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ABSTRACT 
How should a wide variety of educational activities be sequenced 
in order to maximize student learning? We recently proposed the 
Sequencing Constraint Violation Analysis (SCOVA) method to 
help address this question. In this paper, we propose how SCOVA 
could be transformed into a workflow in LearnSphere so that 
other researchers and practitioners can find answers to the 
aforementioned question in their own datasets. We hope that such 
a workflow will lead to more and better research into this 
important question, as well as interesting new findings for both 
the educational data mining and learning sciences communities. 
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1. INTRODUCTION 
How to sequence educational activities is an important 
pedagogical question [12]. Much of the existing work on 
sequencing activities consists of theoretical analyses [2, 4, 7] and 
empirical studies [1, 13, 5, 11]. While empirical studies can help 
address questions that compare two or three different ways to 
sequence a curriculum (e.g., whether topics should be blocked or 
interleaved), it cannot effectively scale to analyzing the myriad of 
potential sequences that could be considered. However, 
educational data mining (EDM) techniques can enable one to 
simultaneously study different types of sequences based on past 
data. We recently proposed one such method—Sequencing 
Constraint Violation Analysis (SCOVA)—for comparing the 
efficacy of different sequencing constraints given a dataset that is 
rich in the variety of sequences it explores [3]. SCOVA can be 
used to analyze a wide variety of sequencing constraints, such as 
prerequisite relationships, constraints on when different learning 
mechanisms should be introduced, blocking, interleaving, and 
spiraling. SCOVA can both be used to better understand how 
problems should be sequenced in specific learning environments, 
including intelligent tutoring systems (ITSs), as well as to find 
some generalizable trends that may inform the learning sciences 
literature (e.g., on whether blocking or interleaving is more 
effective or in what order learning mechanisms should be 
supported). SCOVA can also be used to inform the creation of 
adaptive policies for ITSs. However, SCOVA will most likely not 
be used for any of these purposes if it just remains in a paper that 
a few researchers might, at best, read and cite. Rather, its benefit 
will likely only outlive the confines of a one-off EDM paper if it 
is released as a workflow on a platform like LearnSphere that is 
used by researchers and practitioners. If released as such a 

workflow, SCOVA can also introduce researchers who may not 
have otherwise considered the question of how activities should 
be sequenced in their learning environments to find a newfound 
interest in this area, which we believe is becoming increasingly 
important to both the learning sciences and educational data 
mining communities. 

2. WORKFLOW METHOD 
2.1 Data Inputs 
SCOVA is applicable to datasets with substantial variability in the 
types of activity sequences that students complete. This variability 
is typical of many datasets, including ones that include 
randomness in how problems were presented to students (e.g., 
[9]), ones where adaptive policies were used for problem selection 
resulting in sequences that vary from student to student (e.g., 
[10]), and ones where students are able to do choose which 
problems to work on themselves (e.g., [8]). The workflow can 
work with datasets in the PSLC DataShop format. Given that 
SCOVA is a very general-purpose method, which can be used to 
analyze how a wide variety of sequencing constraints impact 
potentially different measures of student performance (e.g., 
within-tutor performance, posttest scores, learning gains, time on 
task, etc.), it may potentially need to utilize a variety of the 
columns in a DataShop dataset. However, for simplicity we will 
describe a version of SCOVA that is limited to analyzing 
sequencing constraints that may only depend on within-tutor 
correctness and properties of the activities presented to students 
and can only measure the impact with respect to within-tutor 
performance and functions of pretest and posttest scores (such as 
learning gains). 

In full, SCOVA needs three input files: 

1. The DataShop transaction-level file. For every step in a 
transaction-level dataset, SCOVA needs to know the 
problem name and whether the step was answered 
correctly or not.  

2. A mapping of every problem name to categories to 
which the problem belongs. For example, when using 
SCOVA on our fractions ITS [3], we labeled each 
problem with one of three topic labels (making and 
naming fractions, fraction equivalence and ordering, 
and fraction addition) as well as one of three activity 
types corresponding to learning mechanisms from the 
Knowledge-Learning-Instruction (KLI) framework 
(sense-making, induction and refinement, and fluency-
building) [6]. These category labels will then be used as 



the building blocks of sequencing constraints, as 
explained in Section 2.2. 

3. A file that gives the pretest and posttest score for each 
student. 

2.2 Workflow Model 
The workflow begins with the researcher selecting different sets 
of sequencing constraints that they want to analyze. Each 
sequencing constraint can be selected by first choosing a category 
(e.g., topics or activity type) and then selecting a pattern that 
corresponds to the sequencing constraint. The pattern can take on 
one of three forms: 

1. Specifying a particular sequence (e.g., ABCABCABC, 
which may correspond to interleaving different activity 
types or topics). 

