
Using Knowledge Representation and Reasoning Tools in the Design of Robots

Mohan Sridharan
Electrical and Computer Engineering

The University of Auckland, New Zealand
m.sridharan@auckland.ac.nz

Michael Gelfond
Department of Computer Science

Texas Tech University, USA
michael.gelfond@ttu.edu

Abstract
The paper describes the authors’ experience in us-
ing knowledge representation and reasoning tools
in the design of robots. The focus is on the system-
atic construction of models of the robot’s capabili-
ties and its domain at different resolutions, and on
establishing a clear relationship between the mod-
els at the different resolutions.

1 Introduction
Our prior paper described an architecture for robots [Zhang et
al., 2014], whose reasoning system we view (in this paper) as
an interplay between a logician and a statistician. The former
has an abstract, coarse-resolution view of the world. The lo-
gician perceives an office domain, for instance, as a collection
of connected rooms containing various types of objects, and
assumes that the robot is capable of successfully moving be-
tween two adjacent rooms, and of finding an object located in
a room. If the robot’s goal is to find a specific book, the logi-
cian can design a plan of abstract actions directing the robot
to go to the library, where books are normally stored. The
first action of this plan, e.g., move to the lab, which happens
to be the first room on the way to the library, will be passed to
a statistician, who has a rather different, fine-resolution view
of the world. According to the statistician, the same office
domain consists of small grid cells belonging to the different
rooms. The statistician believes that the robot is usually capa-
ble of moving to a neighboring cell, and of checking a cell for
a target object, but these actions are non-deterministic—they
only succeed with some probability that the statistician knows
a priori or can learn by running some experiments. For the
coarse-resolution action of moving to the lab, the statistician
thus has the robot move from cell to cell, observe its position,
and revise its belief of its position. If the statistician has a suf-
ficiently high confidence that the abstract action passed by the
logician has been executed, i.e., that the robot has moved to
the lab, this information is reported back to the logician. Oth-
erwise, statistician reports failure after some time, and the
logician has to diagnose and replan. Even this simple sce-
nario shows that our robot’s architecture should be capable of
representing and manipulating both logical and probabilistic
knowledge. In this paper we report our experience in the sys-
tematic design of such a robot using knowledge representa-

tion and reasoning tools tailored towards different reasoning
tasks. In comparison with our prior work [Zhang et al., 2014],
we introduce precise (and some new) definitions of basic no-
tions used to build mathematical models of the domain.

We started with describing the state transition diagram
modeling possible trajectories of the robot’s domain, in ac-
tion description language ALd [Gelfond and Inclezan, 2013].
Using ALd allowed us to concisely represent the diagram even
for domains with complex relationships between fluents, and
represent recorded histories of the robot’s actions and obser-
vations. We expanded the standard notion of recorded history
to include the robot’s default knowledge about the initial sit-
uation, which simplifies the diagnostics task. Although there
exist action languages that allow causal laws specifying de-
fault values of fluents at arbitrary time steps [Lee et al., 2013],
such languages are too powerful for our purposes, and occa-
sionally pose difficulties with representing all exceptions to
such defaults when the domain is expanded. Reasoning with
theories in ALd is performed by reducing planning, diagnos-
tics, and other robotic tasks to computing answer sets of a
program in CR-Prolog, a variant of Answer Set Prolog (ASP)
that supports representation and reasoning with defaults and
their direct and indirect exceptions [Balduccini and Gelfond,
2003]. This reduction, which considers histories with initial
state defaults, is the first novel contribution, but it expands
previous work that established close relationship between ac-
tion languages and logic programming with answer set se-
mantics. Existing efficient solvers help automate the neces-
sary reasoning [Leone et al., 2006].

The second novel contribution is the precise definition of
the world view of the statistician as a refinement of the transi-
tion diagram of the logician. The new diagram can be viewed
as the result of increasing the resolution of the robot’s ability
to see the world. In our example, the new world view includes
cells in rooms, which were so far invisible, and relations and
actions involving these cells, e.g. location of an object in a
cell, and the action of moving from a cell to its neighbor.
Construction of such a refinement may require some amount
of domain knowledge, but the statistician’s diagram is related
to the logician’s diagram in a precise way that is captured by
our novel mathematical definition of refinement. We provide
detailed guidelines for the construction of the refinement’s
action theory, which includes axioms establishing the rela-
tionship between fluents of the coarse-resolution diagram and

their fine-resolution counterparts, as well as the axioms de-
scribing the effects of observations.

After the refinement of the domain is constructed, the fine-
resolution description is randomized, i.e., modified to con-
sider the non-deterministic effects of fine-resolution actions
and observations. The third novel contribution is to expand
the action language ALd by a construct that supports the nat-
ural representation of such effects. Probabilities computed
experimentally by the statistician are then associated with the
purely logical diagram to obtain a probabilistic diagram. Rea-
soning in this new diagram also considers belief states, i.e.,
probability distributions over states of the logical diagram.
Theoretically, the statistician can now use probabilistic graph-
ical models such as a partially observable Markov decision
process (POMDP) to select and execute the “best” possible
action, make observations, and update the belief state until
the abstract action provided by the logician is completed with
high probability, or all hope of doing so is lost. However,
POMDP algorithms need a representation of the diagram that
lists all possible combinations of physical states and actions,
which can become intractable even for a comparatively small
collection of fluents. To avoid this problem, the robot zooms
to the part of the fine-resolution diagram that is relevant to the
execution of the coarse-resolution action provided by the lo-
gician. For instance, to execute the action “move from room
R1 to room R2”, with the two rooms being next to each other,
the fluents and actions related to other rooms are eliminated,
dramatically reducing the size of the corresponding diagram.
The fourth new contribution is a precise definition of zooming,
which helps automate this process. Finally, the zoomed part
of the randomized fine-resolution diagram is represented in
the format suitable for use with POMDP solvers. The corre-
sponding policy is invoked to execute a sequence of concrete
actions that implements the abstract action, with the action
outcomes being added to the coarse-resolution history.

