Modeling Composite Web Services by Using a
Logic-based Language

Pinar Senkul

Middle East Technical University
Computer Engineering Department
06531 Ankara, Turkey

karagoz@ceng.metu.edu.tr

Abstract. In order to answer the complex service requirements of the
user, composite web services have to be constructed correctly and effec-
tively. Various approaches and formalism have been used for web service
composition and integration. The semantic modeling of composite ser-
vices is necessary for automatic discovery, integration and execution.
For this purpose, ontology languages and ontologies have been defined.
OWL-S is a OWL-based ontology of services, in which composite pro-
cesses can be modeled. For reasoning and verification on the composite
services, logic-based formalisms have an important role. Concurrent Con-
straint Transaction Logic is a formalism that provides means for model-
ing, verification and scheduling of composite web services. In this work,
we describe how OWL-S and CCTR can be used together for modeling
a complex service and constraints, and make reasoning and verification
on this model under the given set of constraints.

1 Introduction

A composite web service is a web process that consists of a set of atomic web ser-
vices that execute in a collaborative way. Composite services are necessary when
there is no single service that will answer a complex service requirement. Travel
arrangements, on-line business processes and online insurance services are some
typical examples. A user may request a complex service that will include various
different atomic services. Each service may be provided by a set of providers.
Therefore the possible combinations are numerous.

For automatic discovery, integration and execution of the web services, se-
mantic modeling of the services is necessary. For this purpose, ontology languages
and ontologies have been defined. OWL-S is a OWL-based ontology of services,
including core set of mark-up language constructs for describing the proper-
ties and capabilities of the Web services in a machine-understandable form [11].
The ontology has three main parts: the service profile, the process model, and
the grounding. The process definitions allows the composite service modeling.
It supports the several control constructs for the composite service, including
sequence, split and join, if-then-else and iterate. By this way OWL-S provides

a semantic description for a composite model. This description may be used for
composite service query and matching as well as invocation.

The composite service requirement is generally defined by a process model of
the service and some constraints on this model. The process model defines the
control flow among the individual services. The set of constraints that may be
defined on the process model is quiet rich. On the basis of the experiences on
workflow model, we can group the constraints as follows:

— Constraints on the ordering and existence of the atomic services
— Constraints on the service providers
— Constraints on the properties of the composite service

Given a composite model or a concrete composite service, it is necessary
to verify its correctness under a given set of constraints. There are several for-
malisms that provide an environment for modeling and verification of composite
services, such as [12]. In this paper, we present a logic-based formalism, called
Current Constraint Transaction Logic (CCTR) and elaborate on how to use this
formalism for modeling and verification of composite web services, together with
the semantic model given in OWL-S.

Concurrent Constraint Transaction Logic (CCTR) is an extension to Con-
current Transaction Logic (CTR) [7] with the capability of modeling complex
processes and scheduling under resource allocation constraints. CTR has been
successfully applied to modeling, reasoning about and scheduling workflows [9,
6]. In CCTR, these capabilities of CTR have been extended for the set of cost
constraints and resource allocation constraints and it has been used for model-
ing and reasoning on workflows under a rich set of constraints including ordering
constraints, resource allocation and cost constraints [19].

CCTR includes constructs for the formal modeling of resources, allocation
of resources along execution and constraints on the allocation of the resources
and cost of the resource allocation as well as modeling a complex process. This
formalism provides reasoning about the correctness of a complex process un-
der a given set of constraints. We consider atomic web service providers as the
resources required for a composite web service, and use CCTR to model and
reason about the properties of composite web services and constraints defined
on them.

CCTR provides

— specification of the control flow of a composite process through its serial and
concurrent conjunction operators

— specification of temporal constraints on the composite model

— specification of resource constraints

— specification of cost constraints

— reasoning on the correctness of the model under the given set of constraints.

