
Aggregate Contribution of Decomposed 
Intentional Elements 

Aprajita1, Gunter Mussbacher1 

1Department of Electrical and Computer Engineering, McGill University, Montreal, Canada 
aprajita.aprajita@mail.mcgill.ca, gunter.mussbacher@mcgill.ca 

Abstract. We present aggregate contribution as a solution for two long-
standing issues with goal modeling languages such as i* and GRL which sup-
port decomposition and contribution links for intentional elements. An aggre-
gate contribution summarizes the contributions of constituent parts (child ele-
ments) at the parent level, giving the modeler an overview of the actual impact 
of the parent while still enabling the correct evaluation of the goal model. 

Keywords: Goal Modeling; Decomposition; Contribution; GRL; Goal-oriented 
Requirement Language; URN; User Requirements Notation; Evaluation 

1 Introduction 

Goal models are graphs of intentional elements such as goals and tasks connected by 
various relationships and optionally assigned to actors. Common relationships sup-
ported by many goal modeling notations (e.g., i* [7], the Goal-oriented Requirement 
Language (GRL) [3], the NFR framework [2], and KAOS [6]) are contributions and 
decompositions. This paper addresses shortcomings related to (a) a lack of support for 
relationship abstractions [5] and (b) analysis anomalies [5] in goal models that sup-
port decompositions and contributions. 

In Section 2, we briefly discuss the two aforementioned issues and further motivate 
our proposed solution with the help of an example. Section 3 then explains how we 
address these two issues in detail. We use GRL to visualize the examples, but the 
solution applies to any other goal modeling notation with decompositions, contribu-
tions, and a propagation-based evaluation mechanism. The paper concludes and brief-
ly discusses future work in Section 4. 

2 Motivating Examples 

“Sloth” (Lack of Support for Relationship Abstractions) and “Wrath” (Analysis 
Anomalies) are two of the eight “deadly sins” [5] that are still haunting GRL and 
other goal modeling languages today. Currently in GRL, it is not possible to describe 
the relationships of an intentional element based on the relationships of its constituent 
parts. As shown in Figure 1(a), the constituent parts of task A, i.e., A1 and A2, do not 
make their individual contributions apparent at the parent level. This may lead to 

Copyright © 2016 for this paper by its authors. Copying permitted for private and academic purposes. 



ambiguities as the parent task does not seem to be contributing to the goal. To over-
come this slothful [5] behavior, a better visualization is needed of the total contribu-
tions of any given intentional element. Adding all contributions manually in the goal 
model to overcome “sloth” gives birth to “wrath”. A relationship shown at more than 
one level of abstraction creates an analysis anomaly, because it should be taken into 
account only once but is actually considered multiple times. Figure 1 describes the 
three cases in a goal model evaluated with a quantitative evaluation algorithm [1]. As 
shown, (a) and (b) are equivalent (evaluation of goal G is 30), but (c) results in a 
different evaluation (i.e., 60) because of the repetition of the same relationship at two 
different abstraction levels: (i) the individual contributions of A1 and A2 to goal G 
and (ii) the combined contribution at the parent level. 

Figure 1: Evaluation of goal model with current evaluation algorithms 

Similar issues exist for qualitative and mixed evaluation algorithms [1]. To tackle 
these issues, the concept of aggregate contribution for decomposed parent elements is 
introduced and a proof of concept implementation provided in jUCMNav [4]. 

3 Inferring Aggregate Contributions 
When an intentional element (task A), that is decomposed into A1 and A2, contributes 
to another intentional element (goal G), two cases arise. First, task A does not have 
any individual contribution to goal G and contributes only through its constituent 
parts, i.e., A1 and A2. In this case, only contributions of A1 and A2 should be consid-
ered while evaluating goal G (i.e., G should evaluate to 30 in Figure 1(c)). Second, 
task A, along with contributing through its parts, also has its own individual contribu-
tion to goal G. Here, contributions of all elements (A, A1, A2) should be considered 
for the evaluation of goal G (i.e., G should evaluate to 60 in Figure 1(c)). The second 
case often occurs when the parent captures contributions common to all its parts. 