2 Related Work and Example Domain
Logic-based representations and probabilistic graphical mod-
els have been used to control sensing, navigation and interac-
tion for robots [Bai et al., 2014; Hawes et al., 2010]. Formu-
lations based on probabilistic representations (by themselves)
make it difficult to perform commonsense reasoning, whereas
approaches based on logic programming tend to require con-
siderable prior knowledge of the domain and the agent’s ca-
pabilities, and make it difficult to merge new, unreliable infor-
mation with an existing knowledge base. Theories of reason-
ing about actions and change, and the non-monotonic logical
reasoning ability of ASP have been used by an international
research community, e.g., for natural language human-robot
interaction [Chen et al., 2012], control of unmanned aerial
vehicles [Balduccini et al., 2014], and coordination of robot
teams [Saribatur et al., 2014]. However, the basic version of
ASP does not support probabilistic representation of uncer-
tainty, whereas a lot of information extracted from sensors
and actuators is represented probabilistically.

Researchers have designed architectures for robots that
combine logic-based and probabilistic algorithms for task and
motion planning [Kaelbling and Lozano-Perez, 2013], cou-

ple declarative programming and continuous-time planners
for path planning in teams [Saribatur et al., 2014], combine
a probabilistic extension of ASP with POMDPs for human-
robot dialog [Zhang and Stone, 2015], combine logic pro-
gramming and reinforcement learning to discover domain ax-
ioms [Sridharan et al., 2016], or use a three-layered orga-
nization for knowledge and reasoning with first-order logic
and probabilities in open worlds [Hanheide et al., 2015].
Some general formulations that combine logical and prob-
abilistic reasoning include Markov logic network [Richard-
son and Domingos, 2006], Bayesian logic [Milch et al.,
2006], and probabilistic extensions to ASP [Baral et al., 2009;
Lee and Wang, 2015]. However, algorithms based on first-
order logic do not support non-monotonic logical reasoning
and do not provide the desired expressiveness—it is not al-
ways possible to associate numbers with logic statements to
express degrees of belief. Algorithms based on logic pro-
gramming do not support one or more of the desired capabil-
ities such as incremental revision of (probabilistic) informa-
tion; and reasoning with large probabilistic components. As a
step towards addressing these limitations, we have developed
architectures that couple declarative programming and prob-
abilistic graphical models [Zhang et al., 2014; 2015]. Here,
we expand on our prior work to explore the systematic con-
struction of robots with the desired knowledge representation
and reasoning capabilities. We illustrate these design steps
and our contributions using the following example.
Example 1. [Office Domain] Consider a robot assigned the
goal of moving specific objects to specific places in an office
domain. This domain contains:
• The sorts: place, thing, robot, and ob ject, with ob ject

and robot being subsorts of thing. Sorts textbook,
printer and kitchenware, are subsorts of the sort ob ject.
• Four places: o f f ice, main library, aux library, and

kitchen of which some of them are directly accessible
from each other.
• An instance of the sort robot, called rob1, and a number
of instances of subsorts of the sort ob ject.

Although this domain may appear simplistic, it illustrates
many of the representation, reasoning, perception, and actua-
tion challenges that exist in more complex robotics domains.

3 Logician’s Description
We start with the logician’s view of the world.

Action Language ALd: The logician’s state transition dia-
gram is specified as a system description (theory) in a variant
of action language ALd , which allows statements of the form:

a causes f (x̄) = y if body
f (x̄) = y if body
impossible a0, . . . ,an if body

The first statement describes an action’s direct effect—if ac-
tion a is executed in a state satisfying condition body, the
value of fluent f in the resulting state will be y. For instance:

move(R,Pl) causes loc(R) = Pl

says that a robot R moving to place Pl will end up in Pl.

The second statement is a state constraint, which says that
f (x̄) = y in any state that satisfies body. For instance:

loc(Ob) = Pl if loc(R) = Pl, in hand(R,Ob)

guarantees that the object grasped by a robot shares the
robot’s location. The third statement prohibits simultaneous
execution of actions a0, . . . ,an in a state satisfying body. The
functions in these statements are of two types, those whose
values can be changed by actions (fluents) and those whose
values cannot be changed (statics). Fluent can be basic or
defined; the former is subject to inertia laws while the latter
is defined in terms of other fluents. Formal semantics of the
original ALd is discussed in [Gelfond and Kahl, 2014]. Un-
fortunately, it only allows boolean fluents, a restriction that is
removed in our variant of the language.

