A Note on Restricted Forms of LGG

Ondiej Kuzelka! and Jan Ramon?
1 School of Computer Science & Informatics, Cardiff University, UK
KuzelkaOQcardiff.ac.uk
2 Department of Computer Science, KU Leuven, Belgium
jan.ramon@cs.kuleuven.be

Abstract. We study existence of a restricted least general generaliza-
tion (LGG) with the property that LGGs of clauses from a pre-fixed set
belong to this set. We show that there is no such LGG even in simple
sets of clauses such as bounded-size clauses or treewidth-1 clauses.

1 Introduction

In this paper we study restricted forms of least general generalization (LGG) [6].
One such restricted form of LGG called bounded LGG was introduced in [4].
The main difference between ordinary LGG of some clauses Aq, Ao, ..., A and
their bounded LGG w.r.t. a set X is that the latter type of LGG does not have
to be the least general of all generalizations of these clauses, it merely suffices
if it is less general than any other generalization from X. In [3], it has been
shown that bounded LGG can be used for hypothesis learning without having
to resort to using exponential-time algorithms for #-subsumption if we allow the
algorithm to potentially miss some hypotheses not from the set X (e.g. some
high-treewidth hypotheses). One property of bounded LGG was, however, still
asking for a further study. When computing bounded LGG w.r.t. a set X, it
may often be the case that the resulting clause will not be from the set X. For
instance, when X consists of clauses of treewidth bounded by k, it may be the
case that a bounded LGG of some clauses w.r.t. this set will have treewidth
higher than k even if the clauses to be generalized are all from the set X as well.
The question was whether there could be another type of restricted LGG which
would not have this property, at least for some reasonable sets X'. We study this
question in this paper and answer it negatively even for simple sets X.

2 Preliminaries

A directed graph is a pair (V, E), where V is a finite set of verticesand E C V xV
is a set of edges. Two vertices are said to be adjacent if they are connected by an
edge. A graph H is homomorphic to a graph G, denoted H < G, if there exists a
mapping ¢ : V(H) — V(G) such that if (u,v) € E(H) then (¢(u), ¢(v)) € E(G).
Two graphs H and G are homomorphically equivalent if H < G and G < H.
A graph G is a core graph if there is no strictly smaller graph homomorphically

62

equivalent to it. A tree-decomposition [7] of a graph G, denoted TD(G), is a pair
(T, X), where T' is a rooted unordered tree and X = (X.).cy(r) is a family of
subsets of V(G) satisfying: (i) U.cy () X. = V(G), (ii) for every {u,v} € E(G),
there is a z € V(T') such that u,v € X, and (iii) X,, N X,, C X,, for every
21, 22,23 € V(T') such that zo is on the simple path connecting z; with z3 in T
The set X, associated with a node z of T is called the bag of z. The treewidth
of TD(G) is max ey (1 |X.| — 1, and the treewidth of G, denoted tw(G), is the
minimum treewidth over all tree-decompositions of GG. By graphs of bounded
treewidth we mean graphs of treewidth at most k, where & is some constant. For
example, all trees have treewidth 1, cycles have treewidth 2, rectangular n x n
grids have treewidth n. A graph with treewidth 1 is a forest, possibly with loops.

A first-order-logic clause is a universally quantified disjunction of first-order-
logic literals. For convenience, we do not write the universal quantifiers explicitly.
We treat clauses as disjunctions of literals and as sets of literals interchangeably.
To denote the number of literals in a clause A, we use the set notation |A|. A
clause A 0-subsumes a clause B (denoted by A =<y B), if and only if there is
a substitution € such that A0 C B. If A <9 B and B <y A, we call A and
B f-equivalent (written A ~zp B). A clause C is 6-reducible if there exists a
clause C’ such that C" =y C and |C’| < |C]. A clause with minimal number of
literals f-equivalent to a clause C' is its f-reduction. #-subsumption corresponds
to homomorphism and f-reduction corresponds to core of a graph. The Gaifman
graph of a clause A is the graph with one vertex for each variable v € vars(A)
and an edge for every pair of variables u,v € vars(A), u # v such that v and v
appear in a literal [€ A. The treewidth of a clause is equal to the treewidth of its
Gaifman graph. #-subsumption and #-reduction can be computed in polynomial
time for clauses which have bounded-treewidth 6-reductions.