2. Specifying that a student should be exposed to a 
problem with label A before a problem of label B (e.g., 
a student should be shown a number line problem 
before being shown a fraction equivalence problem) 

3. Specifying that a student should have reached some 
performance threshold on a problem with label A before 
a problem with label B (e.g., a student should have 95% 
accuracy on fraction equivalence problems before being 
exposed to fraction addition) 

The researcher can select as many sequencing constraints of the 
three forms above. Then for each possible permutation of category 
labels (e.g., A = fraction equivalence, B = fraction addition, C = 
naming fractions), SCOVA computes a score for how well each 
student’s sequence in the dataset matches the given sequencing 
constraints. The score is the proportion of problems in the 
trajectory where a sequencing constraint was violated. SCOVA 
then learns a linear regression model that uses the degree to which 
a student violates a particular set of sequencing constraints to 
predict some chosen outcome variable (i.e., some measure of 
within-tutor performance or some function of the posttest and 
pretest scores).  Notice that if the model has a negative correlation 
then that implies the more a student obeys a particular sequencing 
constraint, the better that student learns/performs in the tutoring 
system, i.e. negative correlations are indicative of beneficial 
sequencing constraints. The final step of SCOVA is to compare 
the model fits for different sets of sequencing constraints to guide 
the practitioner/researcher to which sequencing constraints have 
the largest positive impact on student learning. For more details 
on the method and particular instantiations of sequencing 
constraints, refer to [3]. 

2.3 Workflow Outputs 
The primary output is a table of BIC values of models for every 
set of sequencing constraints evaluated. The practitioner can 
choose from a set of options how they want the table organized. 
For example, if we were evaluating the impact of constraints of 
the form topic A should come before topic B, which should come 
before topic C in tandem with constraints of the form activity type 
X should come before activity type Y, which should come before 
activity type Z, this could be represented in a 6-by-6 table where 
the rows correspond to the different permutations over topics and 
the columns correspond to the different permutations over activity 
types. (If there was a third category of interest with three different 
labels, such as say whether the difficulty level of the problem was 
easy, medium, or hard, then the workflow could display six 

different tables, one for each permutation of difficulty levels.) For 
an example of such a table, see Table 3 in [3]. 

In addition to showing BIC values, the table will highlight those 
cells where the violation of sequencing constraints correlates 
negatively with performance/learning (again an indicator that the 
sequencing constraint is beneficial for students rather than 
harmful), and will designate the model with the lowest BIC (i.e., 
the best-fitting model). 
There will also be a toggle to display other quantities of 
importance in place of BIC, such as the coefficients of the 
predictors in the models. In the case of evaluating sequencing 
constraints over a single category (e.g., only how activity types 
should be sequenced), the user can choose to display the scatter 
plots used to fit each model and the best-fit lines themselves. The 
user can also choose to color-code each point of the scatter plots 
with the value of some feature (e.g., how many problems that 
student received). This color-coding of the plots can help identify 
potential confounds (e.g., students who do more problems might 
tend to violate fewer of a sequencing constraint and also do better 
simply because they did more problems). 
Finally, the workflow will allow doing exploratory analyses to 
detect other potential confounds. For example, if the sequences in 
the data were generated according to adaptive policies, one 
potential confound is that a student’s performance affects the 
degree to which sequencing constraints are violated in addition to 
the intended causal direction of the degree to which a sequencing 
constraint is violated influencing the student’s performance. To 
analyze the presence of such a confound, models can be learned 
where the outcome variable is the student’s pretest score (rather 
than say posttest score); since the pretest score comes before the 
students’ use of the tutor, we know that the only reason it would 
correlate with violations of certain sequencing constraints is if the 
adaptive policies discriminated between students with different 
amounts of prior knowledge. In using SCOVA on our fractions 
tutor, we found that while this reverse causal direction did exist, it 
was seemingly negligible and actually biasing against the 
conclusions that our results support [3]. Such a workflow should 
allow users the ability to do exploratory analyses before making 
firm conclusions using SCOVA. 

3. DISCUSSION 
Having a workflow for analyzing the impact of different 
sequencing constraints can have a number of benefits for both the 
EDM and learning science communities. SCOVA can both be 
used to better understand how problems should be sequenced in 
specific learning environments, as well as to find some 
generalizable trends that may inform the learning sciences 
literature (e.g., on whether blocking or interleaving is more 
effective or how learning mechanisms should be sequenced). 
SCOVA can also be used to inform the creation of adaptive 
policies for ITSs. However, for SCOVA to be used in such a 
fashion, it will likely have to be readily available as a workflow 
on a platform like LearnSphere that is used by researchers and 
practitioners. Additionally, by having such a workflow on 
LearnSphere, more researchers may be attracted to the question of 
how to sequence problems in their learning environment of 
interest. 

Furthermore, if LearnSphere also includes workflows for other 
methods of analyzing sequencing constraints such as [9], more 
research can be done in comparing these methods. Currently when 
such a method is published it is not widely adopted either in 
practice or by other researchers, and it is not compared to methods 



that succeed it. By putting all methods that do similar styles of 
analyses on one platform, LearnSphere can lead to more 
productive research, including hopefully better ways of 
understanding how we should sequence educational activities in 
different learning environments. 
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