Histories with defaults: In addition to action theory of ALd ,
the logician’s knowledge contains a recorded history, a col-
lection of the robot’s observations and actions. In action lan-
guages, such a recorded history typically consists of state-
ments of the form obs(f ,y, true, i) (or obs(f ,y, f alse, i))—at
step i of the robot’s trajectory, the value of fluent f is observed
to be (or not to be) y; and hpd(a, i)—action a was success-
fully executed (i.e., happened) at step i. The recorded history
defines a collection of models, trajectories of the system com-
patible with this record. This syntax of histories was rather
limited for our purposes, and the robot can benefit substan-
tially from some forms of default knowledge. In Example 1,
the robot can, for instance, be told that books are normally
kept in the library. To address this limitation, we introduced
an additional type of historical record:

initial default f (x̄) = y if body

to assume that if the initial state satisfies body, the value of
f (x̄) in this state is y. For instance, the default statement:

initial default loc(X) = main library if textbook(X)

says that textbooks are normally kept in the library, whereas
the default statement:

initial default loc(X) =o f f ice if textbook(X),

loc(X) 6= main library.

gives the second most likely location for a textbook. Such
defaults may substantially simplify the planning of the logi-
cian. For instance, the plan for finding a textbook tb will
consist of going directly to the library and looking for the
book there. However, defaults are also useful for diagnostics.
For instance, if tb is not found in the library, i.e., history in-
cludes obs(loc(tb), library, f alse, i), the robot would realize
that this observation defeats the first default, try the second
default, and look for the book in the office. To ensure such
behavior, we had to redefine the notion of a model of a his-
tory, and design a new algorithm for computing such models.
To this end, given an ALd theory DH and recorded history H ,
we construct the program Π(DH ,H) consisting of the stan-
dard encoding of DH into ASP, and the collection of atoms
representing observations and actions of H together with the
initial state defaults. This encoding allows indirect exceptions

to defaults (like an observation above) and uses CR-Prolog,
which justifies our departure from standard ASP.

Planning and diagnostics: The description of the logician’s
knowledge, as provided above, is sufficient for adequately
performing planning and diagnostics—these tasks are re-
duced to computing answer sets of program Π(DH ,H) com-
bined with standard encoding of the robot’s goal. This pro-
gram is passed to an efficient ASP solver—we use SPARC,
which expands CR-Prolog and provides explicit constructs
to specify objects, relations, and their sorts [Balai et al.,
2013]. Atoms of the form occurs(action,step) belong-
ing to the answer set obtained by solving this program,
e.g., occurs(a1,1), . . . ,occurs(an,n), represent the shortest
sequence of abstract actions for achieving the logician’s goal.
Prior research results in the theory of action languages and
ASP ensure that the plan is provably correct. In a similar
manner, suitable atoms in the answer set can be used for di-
agnostics, e.g., to explain unexpected observations.

Example 2. [Logician’s view of the world]
The logician’s system description DH of the domain in Ex-
ample 1 consists of sorted signature ΣH and axioms describ-
ing the transition diagram τH . ΣH defines the names of
objects and functions available for use, e.g., the sorts are
place, thing, robot, and ob ject, with ob ject and robot be-
ing subsorts of thing, and textbook, printer and kitchenware
being subsorts of ob ject. The statics include a relation
next to(place, place), which describes if two places are next
to each other. The domain’s fluents are: loc : thing→ place
and in hand : robot × ob ject → boolean. These are ba-
sic fluents subject to the laws of inertia. The domain’s
actions are move(robot, place), grasp(robot,ob ject), and
putdown(robot,ob ject). The domain dynamics are defined
using axioms that consist of causal laws:

move(R,Pl) causes loc(R) = Pl
grasp(R,Ob) causes in hand(R,Ob)
putdown(R,Ob) causes ¬in hand(R,Ob)

state constraints:

loc(Ob) = Pl if loc(R) = Pl, in hand(R,Ob)

and executability conditions such as:

impossible move(R,Pl2) if loc(R) = Pl1,¬next to(Pl1,Pl2)
impossible grasp(R,Ob) if loc(R) 6= loc(Ob)
impossible putdown(R,Ob) if ¬in hand(R,Ob)

For any given domain, the part of ΣH described so far is un-
likely to change substantially. However, the last step in the
construction of ΣH , which populates the basic sorts with spe-
cific objects, e.g robot = {rob1}, place = {r1, . . . ,rn}, and
textbook = {tb1, . . . tbn}, is likely to undergo frequent revi-
sions. Ground instances of axioms are obtained by replacing
variables by ground terms from the corresponding sorts.

In the transition diagram τH described by DH , actions are
assumed to be deterministic, and values of fluents are as-
sumed to be observable, which aid in fast, tentative planning
and diagnostics for achieving the goals. This domain rep-
resentation should ideally be tested extensively by including

various recorded histories of the domain, which may include
histories with prioritized defaults, and using the resulting pro-
grams to solve various reasoning tasks.

4 Statistician’s Description
In this section we describe our design of the statistician.

Refinement: First we specify the deterministic version of the
world of the statistician. It would be given by a system de-
scription DL defining a transition diagram τL which serves
as a (deterministic) refinement of the logician’s diagram τH .
Recall that τL is the result of increased resolution which mag-
nifies some objects in the signature ΣH of system description
DH of τH . Newly discovered parts of the magnified objects
are referred to as its refined components. In our example, for
instance, every room is magnified and is viewed as a collec-
tion of its component cells.