The semantic model provided by OWL-S and its advantages can be combined
with the formal modeling and verification functionality of CCTR. The control
constructs of OWL-S can be mapped to CCTR for reasoning and verification

Fig. 1. Control flow of the Example 1

purpose and profile and grounding of the ontology and CCTR. features can be
used in complementary way. In this work, we present the functionalities of CCTR
and elaborate on how these functionalities can be combined with the OWL-S
semantic model.

In the rest of the paper, we will use the following as the running example.

Example 1. Assume that a person is planning a trip. First, she needs plane
or train seat reservations and then hotel reservation. Meanwhile, she wants to
check the weather forecast for the given time interval and make either skiing
or balloon tour arrangements according to the weather forecast. She wants to
do balloon tour reservation (if it will be chosen) after the hotel arrangement so
that timings should match. In addition to this, there are limitations on the total
budget and duration (for example traveling with plane may be better for budget
considerations but takes longer time). The ordering of the services is graphically
shown in 1. In this figure, the empty circles represent the services and black
nodes denote synchronization points. The service are represented by the initials
of the service type names. g and ng denotes the weather conditions good and
not good that are obtained from the service w. For the control constructs such
as concurrent execution or selection, we used the OWL-S construct names.

This paper is organized as follows: In Section 2 an overview of OWL-S is
given. Section 3 describes CCTR and how it was used for workflow modeling.
Section 4 elaborates on the relation between OWL-S and CCTR, composite pro-
cess models. Section 5 presents how to use CCTR for web service model verifi-
cation. Section 6 presents the related work. Section 7 concludes the paper with
a summary.

2 Overview of OWL-S

OWL-S [11] is a OWL-based [3] ontology of services, including a core set of
mark-up language constructs for describing the properties and capabilities of the

(process: CompositeProcess rdf:ID = ” CompositeProc”)
(process: ComposedOf)
{ process: Split-Join rdf:ID = ”SplitJoinCons”)
{ process: Sequence rdf:ID = ”SeqCon”)
(process: Choice rdf:ID = ” ChoiceCon”)
{ process: Perform rdf:ID = ”t”) (/process: Perform)
{ process: Perform rdf:ID = ”p”) (/process: Perform)
(/process: Choice)
(process: Perform rdf:ID = ”h” } (/process: Perform)
(/process: Choice)
{/process: Sequence)
{ process: Sequence rdf:ID = ”SeqCon2”)
(process: Perform rdf:ID = "w”) {/process: Perform)
(process: If-Then-Else rdf = "IfCons”)
(If-Then-Else: ifCondition rdf:ID = ”g”) ... (/If-Then-Else:...)
(If-Then-Else: then rdf:ID = ” ThenPart”)
(process: Perform rdf:ID = "b” } (/process: Perform)
(/If-Then-Else: then)
(If-Then-Else: else rdf:ID = ”ElsePart”)
(process: Perform rdf:ID = "s”) {/process: Perform)
(/If-Then-Else: else)
(/process: If-Then-Else)
{/process: Sequence)
{/process: Split-Join)
(process: ComposedOf)

(/process: CompositeProcess)

Fig. 2. OWL-S Process Description for Example 1

Web services in a machine-understandable form. This machine-understandable
form provides the semantic model that is necessary for the automatic discovery,
integration and invocation of the services. The ontology has three parts: the
service profile, the process model and the grounding. The service profile tells
the functionality of the service. It includes the description of what service does,
the properties and quality information. The service profile is the part that gives
information about the service to a service seeker. The grounding specifies how to
access the service by providing information on protocols, message formats and
other accessing details.

The service model is the part that provides the information on the structure
and semantics of the service. In this part, the inputs, outputs, preconditions and
effects. OWL-S supports specification of both atomic and composite processes.
The third type, simple process provides an abstraction on atomic process and
can be substituted with a concrete atomic process description.

The composite process includes a set of control constructs to specify the or-
dering and existence relationships between the subprocesses. These constructs
are sequence, split, split-join, any-order, choice, if-then-else, iteration, repeat-
while and repeat-until. The composition of the processes are defined in a recur-
sive way such that each subprocess may be further decomposed into parts that
are combined with these control constructs until possibly an atomic model is
reached. A simplified OWL-S modeling of Example 1 is given in Figure 2.

