for starting a review work are: 
(1) The author has submitted the source code; 
(2) The reviewer has finished and submitted his/her own source 
code. To reduce plagiarism, the process constrains that a reviewer 
cannot review other's code before he/she submits his/her own 
source code; 
(3) The reviewer assignment has been completed, that is to say 
that an author has an assigned reviewer who will review the 
source code. The assignment of a reviewer to an author depends 
on which of the three possible reviewer assignment algorithms is 
applied; 
(4) EduPCR automatically informs the reviewer that the review 
process may start by short messages. 
The starting time available for review is of great significance; 
among the four conditions, the 3rd might bottleneck the entire 
review process, hence it becomes fundamental to optimize the 
assignment moment.  
It is easy to understand that the students can start the reviewing 
and revising process much earlier in pre-assignment and 
submission-queue than in post-assignment, which implies that the 
first two may be more efficient. Considering the individual 
activity, some students may submit their source code very quickly 
while others might submit their source code just before the first 
deadline. In pre-assignment, if the fastest and slowest students are 
assigned to a group to review each other, the fastest student will 
waste time waiting for the slowest student's source code. This 
issue is resolved in submission-queue, allotting for faster students 
to be assigned to fellow fast student.  
Therefore, from the processing efficiency standpoint, we predict 
that submission-queue is the most effective and post-assignment is 
the least effective. 
3.2  Incentive Effect to Learners 
In post-assignment, all students have to wait until the last student 
submits his/her source code or the deadline, and then the 
assignment begins. Therefore, many students may choose to 
submit their source code until the deadline, since an early 
submission cannot trigger an early reviewer assignment. 

In pre-assignment, the reviewer assignment is finished when the 
project (programming task) is released. A reviewer can start the 
review process only after his/her peer student (previously assigned) 
has submitted the source code. Students may submit their source 
code at their convenience, since an early or late submission will 
not accelerate or slow down the entire process much. If a student 
demands his/her source code to be reviewed, he/she must have 
submitted his/her own source code. On the other hand, if a student 
wants to review his/her peer's code, his/her peer must have 
submitted his/her own source code as well. The time interval 
between submission and review may be large but since there is no 
difference between submitting it early or late, the majority of 
students might submit their own source code as late as their peers 
do; which in turn becomes a submission close to the deadline. 
However, in submission-queue we find two obvious advantages 
related to proactiveness rewards, relative to the other two 
assignment methods:  
(1) Active students can maximize their learning pace as they wish, 
since whoever submits the source code first is assigned a reviewer 
therefore having their work reviewed first. 
(2) submission-queue attracts students to join the active student 
circle. Normally, students who have good programming skills 
often submit their source code very early, and submission-queue 
can meet these students' time saving requirement. In addition, 
some students whose programming skills are limited may wish to 
be assigned in one review ring consisting of skilled students, in 
order to improve their abilities. Therefore, submission-queue can 
stimulate both skilled and limited students to submit their source 
code as soon as possible. 
Hence, in terms of proactiveness reward, we predict that 
submission-queue may have predominant positive influence on 
students' leaning than the other two. 

4. PRELIMINARY STUDY 
The EduPCR system has been applied in the pedagogy of two 
courses: C Programming and Object Oriented Programming in 
Java for students majoring in Information Systems at a Chinese 
university. To understand the three assignment algorithms’ effect, 
we conducted a comparative investigation on the course Object 
Oriented Programming in Java in one 23-student class. Because 
of lack of experience, we stored the review submission time in 12-
hour (not 24-hour) format, losing some information and accuracy; 
the results might be affected to some extent. 