A clause C' is said to be a least general generalization of clauses A and B
(denoted by C' € LGG(A, B)) if and only if C <y A, C <y B and for every clause
D such that D <y A and D <y B it holds D <y C. An LGG of two clauses C,
D can be computed in time O(|C|-|D]). LGG can be used as an operator in the
process of searching for hypotheses [1l5]. A problem of approaches based on least
general generalization is that the size of an LGG of a set of examples can grow
exponentially in the number of examples. In order to keep the LGGs reasonably
small, #-reduction is typically applied on the result of each LGG iteration [IJ.
An alternative to LGG capable of exploiting tractability of restricted hypothesis
classes, called bounded LG G, was introduced in [4]. We discuss bounded LGG in
the next section w.r.t. its relationship to LGG in a set.

3 Bounded LGG and LGG in a Set

The concept of bounded LGG was introduced in [4] in order to exploit existence
of hypothesis classes with tractable #-subsumption for learning based on LGG.

Definition 1 (Bounded LGG). Let X be a set of clauses. A clause B is said
to be a bounded LGG of clauses Ay, As, ..., A, w.r.t. the set X (denoted by

63

B € LGGx (A1, Az, ..., Ay)) if and only if B =g A; for alli € {1,...,n} and if
for every other clause C € X such that C =g A; for all i € {1,...,n}, it holds
C <y B.

Note that neither the clauses to be generalized, nor the resulting bounded LGG
w.r.t. X are required to belong to the set X. In fact, there are cases where we can
show easily that there is no bounded LGG belonging to the set X'. The following
example from [4] is one such case.

Ezample 1. Let X = {C1,C, ...} be a set of clauses of the following form: C; =
E(Al, AQ), CQ = €(A1, AQ) \Y 6(142, 143)7 03 = G(Al, AQ) V G(AQ,Ag) \Y €(A3, A4),
etc. Let us also have the following two clauses: A = ¢(X,Y) V e(Y, X) and B
=e(X,Y) Vel,Z) vV e(Z X). We would like to find a clause from X which
would be their LGG but this is impossible for the following reason. Any clause
from X f-subsumes both A and B but none of them is least general because for
any C; € X we have Ci11 2o C;, Cit1 =g A and C;41 =p B. On the other hand,
bounded LGG, as actually defined, always exists which follows trivially from the
fact that the conventional LGG as computed by Plotkin’s algorithm [6] is also a
bounded LGG. Nevertheless, it does not belong to the set X.

Notice that the clauses A and B in the above example do not belong to the
set X. In fact, one can verify easily that for all the clauses from the set X from
the above example, there is always an LGG belonging to the set X. Thus, one
might conjecture that, in general, if we restrict the clauses of interest, which we
may want to generalize, to be from the set X then we will always be able to find
a bounded LGG from the set)(El This motivates the definition of the following,
arguably quite natural, type of LGG which is studied in this paper.

Definition 2 (LGG in a set X). Let X be a set of clauses. A clause B € X
is said to be an LGG of clauses A1, Ag, ..., A, € X in the set X (denoted by
B € LGGY (A1, Aa, ..., Ay)) if and only if B <¢ A; for alli € {1,...,n} and if
for every other clause C € X such that C =g A; for all i € {1,...,n}, it holds
C =4 B.

There are several important differences between LGG in a set X (LGGY)
and bounded LGG w.r.t. a set X (LGGy). Most importantly, bounded LGG
w.r.t. a set X is not required to belong to the set X which is the property
guaranteeing that it always exists. Since LGG in a set A must belong to X,
it may be the case that it does not exist. Arguably for the sets A in which
LGGY exists, it would be preferable over LGGy, especially for the sets X for
which tractable #-subsumption algorithms exist (e.g. bounded-size or bounded-
treewidth clauses). That is one of the reasons why, in this paper, we are interested
in the question of existence of LGG' in several such sets of clauses. Here, we note
that if Ay, As,..., A, € X and LGG(A1, As, ..., A,) & X then this does not yet
mean that LGG'} (A1, As, ..., A,) does not exist’|

3 Actually, the main negative results presented in this paper show that this is not the
case in the majority of interesting cases.
4 If this was the case then the problem of existence of LGG} would be almost trivial.