The refinement will be represented by a system descrip-
tion DL with signature ΣL. We say that a signature ΣL refines
signature ΣH if it is obtained by:
• Replacing every basic sort stH of ΣH , whose elements were

magnified, by its coarse-resolution version st∗L = stH , and
fine-resolution counterpart stL = {o1, . . . ,om} consisting of
the components of magnified elements of stH , e.g., ΣL re-
places sort place = {r1, . . . ,rn} of rooms in ΣH by:

place∗ = {r1, . . . ,rn}
place = {c1, . . . ,cm}

where rooms are magnified and viewed as a collection of
newly discovered objects, their component cells c1, . . . ,cm.

• Introducing static relation component between magnified
objects from st∗L and the corresponding newly-discovered
objects from stL, e.g., relation component(c,r) is defined
to be true iff cell c is in room r.

• Replacing sort f luent of ΣH by its coarse-resolution copy
f luent∗ (a defined fluent) and its fine-resolution counter-
part f luent (a basic fluent). In our example, the new fluents
obtained by refinement are:

loc∗ : thing→ place∗

loc : thing→ place

Other fluents (and their signatures) are unchanged.
• Obtaining actions of ΣL by replacing the magnified pa-

rameters of the original actions from ΣH by their fine-
resolution counterparts. In our example, ΣL will con-
tain original actions grasp and putdown, and new ac-
tion move(robot,cell) of a robot moving to an (adjacent)
cell. ΣL will also include knowledge-producing action
test(robot, f luent,value) that activates algorithms on the
robot to check the value of an observable fluent of DL in
a given state, e.g., test(R, loc(T h),Cell). Note that test
is a general action belonging to every refinement of ΣH .
We also add fluents to describe the result of testing, e.g.,
observed(robot, f luent,value) is true if the most recent
(direct/indirect) observation of f luent returned value.

Axioms of the refined system description DL include ax-
ioms of DH , and domain-dependent axioms relating coarse-
resolution fluents and their fine-resolution counterparts, e.g.,

in our illustrative domain we have:

loc∗(T h) = Rm if component(Cl,Rm), loc(T h) =Cl

which includes the new static component(c,r) for every cell
c within every room r—next to(c1,c2) is defined in a similar
manner for every pair of adjacent cells accessible from each
other. More importantly, we add to DL, basic knowledge flu-
ents that model the direct and indirect knowledge effects of
sensing, and introduce axioms relating these fluents and the
test actions. For instance:

test(R,F,Y) causes dir obs(R,F,Y) = true if F = Y.

In our example, robot rob1 testing if location of object o is cell
c will make basic knowledge fluent dir obs(rob1, loc(o),c)
true if the object is indeed there. Note, that dir obs may have
three possible values, true, false and undef —it is initially set
to the third value. Another fluent, indir obs(rob1, loc(o),R)
holds if loc(o) is observed to be true in some component cell
of room R. The fluent’s value is observed if it is observed
directly or indirectly. The designers of the statistician should
make sure that τL specified by our system description DL is
indeed a refinement, i.e., it matches the following formal def-
initions of refinement of a state and a system description.

Definition 1. [Refinement of a state]
A state δ of τL is said to be a refinement of a state σ of τH if:
• For every magnified fluent f from the signature of ΣH :

f (x) = y ∈ σ iff f ∗(x) = y ∈ δ

• For every other fluent of ΣH :

f (x) = y ∈ σ iff f (x) = y ∈ δ

Definition 2. [Refinement of a system description]
Let DL and DH be system descriptions with transition dia-
grams τL and τH respectively. DL is a refinement of DH if:
• States of τL are the refinements of states of τH .
• For every transition 〈σ1,aH ,σ2〉 of τH , every fluent f in

a set F of simultaneously observable fluents, and every
refinement δ1 of σ1, there is a path P in τL from δ1 to a
refinement δ2 of σ2 such that:

– Every action of P is executed by the robot which
executes aH .

– Every state of P is a refinement of σ1 or σ2, i.e., no
unrelated fluents are changed.

– observed(R, f ,Y) = true ∈ δ2 if (f = Y) ∈ δ2 and
observed(R, f ,Y) = f alse ∈ δ2 if (f = Y) 6∈ δ2.

Randomization: Our next step is to expand DL to capture
the non-determinism in action execution and observations on
the robot, which is essential for the statistician. To do so, we
extended ALd by non-deterministic causal laws:

a causes f (x̄) : {Y : p(Y)} if body
a causes f (x̄) : sort name if body

where the first statement says that if a is executed in a state
satisfying body, f may take on any value from the set {Y :

p(Y)} ∩ range(f) in the resulting state—second statement
says that f may take any value from {sort name∩range(f)}.
Randomized fine-resolution system description DLR is then
obtained by replacing each action’s deterministic causal laws
in DL by non-deterministic ones, declaring the affected fluent
as a random fluent. For instance, in our example, the non-
deterministic causal law for move is:

move(R,C2) causes loc(R) = {C : range(loc(R),C)}

where defined fluent range is given by:

range(loc(R),C) if loc(R) =C
range(loc(R),C) if loc(R) =C1, next to(C,C1)

where a robot moving to a cell can end up in other cells that
are within range—the robot’s current cell and neighboring
cells are all within range.