The process also model defines data flow and input-output bindings between
the subparts. However, in the scope of this work, the focus is on the composite
model built by using the control constructs. In the rest of the paper, we discuss
how the these constructs can be mapped to a logical formalism for verification
and further reasoning on the model.

3 Concurrent Constraint Transaction Logic (CCTR)

3.1 CCTR Overview

Concurrent Constraint Transaction Logic (CCTR) is an extension to Concurrent
Transaction Logic (CTR) with the capability of modeling entities that will exe-
cute the tasks (i.e., resources) as a part of formalization, constraint specification
on the resources and reasoning and scheduling under these constraints. One of
the basic application areas is the workflow modeling and scheduling under re-
source allocation constraints [19]. CTR, itself, is an extension to first-order logic
for programming, executing and reasoning state changing concurrent processes
[7]. It has been successfully applied to modeling, reasoning about and scheduling
workflows [9, 6].

CCTR extends classical logic with new connectives and modalities. We present
three of them which important to modeling of workflows and composite web ser-
vices:

— ®, the serial conjunction: it denotes the serial execution of subprocesses.

— |, the parallel conjunction: it denotes the concurrent execution of subpro-
cesses in an interleaved way.

— ©, the atomic execution: it denotes the atomic execution of a subprocess
without interleaving with other executions.

The simplest kind of a formula is an atomic formula, which has the usual
form p(t1,...,t,), where p is an m-ary predicate symbol taken from P or C and
t1, ..., t, are terms. C is a set of special predicates called constraint predicates
that are used for resource allocation constraint specification. Complex formulas
are constructed by a set of recursive definitions. If ¢ and i) are CCTR formulas,
then so are the following expressions:

— ¢ and O¢

- ¢V¢a¢/\¢a¢®¢a¢ | ¢7ﬁ¢
— (VX)¢ and (3X)¢, where X is a variable.

In CCTR, the correctness of the formulas are found against partial sched-
ules (as opposed to states in classical logic). A partial schedule is a structure
that represents the state changes through serial and concurrent executions. In
CCTR, state is a set of objects and a partial schedule is a more structured form
of path and m-paths. A path is a sequence of database states that denotes serial
executions and m-path is a sequence of paths to denote interleaved execution of
concurrent processes. In partial schedule, concurrent and serial subparts of the
executions are explicitly shown in order to reason about correctness of the re-
source allocation constraints along the execution. (Do D1 D2), (DgD;D2D3) and
(DoD1) ||p (D1D2) are examples for path, m-path and partial schedule, respec-
tively. In a partial schedule, ||, combines the m-paths that belong to interleaved
executions and e, combines the m-paths that belong to the serial executions.

In CCTR, resource and resource assignment are parts of the logic. A resource
is an object with the attributes token and cost and a resource assignment is
a partial mapping from partial schedules to sets of resources. Hence, resource
assignment defines the set of resources needed along an execution.

In CCTR, the semantics of the constraint predicates is captured by the con-
straint universe parameter of the language. Constraint universe contains the
domains and the relations that are used to define the semantics of constraint
predicates.

The model theory of CCTR tells whether a given resource allocation along
a partial schedule satisfies a CCTR formula. Therefore, informally, the follow-
ing says that the CCTR formula « is true along execution w under resource
assignment £.

M7 w? é‘ |: «

CCTR has a scheduler that finds the executions and resource assignments
(together they can be considered as a plan) that conforms to the model theory.
The detailed information on CCTR, can be found in [19].

3.2 Modeling Workflows and Composite Web Services in CCTR

The new connectives of CCTR, supports the modeling of serial and concurrent
combinations of the state changes and, by this way, provides a formal model-
ing environment for composite processes such as workflows and composite web
services. In addition to modeling of the control flow through these connectives,
the formal representation of resource and resource constraint specifications en-
ables the users to reason about the required conditions on the resources of the
composite processes.