64

The results of Horvath and Turdn [2] imply that an LGG} operator exists in
the class of forests of rooted directed trees (although not using this terminology).
The results presented in this paper actually show that, a bit surprisingly, the
results of Horvath and Turdn cannot be extended much (for instance they cannot
be generalized to the class of treewidth-1 graphs).

4 No LGGs in Sets of Bounded-Size Clauses

In this section, to start with a simpler problem before we tackle the question
of existence of an LGG operator in the set of bounded-treewidth clauses, we
consider the question of existence of LGG in the set of clauses consisting of at
most k atoms. We show that there is no LGG} operator in the sets of clauses
consisting of at most k£ atoms where k is an integer greater or equal to 4.

Theorem 1. If n > 4 then there is no LGG operator in the set X, of clauses
with at most n atoms based on one binary predicate. There is an LGG operator
in the set X3 of clauses consisting of at most 3 binary atoms with the same
predicate.

The next example show&ﬂthat there are clauses A, B € X3 such that LGG(A, B)N
X; = 0 and LGGY, (4, B) # 0.

Ezample 2. Let us have the following two clauses: A = e(X,Y) V e(Y, X) and B

=e(X,Y)VelY,Z)Ve(Z X). Their conventional f-reduced LGG is LGG(A, B) =
e(X1,X2) Ve(Xa, X3) Ve(Xs, Xy) Ve(Xy,Xs5)V €(X5,_X6) V e(Xg, X1), and

thus LGG(A, B) N A3 = (. However, there exists an LGGY, (A, B), for instance,

e(W,X)Ve(X.Y)Ve(Y,Z) € LGGY, (A, B).

Along the same lines, we can show that if we allow more than one binary
predicate, the situation becomes even worse.

Theorem 2. Ifn > 3 then there is no LGG operator in the set ?C',Sm of clauses
with at most n atoms with two different binary predicates.

We could see in this section, which was mostly meant to illustrate the general
problem of existence of LGGs in sets of clauses, that size of the clauses is not a
very good measure for defining sets of clauses with an LGG operator. This is a
bit unfortunate but not very surprising.

5 No LGGs in Sets of Treewidth-1 Clauses

In this section, we show that there is no LGG in the set of clauses with treewidth 1.
This is quite surprising given the positive result of Horvéth and Turén [2]. How-
ever, there is no disagreement between this positive result and our negative result

® From this, it also follows that in order to show that, in general, there is no LGG
in the set X3, it is not enough to show that 6-reduced Plotkin’s LGG of some two
clauses from X, has more than 4 atoms.

65

Fig. 1. The graph corresponding to clause C € LGG(A, B) from the proof of Theo-
rem Bl

as the negative result depends on the fact that graphs with loops have treewidth
1 too whereas loops are not allowed in the other setting corresponding to the
positive result.

Theorem 3. There is no LGG operator for the set of clauses with treewidth 1.

Proof. Let us have two clauses

A =red(al) V green(a2) V yellow(a3) V black(ad) V e(ab,al) V a(ab, a2)V
V e(ab,ab) V e(ab,ad) V e(ab, al) V e(ab,ad) V e(ab, ab) V e(ab, ab)

B =red(b1) V yellow(b2) V green(b3) V black(b4) V e(b5,b1) V a(b5, b2)V
V e(b5,b6) V e(b6,b5) V e(b6, b3) V e(b6, b4) V e(b5, b5) V e(b6, b6)

The conventional LGG of the clauses A and B is a clause C which represents the
graph shown in Figure [I| The clause C is not 6-reducible (i.e. the corresponding
labeled graph is a core) and has treewidth greater than 1 as it contains a clique
on 4 vertices. As we have already explained this does not guarantee that there
is no LGG of A and B in the set of clauses of treewidth 1. We therefore need
to prove that there is indeed no such clause of treewidth 1, which we will do by
contradiction.