To complete our model of the statistician with probabilis-
tic information, we run experiments that sample specific in-
stances of each ground non-deterministic causal laws in DLR,
have the robot execute the corresponding action multiple
times, and collect statistics (e.g., counts) of the number of
times each outcome of the corresponding fluent is obtained.
These statistics collected in an initial training phase are used
to compute causal probabilities of action outcomes, and the
probability of observations being correct. Local symmetry
assumptions are used to simplify this collection of statistics,
e.g., movement from a cell to one of its neighbors is assumed
to be the same for any cell, given a specific robot. The de-
signer provides the required domain-specific information. In
our example, if rob1 in cell c1 may reach {c1,c2,c3} when
executing move(rob1,c2), the probabilities of these outcomes
may be 0.1, 0.8, and 0.1 respectively. Similarly, the robot
may compute that 0.85 is the probability with which it can
recognize a specific object in a specific cell. Any prior beliefs
about these probabilities (e.g., from a human) can be used as
the initial belief that is revised by the experimental trials.

Zooming: The statistician uses DLR and the computed prob-
abilities for fine-resolution execution of the transition T =
〈σ1,aH ,σ2〉 ∈ τH . Since reasoning probabilistically about all
of DLR may result in incorrect behavior and can be compu-
tationally intractable, the statistician first identifies the part
τLR(T) of diagram τLR that is necessary for the fine-resolution
execution of aH—we call this operation zooming. The size
of τLR(T) is decreased with respect to τLR by only consider-
ing refinements of σ1 and σ2, the states of τLR relevant to T .
Next, fluents and actions not relevant to the execution of aH

are removed based on the following definitions.

Definition 3. [Direct relevance]
An element y of a basic sort stH of DH is directly relevant to
a transition T of τH if:
• Element y occurs in aH ; or
• For some f , f (x̄) = y belongs to σ1 or σ2 but not both.

Consider the transition corresponding to robot rob1 moving
from the kitchen to the o f f ice, i.e., aH =move(rob1,o f f ice).
For this transition, element rob1 of sort robot, and elements
o f f ice and kitchen of sort place, are relevant.

Definition 4. [Zoom]
To construct DLR(T), we need to determine the signature and
the axioms describing the transition diagram τLR(T). The sig-
nature of DLR(T) is constructed as follows:

1. If stH is a sort of DH with at least one element directly
relevant to T :

• If sort stH is not magnified, it is its own zoomed
counterpart stz

L.
• If sort stH is magnified, stz

L is the set of components
of elements of stH directly relevant to T .

The zoomed counterparts form a hierarchy of basic sorts
of DLR(T) (with subclass relation inherited from DLR).
In our example, the sorts of DLR(T) are robotz

L = {rob1}
and placez

L = {ci : ci ∈ kitchen∪o f f ice}.

2. Functions of DLR(T) are those of DLR restricted to the
identified sorts. Functions in our example are loc(rob1)
taking values from placez

L, next to(placez
L, placez

L),
range(loc(rob1), placez

L), and properly restricted func-
tions related to testing these functions’ values.

3. Actions of DLR(T) are restricted to the sorts identified
above. In our example, the relevant actions are of the
form move(rob1,ci) and test(rob1, loc(rob1),ci), where
ci are individual elements of placez

L.

The axioms of DLR(T) are those of DLR that are restricted
to the signature of DLR(T). In our example, this interpreta-
tion removes the causal laws for grasp and put down, and
removes the state constraint related to fluent in hand in DLR.
Furthermore, in the causal law and executability condition
corresponding to the action move, C can only take values from
placez

L, i.e., any cell in the kitchen or the o f f ice.

Example 3. [Example of zoom]
Assume that robot rob1 has to execute aH = grasp(rob1, tb1)
to pickup textbook tb1—rob1 is, and tb1 is assumed to be, in
the o f f ice. Zooming constructs the following signature:

• Relevant sorts of DH are robot, ob ject, and place, and
stz

L = {robotz
L,ob jectz

L, placez
L} are the zoomed counter-

parts in DLR(T), with robotz
L = {rob1}, ob jectz

L = {tb1}
and placez

L = {ci : ci ∈ o f f ice}.

• Functions of DLR(T) include (a) loc(robotz
L) and

loc(ob jectz
L), basic fluents that takes values from

placez
L; (b) static next to(placez

L, placez
L); (c) de-

fined fluent range(loc(robotz
L), placez

L); and (d) the
knowledge fluent dir obs restricted to the zoomed
sorts, e.g., dir obs(robotz

L, loc(robotz
L), placez

L) and
dir obs(robotz

L, loc(ob jectz
L), placez

L).

• Actions of DLR(T) include (a) move(robotz
L, placez

L); (b)
grasp(robotz

L,ob jectz
L); (c) putdown(robotz

L,ob jectz
L);

and (d) knowledge-producing actions to test the location
of rob1 and tb1, e.g., test(robotz

L, loc(ob jectz
L), placez

L).

The axioms of DLR(T) are those of DLR restricted to the sig-

nature of DLR(T). For instance, these axioms include:

move(rob1,c j) causes loc(rob1) = {C : range(loc(rob1),C)}
grasp(rob1, tb1) causes in hand(rob1, tb1) = {true, f alse}
test(rob1, loc(tb1),c j) causes dir obs(rob1, loc(tb1),c j)

= {true, f alse} if loc(tb1) = c j

impossible move(rob1,c j) if loc(rob1) = ci, ¬next to(c j,ci)

where range(loc(rob1),C) may hold for values in {ci,c j,ck}
within the range of the robot’s current location (ci), and
are elements of placez

L. The states of τLR(T) thus include
atoms of the form loc(rob1) = ci and loc(tb1) = c j, where
ci and c j are values in placez

L, in hand(rob1, tb1), direct ob-
servations of these atoms, and statics such as next to(ci,c j).
Specific actions include move(rob1,ci), grasp(rob1, tb1),
putdown(rob1, tb1) and test actions.

