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ABSTRACT 
The Additive Factors Model (AFM), a widely used model of 
student learning, estimates students’ prior knowledge, the 
difficulty of tutored skills, and the rates at which these skills are 
learned. In contrast to Bayesian Knowledge Tracing (BKT), 
another widely used model of student learning, AFM does not 
have parameters for the slipping rates of learned skills; i.e., it does 
not explicitly model situations where students know a skill, but 
still apply it incorrectly. Thus, AFM assumes that as students get 
more practice their probability of correctly applying a skill 
converges to 100%, whereas BKT allows convergence to lower 
probabilities. This restriction constrains the range of values that 
AFM parameters can take. In particular, when the asymptotic 
performance of a skill is less than 100%, AFM will estimate the 
learning rate to be lower than if slipping was taken into account. 
To investigate this phenomenon, I will created a LearnSphere 
workflow component that implements AFM and a variant of AFM 
with explicit slipping parameters (AFM+S). Using this 
component, I analyze multiple DataShop datasets to determine (1) 
whether the model with slipping parameters better fits the data 
and (2) how the addition of slipping parameters impacts the 
parameter estimates returned by AFM. I show that, in general, 
AFM+S better fits the data than the AFM. Additionally, I show 
that AFM+S estimates higher skill intercepts and learning rates 
than AFM, whereas AFM estimates higher student intercepts than 
AFM+S.  
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1. INTRODUCTION 
The Additive Factors Model [1], or AFM, is a statistical model of 
student learning that can be fit to educational data in order to 
estimate students’ prior knowledge, the difficulty of tutored skills, 
and the rates at which these skills are learned. Unlike Bayesian 
Knowledge Tracing [2], an alternative statistical model of student 
learning, AFM does not have explicit parameters to model the rate 
at which students incorrectly apply learned skills (i.e., slipping 
parameters).  

This lack of slipping parameters has an impact on both the model 
fit and the parameter estimates. If slipping is occurring, then 
model fits should improve by taking these parameters into 
account. Further, in situations where slipping is occurring, AFM 
will underestimate learning rates so that it can fit the higher error 
rates in the tail of the learning curve [3]. There is some evidence 
that the learning rates estimated by BKT, an approach that takes 
slipping into account, tend to be higher than those estimated by 

AFM [4]. However, a through investigation of how slipping rates 
impact learning estimates has not been done. 

In order to investigate the impact of slipping parameters on 
AFM’s model fit and parameter estimates, I created a 
LearnSphere workflow component that implements both AFM 
and the extension of AFM that includes slipping parameters. I 
refer to this extension as AFM+S [3]. Using this component I fit 
both AFM and AFM+S models to five datasets from DataShop. I 
analyzed the output to determine which model best fits the data, 
whether slipping was occurring in the datasets, and to compare the 
parameter estimates of the two models to determine how the 
slipping parameters affect the learning rate estimates.  

Previous work has shown that AFM+S better fits the data better 
than AFM and BKT on five different datasets [3]. I replicated this 
analysis to show that the same results hold with the new workflow 
component. Further, in my analysis I took additional precautions 
to prevent Type I errors (i.e., identifying a significant difference 
when none exists). As a preliminary test that learning rates 
estimated by the AFM+S model will be higher than the learning 
rates estimated by the AFM model, I fit both models to the 
Geometry Area 1996-1997 dataset accessed via DataShop [5] and 
compared their learning rate estimates. I found that the mean 
learning rate for the AFM model was 0.18 logits, whereas the 
mean learning rate for the AFM+S model was 0.42, a significant 
difference (V=0, p < 0.01 via a paired Wilcoxon signed-rank test). 
These preliminary results suggested that adding slipping 
parameters to the model causes the estimated learning rates to be 
higher. However, I wanted to analyze the other four datasets to 
identify whether this was a systematic trend. In this paper I will 
present the results of this analysis. In particular, I show AFM+S 
better fits the five datasets than AFM on unstratified and stratified 
cross validation and that the skill intercepts and slopes (i.e., 
learning rates) estimated by the AFM+S model are higher than 
those estimated by the AFM model. Further, I also show that the 
AFM model estimates the student intercepts to be higher than the 
AFM+S model. 

In addition to exploring these ideas, this paper showcases the new 
LearnSphere workflow component. Researchers can use this 
component in situations where they want to use AFM, but where 
they suspect slipping is occurring. BKT is one possible 
alternative, but is not a panacea. For example, BKT does not 
support multiple skill labels per step, but AFM+S does. Further, 
there is evidence that AFM+S better fits many datasets than the 
traditional BKT [3]. A workflow component for AFM+S is a 
contribution to the ecosystem of learning analytic models that 
researchers might like to use. 