Consider a workflow in which a task: and tasks run in order and tasks
is executed concurrently with two other two services. The following formula
captures the given ordering relations:

(task; @ tasks) | tasks

Assume that on this workflow we define a set of resources to execute the tasks
and enforce the following constraints: the concurrent tasks should be executed by
different resources, the total duration should not exceed n and tasks must be

executed before tasks. The following formula extend the above flow definition
with the constraints.
((task:s @ tasks) | tasks) A c1 A c2 A c3

In the above formula, ¢;, ¢co and c3 are constraint predicates that models
the resource allocation constraints and temporal constraint on the workflow that
have been stated above. The conjunction operator denotes that these constraints
must be true along the execution of the whole workflow.

CTR proof theory can not handle the formulas that include conjunction
A. However, in [9], an algorithm is presented to test the compatibility of an
ordering constraint with a given formula. Similarly, CCTR does not have a proof
theory that can do reasoning on conjuncted formulas. However, it has a scheduler
that transforms the conjuncted formulas into non-conjuncted forms and reason
about the correctness of resource constraints on the transformed formula. If the
initial formula and the constraints are compatible, scheduler produces execution
ordering and resource assignments for the produced ordering. Verification and
reasoning on temporal and resource constraints are discussed in more detail in
Section 5 in composite web service context.

4 From OWL-S to CCTR

OWL-S composite process model supports the representation of the following
control/flow constructs: sequence, split, split and join, any order, choice, if-then-
else, iterate, repeat-while and repeat-until.

In this section, we describe how each of these constructs can be represented
in CCTR. In OWL-S modeling abstract level, simplest service model sy, rep-
resents an abstract service with the ontology information of the required service.
In CCTR, this corresponds an atomic formula, s.c-. Atomic formulas may be
updates (world-altering tasks) or just queries (non-world-altering tasks. We rep-
resent each abstract service as an update. However, this update is only limited
with insertion of significant event informations into the logs (such as start, com-
mit).

4.1 Sequence

Sequence denotes a list of constructs to be done in order. Consider the following
generalized sequence construct representation in OWL-S:

process: Sequence rdf:ID = ”SeqCons

S df:ID = ”SeqCons”
(process: Perform rdf = 7517) (/ process: Perform)
(process: Perform rdf = 7S2”) (/ process: Perform)
{ process: Perform rdf = ”Sn”) (/ process: Perform)

{ /process: Sequence)

Sequential composition is represented with the serial conjunction (&) oper-
ator of CCTR. CCTR representation of SeqCons is as follows:

S1®S52®...05n

4.2 Split-Join

Split and join construct consists of a bag of process components to be executed
concurrently. Split-Join completes when all of its subcomponents complete. Con-
sider the following generalized split-join construct representation in OWL-S:

{ process: Split-Join rdf:ID = ”SplitJoinCons”)
(process: Perform rdf = 7S1”) (/ process: Perform)
(process: Perform rdf = 752") (/ process: Perform)
(process: Perform rdf = ”Sn”) (/ process: Perform)

{ /process: Split-Join)

Split-join composition is represented with the concurrent conjunction (|) op-
erator of CCTR. CCTR representation of SplitJoinCons is as follows:

S1|S2]...| Sn

In CCTR, there is no operator that correspond to Split construct, however
partial synchronizations can be modeled by split-join and order constraints.

4.3 Any-Order

Any-order denotes a set of constructs to be executed in some unspecified order.
The sub processes can not execute concurrently or in an interleaved fashion.
Any-Order completes when all of its subcomponents complete. Consider the fol-
lowing generalized any-order construct representation in OWL-S:

{ process: Any-Order rdf:ID = ” AnyOrderCons”)
(process: Perform rdf = 7S1”) (/ process: Perform)
{ process: Perform rdf = 7S2”) (/ process: Perform)
(process: Perform rdf = ”Sn”) (/ process: Perform)

(/process: Any-Order)

The semantics of concurrent conjunction (|) operator of CCTR is based on
interleaving of concurrent subformulas. Another CCTR operator, atomic action
(®), specifies the cases where the execution should be atomic, i.e., it should not

be interleaved with other executions. By using these operators, CCTR represen-
tation of SeqCons is as follows:

O(S1) | ©(52) | ... | ©(Sn)

4.4 Choice

Choice construct represents the execution of a single construct from the bag of
subprocesses. Any of the subprocesses can be chosen for execution. Consider the
following generalized choice construct representation in OWL-S:

{ process: Choice rdf:ID = ”ChoiceCons”)
(process: Perform rdf = 7S1”) (/ process: Perform)
(process: Perform rdf = 752") (/ process: Perform)
{ process: Perform rdf = ”Sn”) (/ process: Perform)

{ /process: Choice)

This construct can be modeled with or (V) operator of CCTR. ChoiceCons
construct can be represented in CCTR as follows:

S1vS2v..vSn

4.5 If-Then-Else

If-Then-Else construct models the conventional ”if cond then execute task a else
execute task b” statement of programming languages, meaning that if the given
condition is true execute task a, otherwise execute task b. Consider the following
generalized if-then-else construct representation in OWL-S:

(process: If-Then-Else rdf:ID = ”IfCons”)

(If-Then-Else: ifCond rdf = ”Cond”) (/ If-Then-Else: ifCond)
(If-Then-Else: then rdf:ID = ”"ThenPart”)

(process: Perform rdf = ”7S1”) (/ process: Perform)
(/If-Then-Else: then)
(I-Then-Else: else)

(process: Perform rdf = 782) (/ process: Perform)
(/If-Then-Else: else)

{ /process: If-Then-Else)

This construct can be modeled by using an atomic query (i.e non-world-
altering) task and or (V) operator of CCTR. IfCons construct can be repre-
sented in CCTR as follows:

(Cond ® S1) V ((—Cond) ® S2)

4.6 Iterate

Tterate construct represents the iteration of a process at an abstract level without
considering the number of iterations or stopping condition for iterations. Iter-
ation is generally instantiated with the more concrete subclasses Repeat- While
and Repeat-Until

Repeat-While Repeat- While construct models the iteration that continues as
long as the given condition is satisfied. Consider the following generalized repeat-
while construct representation in OWL-S:

{ process: Repeat-While rdf:ID = ”RWCons”)
{ Repeat-While: whileCond rdf = ”Cond”) ...
(/ Repeat-While: whileCond)
{ Repeat-While: whileProcess rdf:ID = ”whileService”)
(process: Perform rdf = 7S”) ... { / process: Perform)
(/Repeat-While: whileProcess)

{ /process: Repeat-While)

This construct can be modeled by using an atomic query (i.e non-world-
altering) task that corresponds to the condition test and recursive call of the
subprocess. RWCons construct can be represented in CCTR as follows:

RWCond + ((Cond ® S @ RWCond) V (—Cond ® stop))

In this formula stop denotes an atom which is always true.

Repeat-Until Repeat-Until construct models the iteration that continues until
the condition is satisfied. Consider the following generalized repeat-until con-
struct representation in OWL-S:

(process: Repeat-Until rdf:ID = "RUCons”)
(Repeat-Until: untilCondition rdf = ”Cond”)
(/ Repeat-Until: untilCondition)
(Repeat-Until: untilProcess rdf:ID = ”whileService”)
(process: Perform rdf = 7S) (/ process: Perform)
(/ Repeat-Until: untilProcess)

{ /process: Repeat-Until)

As in repeat-while, this construct can be modeled by using an atomic query
(i.e non-world-altering) task that corresponds to the condition test and recursive

call of the subprocess. RUCons construct can be represented in CCTR as follows:
RUCond + (S ® (-Cond ® RUCond) vV (Cond ® stop))

In this formula stop denotes an atom which is always true.