POMDP construction: The statistician uses system descrip-
tion DLR(T), and the learned probabilities, to construct a
POMDP for the probabilistic implementation of aH in state
σ1 of τH . It may be possible to use other (more computation-
ally efficient) probabilistic models for implementing specific
actions. Also, it may be possible to use specific (computation-
ally efficient) heuristic or probabilistic algorithms for specific
tasks such as path planning. However, POMDPs provide (a)
principled and quantifiable trade-off between accuracy and
computational efficiency in the presence of uncertainty; and
(b) near-optimal solution if the POMDP is modeled accu-
rately. Also, our architecture only constructs a POMDP for
a small (relevant) part of the domain, significantly reducing
the computational complexity of solving the POMDP. Fur-
thermore, many POMDPs for any given domain can be pre-
computed, solved and used as needed.

A POMDP is described by a tuple 〈SL,AL,ZL,T L,OL,RL〉
for a specific goal state. Elements of this tuple correspond
to the set of states, set of actions, set of values of observable
fluents, the state transition function, the observation function,
and the reward specification, with the last three elements be-
ing based on the statistics acquired during randomization—
for details about POMDPs and their use in AI and robotics,
see [Littman, 1996; Zhang et al., 2015].

The POMDP formulation considers states to be partially
observable, and reasons with probability distributions over
the states, called belief states. Functions T L and OL de-
scribe a probabilistic transition diagram over belief states.
The POMDP formulation also implicitly includes a history
of observations and actions—the current belief state is as-
sumed to be the result of all information obtained in so far.
The POMDP tuple is used to compute a policy π : bt 7→ aL

t+1,
which maps belief states to actions, using an algorithm that
maximizes the reward over a planning horizon. The policy is
then used to choose an action in the current belief state, revis-
ing the belief state through Bayesian updates after executing
the action at+1 and receiving an observation ot+1. The be-
lief update continues until policy execution is terminated. In
our case, a terminal action is executed when it has a higher
(expected cumulative) utility than continuing to execute non-
terminal actions. This action choice happens when the belief
in a specific state is high (e.g., ≥ 0.8), or none of the states

have a high probability associated with them after invoking
the policy several times. The latter case is interpreted as the
failure to execute the coarse-resolution action.

The observations and action outcomes obtained by exe-
cuting the POMDP policy correspond to observations and
fluents in DLR(T). This information, in turn, revises H ,
to be used for subsequent reasoning by the logician. If τH
is constructed correctly, and the statistics collected during
the initial training phase correctly model the domain dy-
namics, following an optimal policy produced by an exact
POMDP solver is most likely (among all possible policies)
to take the robot to the desired goal state [Littman, 1996;
Sondik, 1971]. Since we use an approximate solver for com-
putational efficiency, we obtain a bound on the regret (i.e.,
loss in value) due to the computed policy [Ong et al., 2010].
Due to space constraints, we provide (below) a simplistic ex-
ample of constructing a POMDP.

Example 4. [POMDP construction]
Consider rob1 in the o f f ice and the implementation of aH =
move(rob1,kitchen), with one cell in each room. Due to
zooming, the robot only reasons about its location. Assume
that a move from a cell to a neighboring cell succeeds with
probability 0.85—otherwise, the robot remains where it is.
Assume that all non-terminal actions have unit cost. Termi-
nating the POMDP policy after reaching cell 1 (in kitchen)
receives a large positive reward (100), whereas termination
while in cell 0 (in o f f ice) receives a large negative reward
(−100). Elements of the POMDP are described (below) in
the format used by the POMDP solver [Ong et al., 2010].

The states correspond to possible robot locations, and absb
is a terminal state. The actions correspond to the robot mov-
ing to specific cells, testing its cell location, or terminating
policy execution (transitioning to absb). The robot observes
its cell location, or receives no observation. Knowledge-
producing actions do not cause a state transition, and actions
that change the state do not provide observations. Our archi-
tecture constructs such data structures for complex domains
by zooming to the relevant part of the system description (as
described earlier). Also, for each state si and action a j, the
corresponding ASP program Π(DLR(T),si,a j) is solved to
(a) identify inconsistencies and eliminate impossible states,
e.g., the robot and an object cannot be in different locations
when the robot is holding the object; and (b) identify possi-
ble state transitions, eliminating impossible transitions in the
construction of the transition function.

discount: 0.99
states: robot-0 robot-1 absb
actions: move-0 move-1 test-0 test--1 done
observations: rob-found rob-not-found none

% Transition function format
% T : action : S x S’ -> [0, 1]
T: move-0
1 0 0
0.85 0.15 0
0 0 1

T: move-1

0.15 0.85 0
0 1 0
0 0 1

T: test-robot-0
identity

T: test-robot-1
identity

T: done
uniform

% Observation function format
% O : action : s_i : z_i -> [0, 1] (or)
% : S x Z -> [0, 1]
O: move-0 : * : none 1
O: move-1 : * : none 1