2. WORKFLOW COMPONENT 
2.1 Data Inputs 
The AFM+S workflow component that I am created accepts the 
standard PSLC DataShop student-step rollup format. From these 
files the AFM+S model requires information about the student 
labels, the knowledge component labels, and the knowledge 
component opportunity counts. Depending on whether item cross-
validation is to be performed, the model also needs the item 
labels.  

2.2 Workflow Model 
The code for the AFM+S workflow component is implemented in 
Python and is publicly available on GitHub: 
https://github.com/cmaclell/pyAFM. This code implements a 
standard Logistic Regression classifier that accepts box-
constraints (so learning rates can be constrained to be positive) 
and L2 regularization parameters (so student intercepts can be 
pulled towards 0). It also implements Bounded Logistic 
Regression, so that slipping parameters can be taken into account. 
Using these classifiers, the code provides implementations of both 
AFM and AFM+S as described in prior work [3].  

2.3 Workflow Outputs 
The AFM+S workflow component has three possible outputs. 
First, it outputs metrics for assessing the fit of the model to data. 
In particular, it outputs unstratified, stratified, student, and item 
cross-validated root-mean-square error. Second, the model outputs 
predicted first-attempt performance for each student step, so that 
the resulting learning curve can be plotted and compared to 
alternative models.  Finally, the model outputs student intercept 
parameter estimates, skill difficulty and learning rate parameter 
estimates, and skill slipping parameter estimates.  

The model fit statistics and parameter estimate outputs take the 
form of tables or comma-separated value output files. The model 
predictions output takes the form of either a comma-separated 
value output file or learning curve plots. These learning curve 
plots are similar to those currently available on DataShop.  

3. METHOD 
In order to investigate the impact of slipping parameters on AFM 
skill slopes, I used the new workflow component to fit both the 
AFM and AFM+S models to five datasets downloaded from 
DataShop: Geometry [5], Equation Solving [6,7], Number Line 
Estimation [8], Writing 1 [9], and Writing 2 [10].  

Before analyzing parameter differences, I assessed which model 
better fit the data using cross validation. For each model and 
dataset, I performed 5 runs of 2-fold stratified and unstratified 
cross validation and 1 run of 2-fold student and item cross 
validation (i.e., where students and items are divided across the 
folds). I then used a Paired Wilcoxon Signed-Rank test to 
compare the model fits across the datasets, runs, and folds. I did 
not conduct more runs or folds because there is evidence that 
doing so increases the risk of Type I error due to the correlation in 
model fits between folds that share training data [11]. For student 
and item cross validation, I conducted only 1 run of 2 fold cross 
validation because randomly splitting students and items between 
fold, while balancing the number of training points between folds, 
is non-random and repeated runs also increases the likelihood of 
Type I error. 

Figure 1. The slipping rates of skills across the five datasets. 
After assessing overall model fits, I fit each model (AFM and 
AFM+S) to each of the datasets using all of the available data and 
recorded the parameter estimates from both models. I plotted the 
slipping parameter values to determine which datasets are most 
affected by the slipping parameters (Figure 1). In situations where 
there is little slipping, AFM+S should be identical to AFM. I then 
compared each of the parameter types (skill intercepts, skill 
slopes, and student intercepts) between models using a Paired 
Wilcoxon Signed-Rank test to determine if there were systematic 
differences in parameter estimates produced by the models across 
the five dataset.   

4. RESULTS 
Overall the AFM+S model better fits the data across the five 
datasets and four cross-validation types (unstratified, stratified, 
student, and item), via a Wilcoxon Signed-Rank Test paired by 
cross-validation type, dataset, run, and fold (V=1350.5, p < 0.01). 
When dividing the data by cross-validation type, AFM+S better 
fits the data across the five datasets for unstratified (V=213, p < 
0.01) and stratified (V=222, p < 0.01), but not student (V=8, p=1) 
and item (V=26, p >0.7) cross validation. When dividing the data 
by dataset, AFM+S better fits the data on Geometry (V=212, 
p<0.01) and Equation Solving (V=181, p  < 0.02), but not Number 
Line (V=3, p = 1), Writing 1 (V=2, p = 1), or Writing 2 (V=32, p 
> 0.6).  

Figure 1 shows the skill slipping rates across the five datasets. The 
slipping rates of skills on the Number Line, Writing, and Writing 
2 datasets are effectively zero (the max slip rate for any skills in 
these datasets is 9 x 10-9 percent), which explains why there is no 
significant difference in model fit for these datasets; i.e., the 
AFM+S is practically identical to AFM for these datasets.  
Further, it is likely that there was no difference on student and 
item cross validation because there was not enough statistical 
power to detect a difference; i.e., I performed only 1 run of 2-fold 
cross validation and only two of the five datasets had skills with 
non-zero slipping rates.  