Let us assume that there is a clause D which is an LGG of A and B and
which has treewidth 1. Such a clause must correspond to a labeled tree or forest,
possibly with loops. It follows from the definitions of LGG and LGG in a set
that D must also #-subsume C. Let us define a family of clauses

Ey =red(Y1) Ve(X1,Y1) Ve(Xy, Xa) V green(Ya) V e(Xa,Ys) V e(Xa, X3)V
V black(Y3) V e(X3,Y3) Ve(Xs, X4) V yellow(Yy) V (X4, Ys)

66

Es =red(Y1) Ve(X1,Y1) Ve(X1, Xa) V green(Ya) Ve(Xa,Ys) Ve(Xo, X3)V
V black(Y3) V e(X3,Y3) Ve(Xs, X4) V yellow(Yy) V e(X4, Ya)V
Ve(Xy, Xs5) VredYs) Ve(Xs Ys) V- Vyellow(Xs) Ve(Xs, Ys)

Ey =red(Y1) Ve(X1,Y1)Ve(X1,Xo) V- Vyellow(Yyr) V e(Xag, Yar)-

Clearly, each E; 6-subsumes C. By the assumption that D is an LGG in the set
of clauses of treewidth 1, each F; should also f-subsume D (because each F; has
treewidth 1 and #-subsumes A and B). Let us denote D; = E;6 where E;0; C D
and 6; is an arbitrary suitable substitution. Since D #-subsumes the clause C', no
vertex in the graph corresponding to the clause D can be adjacent to two vertices
labeled by different colors, i.e. the clause D cannot contain simultaneously e.g.
literals e(X,Y), e(X, Z), yellow(Y') and red(Z). It follows that if e(X;, X;41) V
e(Xj4+1,Xj42) C E; then 6; cannot map X; and X4, on the same term (this
follows from the construction of E;’s). For similar reasons, §; cannot map X;
and X;41 to the same term. Since D corresponds to a directed tree, possibly
with loops or cycles of length 2, and therefore contains no simple cycles of length
greater than 2, it follows that no two X; # X can be mapped to the same term
in D. However, since D is finite, there must be Ej such that Ey <y A, B, <¢ B
but E), A¢ D which is a contradiction with D being an LGG of A and B in the
set of treewidth-1 clauses. It follows that there is no finite LGG of A and B in
this set of clauses. a

Note that the above theorem shows the existence of a counterexample only
for treewidth-1 clauses and not for treewidth-k clauses in general. Thus, the-
oretically, it might be the case that there is an LGG operator in the class of
clauses of treewidth at most k, where k > 1, and a proof would still be needed
to disprove such a conjecture for general k. This seems unlikely, though.

6 Conclusions

The problems studied in this paper were motivated by the question whether
bounded LGG w.r.t. a set X', introduced in [4], could not be replaced by another
type of LGG guaranteeing that the resulting generalized clauses would belong
to the set X', at least when generalizing clauses from X. We have shown that
such an alternative LGG does not exist already for natural and simple sets X
such as the set of bounded-size clauses and the set of treewidth-1 clauses. Thus,
to our best knowledge, bounded LGG remains the only candidate for an LGG
capable of exploiting tractability of bounded-treewidth clauses for learning based
on LGG.

Acknowledgement. This work was supported by ERC Starting Grant 240186
“MiGraNT: Mining Graphs and Networks, a Theory-based approach”. The first
author is supported by a grant from the Leverhulme Trust (RPG-2014-164).

67

References

1.

2.

T. Horvath, G. Paass, F. Reichartz, and S. Wrobel. A logic-based approach to
relation extraction from texts. In ILP, pages 34-48, 2009.

T. Horvath and G. Turan. Learning logic programs with structured background
knowledge. Artif. Intell., 128(1-2):31-97, 2001.

O. Kuzelka. Fast Construction of Relational Features for Machine Learning. PhD
thesis, CTU in Prague, 2013.

0. Kuzelka, A. Szabéové, and F. Zelezny. Bounded least general generalization. In
ILP 2012, pages 116-129, 2012.

S. Muggleton and C. Feng. Efficient induction of logic programs. In ALT, pages
368-381, 1990.

G. Plotkin. A note on inductive generalization. Edinburgh University Press, 1970.
N. Robertson and P. D. Seymour. Graph minors .xiii. the disjoint paths problem.
J. Comb. Theory, Ser. B, 63(1):65-110, 1995.

68