4.1  Investigation Design 
(1) There are ten tasks in this course. At an average interval of 
seven days, the teacher sets one task according to the lecture's 
content. Each task has three phases: submitting source code, 
reviewing peer's code, and revising source code. The average 
duration of a phase is about 2 days. For every phase, a deadline is 
set to control the process so that any activity that misses the 
deadline will be blocked. 
(2) With each new task, all students are randomly divided into 
three groups to assure objectivity, thus, the sizes of the groups are 
about 8, 8, and 7 people. For every group, an assignment 
algorithm is randomly chosen among post-assignment, pre-
assignment and submission-queue. We name each random group 
an algorithm group since each group is deployed with a different 
assignment algorithm. All students may start their review work 
only after they have received the review notifications sent by 
EduPCR. 
(3) After all the ten tasks are completed, the time consumption is 
analyzed so that the efficiency of the three algorithms can be 
studied. 
Since the time when students submit their source code is not 
greatly affected by the reviewer assignment algorithm and the 
revision submission time is indirectly affected by the assignment 
algorithm, we just focus on the time when the students submit 
their reviews. As previously mentioned, post-assignment 
algorithm starts the review process after the source code deadline, 
while pre-assignment and submission-queue algorithms can start 
the review process before the source code deadline. To compare 
the review efficiency of the three assignment algorithms, we take 
the difference between the review submission time of a reviewer 
and the source code deadline as the central statistic measure. This 
measure is named wait time (WT) of the reviewer; different 
reviewers have different WT values. Obviously, the smaller the 
WT value is, the more active the reviewer is. Then with pre-
assignment and submission-queue algorithms, some reviewers' 
WT value is negative, which means that the reviewers finish their 
second stage task (i.e., review work) before the deadline of the 
first stage. During the implementation of EduPCR for years, we 
find that active students often finish their own source code and 
begin review work as soon as they get the "new review" 
notification, while some tardy students will not start each step 
until the deadline is approaching. Thus, the value of average wait 
time (AWT) can be used to measure the activeness of students in 
each assignment algorithm. AWT is the average value of several 
WTs, which has two cases: 1) individual AWT means the average 
value of one student’s WTs within all tasks, which is used for 
clustering students into groups by their WTs; 2) group AWT is the 
average value of a group of students' WTs within all tasks. Each 
group has three group AWTs because three RAM algorithms are 
deployed. 
4.2  Results from Data Clustered by 
Individual AWT 
To eliminate the effect of different personalities, we cluster all 
students according to individual AWT within all tasks. Usually 
clusters generated from the clustering algorithm are not 
comparable. However, in this study, students are clustered by a 
single variable: individual AWT. Each cluster has a group AWT 
that is comparable with another group AWT of a different cluster 
so that we can order the generated clusters.  

With K-Means in IBM SPSS Modeler, we cluster all students into 
four clusters according to individual AWT in ascending order, 
which means that the students in the first cluster spend the least 
amount of time finishing the review, while the ones in the fourth 
cluster spend the largest amount of time to do so. Moreover, we 
classify all the students as active and inactive; the students in the 
first two clusters of both investigations are considered active 
students, while those in the last two clusters are considered 
inactive. Finally, the clustering result is obtained, i.e. 5, 5, 7, 6 
students in cluster 1 through 4 accordingly. Within each cluster, 
we compute the AWT values according to the algorithm group. 
The AWT of the four clusters in the three groups is shown in 
Figure 3. 

 Figure 3. AWT distribution of the students 
For each algorithm, the group AWT is increasing from cluster 1 to 
4, meaning the activeness of students is decreasing 
correspondingly (see Figure 3). 
Even though the database design defect might affect the accuracy 
of this study, the results are as follows: 
(1) The processing efficiency prediction for the three algorithms is 
validated. Except for the submission-queue's value of the third 
cluster in Figure 3 is a bit higher than their corresponding pre-
assignment value, all the other values meet our prediction 
(1=submission-queue 2=pre-assignment 3=post-assignment). 
(2) The proactiveness reward prediction for the three algorithms is 
validated. The time windows available to review with pre-
assignment and submission-queue are the same. That is to say that, 
without the effect of behavioral factors, the submission-queue and 
pre-assignment AWT values of each cluster should not be greatly 
different. However, from the data shown in Figure 3, we can find 
that almost all the AWT values with submission-queue are much 
more efficient than those with pre-assignment because students do 
not need to wait the peer's source code submission for a long 
time after he/she submits his/her own source code. Moreover, the 
earlier a student submits his/her source code, the more chance 
he/she has of being assigned to a review circle with similarly 
active students. We do not mean that all active students are 
excellent, but the active students may like to study together with 
students of great learning enthusiasm. Thus, the result of the 
investigation demonstrates that the submission-queue does play 
the function of stimulating. 



(3) The active students are more sensitive to the reviewer 
assignment algorithm. Within each cluster, the submission-queue 
and pre-assignment AWT values have difference, so do the AWT 
value of pre-assignment and that of post-assignment. We use the 
AWTs difference value to measure the students' sensitivity to the 
reviewer assignment algorithms. From Figure 3, we prove that the 
AWT differences in the first two clusters are much greater than 
those in the last two clusters, which indicates that the more active 
the students are, the more sensitive they are to the reviewer 
assignment algorithms. 