Across all five datasets AFM+S estimates higher skill intercepts 
(V=257.5, p < 0.01) and slopes (V=117, p< 0.01) than AFM, 
whereas AFM estimates higher student intercepts (V=9226, p < 
0.01) than AFM+S (via a Wilcoxon Signed-Rank test paired by 
skill and dataset). Note, these results are being primarily driven by 
the Geometry and Equation Solving datasets because AFM and 
AFM+S are practically identical on the Number Line, Writing, 
and Writing 2 datasets.  

5. DISCUSSION 
In general, my results show that AFM+S better fits the data than 
the AFM model and that there are significant differences in the 



parameters estimated by the two models. In particular, the skill 
intercepts and learning rate estimates from the AFM+S model are 
higher than those returned by the AFM model. Further, the student 
intercept estimates from AFM+S are lower than those produced 
by AFM. These findings suggest that the AFM model might be 
compensating for skill slipping by adjusting the other parameters. 
The implication of this finding is that researchers interpreting 
parameter estimates returned by AFM should be cautious in 
situations where skill slipping appears to be occurring. 

These results also suggest that, at least for these five datasets, the 
AFM+S model is generally preferable to the AFM model. In 
situations where no slipping is occurring AFM+S reduces to the 
AFM model and returns statistically identical model fits. 
However, when slipping occurs model fit improves with AFM+S.  

In conclusion, I have introduced a LearnSphere workflow 
component and shown how this component can be used to 
investigate the differences in model fits and parameter estimates 
of the AFM and AFM+S models. My analysis shows that AFM+S 
better fits the data than AFM on datasets where slipping occurs 
and that there are significant differences between the parameter 
estimates returned by the two models. These results suggest that 
researchers using the AFM model should consider transitioning to 
the AFM+S model when they suspect slipping to be occurring. 
These results also showcase the capabilities of the new 
LearnSphere AFM+S workflow component.  

6. ACKNOWLEDGMENTS 
We thank Erik Harpstead, Michael Yudelson, and Rony Patel for 
their thoughts and comments when developing this work. This 
work was supported in part by the Department of Education 
(#R305B090023 and #R305B110003) and by the National 
Science Foundation (#SBE-0836012). Finally, we thank Carnegie 
Learning and all other data providers for making their data 
available on DataShop. 

7. REFERENCES 
[1] Hao Cen, Kenneth R Koedinger, and Brian Junker. 2006. 

Learning Factors Analysis – A General Method for Cognitive 
Model Evaluation and Improvement. 164–175. 

[2] Albert T Corbett and John Robert Anderson. 1995. 
Knowledge tracing: Modeling the acquisition of procedural 
knowledge. User Modeling and User-Adapted Interaction 4, 
4: 253–278. 

[3] Christopher J MacLellan, Ran Liu, and Kenneth R 
Koedinger. 2015. Accounting for Slipping and Other False 
Negatives in Logistic Models of Student Learning.  

[4] Ran Liu. Personal Communication. 2016. 
[5] Kenneth R Koedinger. Geometry Area 1996-1997. Dataset 

76 in DataShop. Retrieved from 
pslcdatashop.web.cmu.edu/DatasetInfo? datasetId=76. 

[6] Ritter, S., Anderson, J.R., Koedinger, K.R., & Corbett, A. 
2007. The Cognitive Tutor: Applied research in mathematics 
education. Psychonomics Bulletin & Review, 14, 2: 249-
255.  

[7] Booth, J., & Ritter, S. 2009. Self Explanation sch_a3329ee9 
Winter 2008 (CL). Dataset 293 in DataShop. Retrieved from 
pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=293.  

[8] Derek Lomas. Digital Games for Improving Number Sense – 
Study 1. Dataset 445 in DataShop. Retrieved from 
pslcdatashop.web.cmu.edu/DatasetInfo? datasetId=445. 

[9] Ruth Wylie. IWT Self-Explanation Study 1 (Spring 2009) 
(tutors only). Dataset 313 in DataShop. Retrieved from 
pslcdatashop.web.cmu.edu/DatasetInfo? datasetId=313. 

[10] Ruth Wylie. IWT Self-Explanation Study 2 (Spring 2009) 
(tutors only). Dataset 372 in DataShop. Retrieved from 
pslcdatashop.web.cmu.edu/DatasetInfo? datasetId=372. 

[11] Dietterich, T. G. 1998. Approximate statistical tests for 
comparing supervised classification learning algorithms. 
Neural Computation, 10(7), 1895–1923. 
http://doi.org/10.1162/089976698300017197.

 
 
 