Example 2. The OWL-S representation of the Example 1 was shown in Figure
2. When this representation was mapped to CCTR specification as described
above, we have the following service model formula:

(Evp)eh) | (we((geb)V((~g) ®s3)))

5 Reasoning and Verification on Composite Web Services

CCTR provides a framework for the formalization of composite web service and
constraints modeling. With this formalization, it is possible to reason about the
correctness of the composite model under given constraints. After an OWL-S
composite service model is mapped to a CCTR formula through the the con-
trol construct mappings given in Section 4, it is possible to do reasoning and
verification on the process model under the given set of constraints.

5.1 Verification Under Temporal Constraints

A temporal constraint specifies a constraint on the ordering or existence of a
service (or a task) with respect to other services. Many of the ordering depen-
dencies can be expressed by control flow constructs, as in OWL-S composite ser-
vice model. However there may be other dependencies that can not be captured
in the control flow specification. For instance, consider the composite process
specification: ((a®b) V (c®d®e)) | (f ® g) and the constraint cnst: ”if service ¢
ever executes, it should be done before service f”. It is not possible to integrate
cnst directly in the control flow model.

Transaction Logic can express a rich set of temporal constraints. If cs is a
formula specifying a composite service model and cnst denotes a set of temporal
constraints on this model, ¢s A cnst says that the execution of ¢s should fulfill
the constraints cnst. Although the expressible set of constraints is wide, we
will concentrate on a subset that is common for web services and workflows, as
described in [9]:

— Primitive constraints: These are the constraints that directly address the
existence of a service as service s must execute or service s must not execute.
They are specified as Vs and —Vs. Vs is equivalent to path ® s ® path, where
path is a special construct of TR which is true in all possible execution paths.

— Serial constraints: They are serial conjunctions of positive primitive con-
straints, such as Va ® vb.

— Complex constraints: They are the conjunction and disjunction of primitive
and /or serial constraints.

Temporal constraint cnt defined above is specified as =VeV (Ve ® Ve). Infor-
mally, this formula tells that c is either should not execute or if executed there
should be a serial ordering such that ¢ comes before e.

In [9], a verification algorithm is provided such that given a conjunction-
free formula c¢s and constraints cnst, it checks whether cs conforms to cnst.
If ¢s conforms to cnst, cnst is compiled into c¢s. In the compilation process,
communication primitives in the form of send/receive pairs are incorporated
into the formula to provide required ordering among services.

For the previous examples where cs = ((a ®b) V (c®d®e)) | (f ®g) and
enst = =Ve V (Ve ® Ve). The algorithm finds ¢s and cnst to be compatible and
complies cnst into c¢s resulting in the following specification, ¢s':

cs'=((a®b)V(c®send(é) @d®e)) | (receive(§) ® f ® g)

Ezample 8. In CCTR, the temporal constraint of the Example 1 is specified as
-VbV (Vh ® Vb). When this constraint is complied into our composite service
model given in Example 2, we obtain the following composite model.
(Evp)®@h) | (we((~g) ®s))V
((tVp) ® h ® send(§)) | (w ® (9 ® b® receive(£))))

5.2 Verification Under Cost and Resource Constraints

Resource constraints are the constraints on the assignment of resource to a task.
In web services context, a resource constraint is a constraint on the selection of
service provider among the alternatives. Cost constraint is also highly correlated
with resource assignment. A cost constraint is a limitation on total execution
cost of process or its subset. Execution cost may have several dimensions such as
budget, time or quality. The total values for these dimensions are aggregations
of costs of individual services.

In CCTR, resource and cost constraints are represented by a special set of
predicates, called constraint predicate set, C. The semantics of constraint predi-
cates in C is specified through relations. If ¢s is a composite service model and
cnst is a set of resource and cost constraints defined on cs, then cs A enst in-
formally states that the constraints should be fulfilled along the execution of
cs.

CCTR scheduler checks the correctness of the formula ¢s Acnst and if ¢s and
cns are compatible it produces the execution ordering and the service provider
assignment on this execution ordering. This process consists of the following
steps: transformation of conjuncted formula into a non-conjuncted formula, eval-
uation of the resulting formula with CCTR proof theory and the evaluation of
the constraint by the constraint solver.