O: test-robot-0
0.95 0.05 0
0.05 0.95 0
0 0 1

O: test-robot-1
0.05 0.95 0
0.95 0.05 0
0 0 1

O: done : * : none 1

% Reward function format
% R : action : s_i : s_i’ : real value
R: * : * : * : -1
R: done : robot-0 : * : -100
R: done : robot-1 : * : 100

5 Reasoning System
Algorithm 1 describes the reasoning loop. For any given goal,
the logician reasons with the system description DH and a
recorded history H with initial state defaults, accounting
for any discrepancies between observations and predictions
to compute a plan of abstract actions. For an abstract action
aH , the statistician zooms to the relevant part of the random-
ized refinement of DH . The corresponding system description
DLR(T) and probabilities are used to construct and solve a
POMDP. The POMDP policy is invoked repeatedly (until ter-
mination) to execute a sequence of concrete actions. The cor-
responding outcomes are reported to the logician to be used
for subsequent reasoning. Correctness of this control loop is
ensured by (1) applying the algorithm that reduces coarse-
resolution planning and diagnostics to computing answer sets
of the corresponding program; (2) using the refinement and
zoom operations as described above; and (3) using POMDPs
to probabilistically execute an action sequence for each ab-
stract action in the logician’s plan.

Experimental trials, both in simulation and on physical
robots assisting humans in finding and moving objects an of-

Algorithm 1: Control loop
Input: coarse-resolution system description DH and

history H ; randomized fine-resolution system
description DLR; coarse-resolution goal.

Output: robot is in a state satisfying the goal; reports
failure if this is impossible.

while goal is not achieved do1
Logician uses τH and H to find a plan of abstract2

actions, aH
1 , . . . ,a

H
n to achieve the goal.

if no plan exists then3
return failure4

end5
i := 1, continue1 := true6
while continue1 do7

Check pre-requisites of aH
i .8

if pre-requisites not satisfied then9
continue1 := false10

else11
Statistician zooms to the relevant part of τLR12

for executing aH
i and constructs a POMDP.

Statistician solves POMDP to compute an13

action policy to implement aH
i .

continue2 := true14
while continue2 do15

Statistician invokes POMDP policy to16
select and execute an action, obtain
observation, and update belief state.
if terminal action invoked then17

Statistician communicates success or18

failure of aH
i to the logician, to be

recorded in H .
continue2 = false19
i := i+120
continue1 := (i < n+1)21

end22

end23

end24

end25

end26

fice domain, indicate that our architecture provides signifi-
cantly higher efficiency and accuracy in comparison with us-
ing just POMDPs with hierarchical decompositions, similar
to our prior work [Sridharan et al., 2015]. These results are
not described here because the focus is on describing the steps
in the design process, and due to space limitations.

6 Conclusions
This paper described the systematic design of robots capa-
ble of representing and reasoning with logic-based and prob-
abilistic descriptions of domain knowledge and uncertainty.
Our architecture uses tightly-coupled transition diagrams of
the domain at two levels of granularity, with a fine-resolution
diagram being a refinement of a coarse-resolution diagram.
For any given goal, non-monotonic logical reasoning at the

coarse-resolution plans a sequence of abstract actions. Each
abstract action is implemented probabilistically as a sequence
of concrete actions by zooming to the relevant part of the fine-
resolution description, constructing and solving a a POMDP,
and invoking a policy until termination. The corresponding
outcomes revise the coarse-resolution history for subsequent
reasoning. The design steps are illustrated using examples,
which indicate that the architecture supports reasoning at the
sensorimotor level and the cognitive level with violation of
defaults, and unreliable observations and actions.

Acknowledgements
The authors thank Jeremy Wyatt and Shiqi Zhang for discus-
sions related to the architecture described in this paper. The
first author was supported in part by the US Office of Naval
Research Science of Autonomy award N00014-13-1-0766.

References
[Bai et al., 2014] Haoyu Bai, David Hsu, and Wee Sun Lee. In-

tegrated Perception and Planning in the Continuous Space: A
POMDP Approach. International Journal of Robotics Research,
33(8), 2014.

[Balai et al., 2013] Evgenii Balai, Michael Gelfond, and Yuanlin
Zhang. Towards Answer Set Programming with Sorts. In Inter-
national Conference on Logic Programming and Nonmonotonic
Reasoning, Corunna, Spain, 2013.

[Balduccini and Gelfond, 2003] Marcello Balduccini and Michael
Gelfond. Logic Programs with Consistency-Restoring Rules. In
AAAI Spring Symposium on Logical Formalization of Common-
sense Reasoning, pages 9–18, 2003.

[Balduccini et al., 2014] Marcello Balduccini, William C. Regli,
and Duc N. Nguyen. An ASP-Based Architecture for Au-
tonomous UAVs in Dynamic Environments: Progress Report. In
International Workshop on Non-Monotonic Reasoning (NMR),
Vienna, Austria, July 17-19, 2014.

[Baral et al., 2009] Chitta Baral, Michael Gelfond, and Nelson
Rushton. Probabilistic Reasoning with Answer Sets. Theory and
Practice of Logic Programming, 9(1):57–144, January 2009.

[Chen et al., 2012] Xiaoping Chen, Jiongkun Xie, Jianmin Ji, and
Zhiqiang Sui. Toward Open Knowledge Enabling for Human-
Robot Interaction. Human-Robot Interaction, 1(2):100–117,
2012.