5. CONCLUSION AND DISCUSSIONS 
With the increasing requirement of peer assessment research, 
especially in the age of MOOC, the reviewer assignment becomes 
a pressing concern. The reviewer assignment research in the 
educational context, especially on the reviewer assignment 
moment, gets little focus. 
From the perspective of RAM in the PCR context, we propose 
three algorithms comprising post-assignment, pre-assignment, 
and submission-queue. The preliminary investigation among one 
classes in an academic years reveal that submission-queue has a 
much higher processing efficiency and proactiveness reward than 
the other two algorithms. Moreover, we found that active students 
are much more sensitive to the application of reviewer assignment 
algorithms. Based on these results we discuss two main concerns: 
(1) Do assignment pairs created with submission-queue algorithm 
promote fair feedback? This is an interesting issue addressed by 
some scholars with academic rigor. Actually we have to admit that 
proactiveness is the base of active learning, however, for the 
participants in peer assessment, being active is not the whole story. 
Fair feedback depends on the competence matching between peers, 
morality level of participants, adequate and appropriate training, 
quality assurance strategy by instructors, and so on. These are all 
challenging topics in the future research. 
(2) Since submission-queue has predominant advantages relative 
to the other two, can it be taken as a universal algorithm in all 
scenarios? In our opinion, the choice of RAM algorithm depends 
on the context of each specific application. Even though 
submission-queue has more advantage over post-assignment and 
pre-assignment, these two algorithms also have practical values. 
For example, if the proactiveness reward and late submissions are 
not important, pre-assignment is easy to be applied and the entire 
process is simple to be managed. Similarly, if the proactiveness 
reward and completion time are not critical, post-assignment 
becomes a very suitable algorithm. 
(3) Does submission-queue suit for MOOC or traditional 
classroom? We consider that the reviewer assignment moment in 
submission-queue always plays its role effectively in peer 
assessment no matter what the education context is. We find that 
submission-queue can stimulate students’ learning enthusiasm and 
advance the task completion process especially when the students 
are inherently active. In traditional offline courses, the peer 
assessment process is the same as online process like in EduPCR 
so that submission-queue will suit for traditional classroom. More 
importantly, submission-queue tends to be more useful for 
assessing the performance of students in MOOCs. Although peer 

assessment greatly improves the grading efficiency in MOOCs, 
such assessment of open-ended assignments is still much complex 
and time-consuming with massive students in courses. If 
reviewers could start their review process as soon as possible, the 
peer assessment process will be largely advanced. Therefore, the 
processing efficiency and proactiveness reward of submission-
queue will be more prominent in MOOCs. 

ACKNOWLEDGEMENT 
This work was partially funded by China Scholarship Council 
[201506125055], National Natural Science Foundation of China 
[71573065], and Online Education Research Foundation (QTone 
Education) of China's MOE [2016YB130]. 
Thanks to some students at School of Management, Harbin 
Institute of Technology, such as Miss Hang Li and Miss Xiaolei 
Wang, for their assistance of collecting data and analyzing the 
results. 

REFERENCES 
[1] Van Zundert, M., D. Sluijsmans and J. Van Merriënboer 

(2010). Effective peer assessment processes: Research 
findings and future directions. Learning and Instruction, 
20(4), 270-279. doi:10.1016/j.learninstruc.2009.08.004 

[2] Newman, W., & Taylor, A. (1999). Towards a methodology 
employing critical parameters to deliver performance 
improvements in interactive systems. In Proceedings of 
INTERACT (Vol. 99, pp. 605-612). 

[3] Wang, Y., Li, H., Feng, Y., Jiang, Y., & Liu, Y. (2012). 
Assessment of programming language learning based on peer 
code review model: Implementation and experience report. 
Computers & Education, 59(2): 412-422. 
doi:10.1016/j.compedu.2012.01.007 

[4] Mahoney, M. J. (1977). Publication prejudices: An 
experimental study of confirmatory bias in the peer review 
system. Cognitive therapy and research,1(2),161-175. 
doi:10.1007/BF01173636 

[5] Tsai, C. C., Lin, S. S., & Yuan, S. M. (2002). Developing 
science activities through a networked peer assessment 
system. Computers & Education, 38(1), 241-252. doi: 
10.1016/S0360-1315(01)00069-0 

[6] Tànfani, E., & Testi, A. (2010). A pre-assignment heuristic 
algorithm for the Master Surgical Schedule Problem (MSSP). 
Annals of Operations Research, 178(1), 105-119. 
doi:10.1007/s10479-009-0568-6 

[7] Cho, K., & MacArthur, C. (2010). Student revision with peer 
and expert reviewing. Learning and Instruction, 20(4), 328-
338. doi:10.1016/j.learninstruc.2009.08.006 

[8] Chen, Y. (1999). Banking panics: The role of the first-come, 
first-served rule and information externalities. Journal of 
Political Economy, 107(5), 946-968. 

[9] Wang, J., Cao, J., & Li, Q. (2001). Reliability analysis of the 
retrial queue with server breakdowns and repairs. Queueing 
Systems, 38(4), 363-380. doi:10.1023/A:1010918926884 

 
 