Example 4. Assume that the total budget and total duration constraints of Ex-
ample 1 are represented by the constraint predicates ¢; and ¢z, respectively. In
the constraint universe, the semantics of these predicates are defined through
some relations. Informally, ¢; is mapped to a relation in which the summation

of the service providers’ prices is below a given value. A similar relation is de-
fined on service providers’ service completion time for co. Given the service price
and service completion information for a set of concrete atomic services, CCTR
scheduler checks if there is any service provider assignment along a valid execu-
tion and if there is any such assignments generates them.

6 Related Work

There has been intense research on web services. [8], [1], [20] present an overview
of the web services and current technology and the standards have been proposed
for service modeling, publish, registry and discovery. Some of them can be listed
as UDDI [25] for the service registry, SOAP [24] for the communication, OWL-S
[11] for semantic modeling and WSDL for service description [27].

There has been several works on the composition of web services. [4] and
[18] presents an overview of the web service composition approaches. [26] gives
a comparative study of the web service composition languages. Several works
presents different approaches and architectures for composition [16], [5], [14],
[17], [21], [22], [10]. METEOR-S [16], [17] presents a web service composition
architecture in which composition conforms to the given constraints. Another
work [28] uses linear programming for solving constraints on composite service.
Among the previous work on composite services, the following ones are closer to
this work.

[13], [12], [15] proposes a logic-based formalism, Golog, for composite service
model and verifies some properties of the composite model through Petri Nets.
Golog takes its roots from situation calculus and provides a strong background
for the semantic model. The difference of this work is its ability to support a wide
set of constraints, including cost constraints on the overall composite service and
do reasoning under these constraints.

[2] maps OWL-S process model to a verification tool in order to do model
checking and verification. The emphasis on the verification is common in both
works. The major difference is the nature of constraints considered on the process
model.

In [23], a mapping from OWL-S to SHOP2 planning language is presented.
The mapping schema, is close to the mapping considered in this work. However,
in this work, the emphasis is on the relationship between OWL-S and CCTR,
mapping of the model and verification of the model after the mapping whereas
in [23] planning is the main subject of the work.

7 Conclusion

As the Internet grows to include more services, the user requirements will also
enhance so that composite services are needed to answer them. As in atomic web
services, a semantic model is crucial for composite services. Today’s common
service ontology, OWL-S provides modeling of composite processes through a
set of control constructs.

Besides the semantic model, the correctness of the model under a set of
constraints is important as well, for the correct execution and fulfillment of user’s
requirements. This calls for a verification mechanism through a formalism. In
this work, we introduce a logic-based formalism, called Concurrent Transaction
Logic (CCTR) and discuss how it can be used for modeling and verification of
web services together with OWL-S. CCTR provides a framework for modeling
the composite service, specifying constraints on it and verifying the service model
under the constraints. The control constructs of an OWL-D description can be
mapped to CCTR representation for verification purpose. The verified models
can be executed by the profile and grounding descriptions provided by OWL-S.

References

1. G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services: Concepts, Ar-
chitecture, and Applications. Springer Verlag, June 2003.

2. A. Ankolekar, M. Paolucci, and K. Sycara. Towards a formal verification of owl-s
process models. In Fourth International Semantic Web Conference (ISWC 2005),
2005.

3. S. Bechhofer and et. al. OWL Web Ontology Language Reference.
http://www.w3.org/TR/2004/REC-owl-ref-20040210/, 2004.

4. B. Benatallah, M. Dumas, M-C. Fauvet, and F. A. Rabhi. Towards patterns of
web service composition. In Patterns and Skeletons for Parallel and Distributed
Computing, pages 265-296. Springer-Verlag, 2003.

5. B. Benatallah, Q. Z. Sheng, and M. Dumas. The Self-Serv environment for web
service composition. IEEE Internet Computing, 7(1):40-48, 2003.

6. A.J. Bonner. Workflow, transactions, and datalog. In ACM Symposium on Prin-
ciples of Database Systems, Philadelphia, PA, May/June 1999.