[Gelfond and Inclezan, 2013] Michael Gelfond and Daniela In-
clezan. Some Properties of System Descriptions of ALd . Journal
of Applied Non-Classical Logics, Special Issue on Equilibrium
Logic and Answer Set Programming, 23(1-2):105–120, 2013.

[Gelfond and Kahl, 2014] Michael Gelfond and Yulia Kahl.
Knowledge Representation, Reasoning and the Design of
Intelligent Agents. Cambridge University Press, 2014.

[Hanheide et al., 2015] Marc Hanheide, Moritz Gobelbecker, Gra-
ham Horn, Andrzej Pronobis, Kristoffer Sjoo, Patric Jensfelt,
Charles Gretton, Richard Dearden, Miroslav Janicek, Hendrik
Zender, Geert-Jan Kruijff, Nick Hawes, and Jeremy Wyatt. Robot
Task Planning and Explanation in Open and Uncertain Worlds.
Artificial Intelligence, 2015.

[Hawes et al., 2010] Nick Hawes, Jeremy Wyatt, Mohan Sridharan,
Henrik Jacobsson, Richard Dearden, Aaron Sloman, and Geert-
Jan Kruijff. Architecture and Representations. In Cognitive Sys-
tems, volume 8 of Cognitive Systems Monographs, pages 51–93.
Springer Berlin Heidelberg, April 2010.

[Kaelbling and Lozano-Perez, 2013] Leslie Kaelbling and Tomas
Lozano-Perez. Integrated Task and Motion Planning in Belief
Space. International Journal of Robotics Research, 32(9-10),
2013.

[Lee and Wang, 2015] Joohyung Lee and Yi Wang. A Probabilistic
Extension of the Stable Model Semantics. In AAAI Spring Sym-
posium on Logical Formalizations of Commonsense Reasoning,
Stanford, USA, March 2015.

[Lee et al., 2013] Joohyun Lee, Vladimir Lifschitz, and Fangkai
Yang. Action Language BC: Preliminary Report. In Interna-
tional Joint Conference on Artificial Intelligence (IJCAI), Bei-
jing, China, August 3-9, 2013.

[Leone et al., 2006] N. Leone, G. Pfeifer, W. Faber, T. Eiter,
G. Gottlob, S. Perri, and F. Scarcello. The DLV System for
Knowledge Representation and Reasoning. ACM Transactions
on Computational Logic, 7(3):499–562, 2006.

[Littman, 1996] Michael Littman. Algorithms for Sequential De-
cision Making. PhD thesis, Brown University, Department of
Computer Science, Providence, USA, March 1996.

[Milch et al., 2006] Brian Milch, Bhaskara Marthi, Stuart Russell,
David Sontag, Daniel L. Ong, and Andrey Kolobov. BLOG:
Probabilistic Models with Unknown Objects. In Statistical Re-
lational Learning. MIT Press, 2006.

[Ong et al., 2010] Sylvie C. Ong, Shao Wei Png, David Hsu, and
Wee Sun Lee. Planning under Uncertainty for Robotic Tasks with
Mixed Observability. IJRR, 29(8):1053–1068, July 2010.

[Richardson and Domingos, 2006] Matthew Richardson and Pedro
Domingos. Markov Logic Networks. Machine learning, 62(1),
2006.

[Saribatur et al., 2014] Zeynep G. Saribatur, Esra Erdem, and
Volkan Patoglu. Cognitive Factories with Multiple Teams of
Heterogeneous Robots: Hybrid Reasoning for Optimal Feasible
Global Plans. In International Conference on Intelligent Robots
and Systems (IROS), Chicago, USA, 2014.

[Sondik, 1971] Edward J. Sondik. The Optimal Control of Partially
Observable Markov Processes. PhD thesis, Stanford University,
1971.

[Sridharan et al., 2015] Mohan Sridharan, Michael Gelfond, Shiqi
Zhang, and Jeremy Wyatt. A Refinement-Based Architecture for
Knowledge Representation and Reasoning in Robotics. Techni-
cal report, Unrefereed CoRR abstract: http://arxiv.org/
abs/1508.03891, August 2015.

[Sridharan et al., 2016] Mohan Sridharan, Prashanth Devarakonda,
and Rashmica Gupta. Discovering Domain Axioms Using Rela-
tional Reinforcement Learning and Declarative Programming. In
ICAPS Workshop on Planning and Robotics (PlanRob), London,
UK, June 13-14, 2016.

[Zhang and Stone, 2015] Shiqi Zhang and Peter Stone. CORPP:
Commonsense Reasoning and Probabilistic Planning, as Applied
to Dialog with a Mobile Robot. In AAAI Conference on Artificial
Intelligence (AAAI), pages 1394–1400, Austin, USA, 2015.

[Zhang et al., 2014] Shiqi Zhang, Mohan Sridharan, Michael Gel-
fond, and Jeremy Wyatt. Towards An Architecture for Knowl-
edge Representation and Reasoning in Robotics. In International
Conference on Social Robotics (ICSR), Sydney, Australia, 2014.

[Zhang et al., 2015] Shiqi Zhang, Mohan Sridharan, and Jeremy
Wyatt. Mixed Logical Inference and Probabilistic Planning for
Robots in Unreliable Worlds. IEEE Transactions on Robotics,
31(3):699–713, 2015.