7. A.J. Bonner and M. Kifer. Concurrency and communication in transaction logic.
In Joint Int’l Conference and Symposium on Logic Programming, pages 142-156,
Bonn, Germany, September 1996. MIT Press.

8. F. Curbera, W. Nagy, and S. Weerawarana. Web services: Why and how. In
OOPSLA 2001 Workshop on Object-Oriented Web Services, 2001.

9. H. Davulcu, M. Kifer, C.R. Ramakrishnan, and I.V. Ramakrishnan. Logic based
modeling and analysis of workflows. In ACM Symposium on Principles of Database
Systems, pages 25—-33, Seattle, Washington, June 1998.

10. A. Dogac, Y. Kabak, and G. Laleci. A semantic-based web service composition
facility for ebxml registries. In 9th International Conference of Concurrent Enter-
prising, Espoo, Finland, June 2003.

11. D. Martin and et. al. OWL-S: Semantic Markup for Web Services.
http://www.daml.org/services/owl-s/1.1/overview/, 2004.

12. S. Mcllraith and T. C. Son. Adapting golog for composition of semantic web ser-
vices. In In Proc. of the 8th Int. Conf. on Knowledge Representation and Reasoning
(KR2002), Toulouse, France, April 2002.

13. S. Mcllraith, T. C. Son, and H. Zeng. Semantic web services. IEEE Intelligent
Systems, 16(2):46-53, March/April 2001.

14. B. Medjadeh, A. Bouguettaya, and A. K. Elmagarmid. Composing web services
on the semantic web. VLDB Journal, 12(4), November 2003.

15

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

S. Narayanan and S. A. Mcllraith. Simulation, verification and automated com-
position of web services. In Proceedings of the 11th international conference on
World Wide Web, 2002.

K. Verma P. Rajasekaran, J. A. Miller and A. Sheth. Enhancing web services
description and discovery to facilitate composition. In First International Work-
shop on Semantic Web Services and Web Process Composition (SWSWPC), pages
34-47, San Diego, CA, USA, July 2004.

J. A. Miller R. Aggarwal, K. Verma and W. Milnor. Constraint driven web service
composition in meteor-s. In Proceedings of the 2004 IEEE International Conference
on Services Computing (SCC 2004), pages 23-30, Shanghai, China, 2004.

J. Rao and X. Su. A survey of automated web service composition methods. In In
Proc. of First International Workshop of Semantic Web Services and Web Process
Composition, San Diego, California, July 2004.

P. Senkul, M. Kifer, and Ismail H. Toroslu. A logical framework for scheduling
workflows under resource allocation constraints. In Int’l Conference on Very Large
Data Bases, Hong Kong, China, 2002.

A. Sheth. From semantic search and integration to analytics. In Semantic Inter-
operability and Integration, 2005.

E. Sirin, J. Hendler, and Parsia B. Semi-automatic composition of web services
using semantic descriptions. In In Proc. of Web Services: Modeling, Architecture
and Infrastructure Workshop in conjunction with ICEIS 2002, 2002.

E. Sirin, B. Parsia, and J. Hendler. Filtering and selecting semantic web services
with interactive composition techniques. IEEE Intelligent Systems, 19(4):42-49,
2004.

E. Sirin, B. Parsia, D. Wu, J. A. Hendler, and D. S. Nau. Htn planning for web
service composition using shop2. 1(4):377-396, 2004.

Simple Object Access Protocol (SOAP).

http://www.w3c.org/TR/SOAP/, 2003.

Universal Description, Discovery and Integration (UDDI).

http://www.uddi.org, 2003.

W. M. P. van der Aalst, M. Dumas, and A. H. M. ter Hofstede. Web service
composition languages: Old wine in new bottles? In EUROMICRO, pages 298—
307, 2003.

Web Service Description Language.

http://www.w3c.org/TR /wsdl/, 2003.

L. Zeng, B. Benatallah, Marlon Dumas, J. Kalagnanam, and Q. Z. Sheng. Qual-
ity driven web service composition. In Twelfth International World Wide Web
Conference (WWW), 2003.