The new concept of aggregate contribution clearly differentiates these two cases 
by showing the range of contributions for a parent element based on its parts and the 
decomposition type. For an AND decomposition, all parts contribute for the parent. 
For an OR decomposition, at least one part but possibly all parts contribute for the 
parent. For an XOR decomposition, exactly one part contributes for the parent. An 
aggregate contribution is a range of values, because it shows the result of all possible 
combinations of the contributions of its constituent parts (1 for AND, 2N-1 for OR, 
and N for XOR with N being the number of parts). A new icon ( ) and its textual 
equivalent “A:” are used to denote a contribution link with aggregate contribution, 
followed by the actual value of the aggregate contribution. 

Proceedings of the Ninth International i* Workshop (iStar 2016), CEUR Vol-1674

74



All common GRL evaluation algorithms (quantitative, qualitative, mixed) first cal-
culate for a given element its evaluation value coming from decomposition links, then 
contribution links, and finally dependency links [1]. Aggregate contribution affects 
the calculation of the contribution links, in that a link with only an aggregate contri-
bution must not be considered by the evaluation algorithm. The aggregate contribu-
tion itself is calculated for each decomposed parent element before the evaluation.  

Quantitative Evaluation Algorithm. This algorithm uses quantitative contribu-
tion values (e.g., task A1 contributes 10 to goal G in Figure 1(c)) and quantitative 
evaluations of contributing elements (e.g., 100 for task A1) to determine an element’s 
evaluation that is coming from contribution links (e.g., for task A). An aggregate 
contribution is only calculated for a decomposed parent element that has an outgoing 
contribution link and is decomposed into one or more constituent parts. A modeler, 
therefore, has control over whether to show an aggregate contribution by explicitly 
adding the outgoing contribution link for the decomposed parent element. In addition, 
an aggregate contribution may also be indicated with a Boolean flag added to the 
metaclasses representing the goal model or intentional elements in the GRL meta-
model. The aggregate contribution calculated for this algorithm is referred to as 
quantitative aggregate contribution (QNAC). 

Table 1 defines the formula for calculating the QNAC values for the three decom-
position types, showing the cases for only positive contributions, only negative con-
tributions, and mixed contributions of parts. It considers that the contributions by an 
element’s parts may consist of both individual and range contributions, both positive 
or negative. A range contribution may exist because a part of an element may itself be 
a decomposed element with an aggregate contribution, an example of which is shown 
in Figure 3(b). An aggregate contribution is a range represented by “A:[Min,Max]”, 
except where the minimum and maximum values are the same which is simply repre-
sented by “A:Max”.  

Contribu-
tions ↓ 

AND OR XOR 
Min Max Min Max Min Max 

Positive 
Σ𝐶𝑖
+ Σ𝐶𝑙𝑙 

Σ𝐶𝑖
+ Σ𝐶𝑟𝑟 

min (𝐶𝐶𝑖 ,𝐶𝐶𝑙𝑙) Σ𝐶𝐶𝑖 + Σ𝐶𝐶𝑟𝑟 

m
in

(𝐶
𝑖,
𝐶 𝑙
𝑙)

 

m
ax

 (𝐶
𝑖,
𝐶 𝑟

𝑟)
 

Negative Σ𝐶𝐶𝑖 + Σ𝐶𝐶𝑙𝑙 max (𝐶𝐶𝑖 ,𝐶𝐶𝑟𝑟) 

Mixed Σ𝐶𝐶𝑖 + Σ𝐶𝐶𝑙𝑙 Σ𝐶𝐶𝑖 + Σ𝐶𝐶𝑟𝑟 

Legend: 𝑪𝒊: Individual quantitative contribution value of part i 
𝑪𝒍𝒍,𝑪𝒓𝒓: Left (minimum) and right (maximum) quantitative contribution values, respec-
tively, of a range contributed by part i 
𝑪𝑪𝒊: Individual quantitative contribution value of part i, when i contributes negatively 
𝑪𝑪𝒊: Individual quantitative contribution value of part i, when i contributes positively 
𝑪𝑪𝒍𝒍,𝑪𝑪𝒓𝒓: Left (minimum) and right (maximum) quantitative contribution values, 
respectively, of a range contributed by part i, when it contributes negatively 
𝑪𝑪𝒍𝒍,𝑪𝑪𝒓𝒓: Left (minimum) and right (maximum) quantitative contribution values, 
respectively, of a range contributed by part i, when it contributes positively 

Note: All calculated minimums and maximums are capped to -100 and 100, respectively, to 
respect valid GRL contribution and evaluation values. 

Table 1: Aggregate contribution values for different decomposition types 

Aggregate Contribution of Decomposed Intentional Elements

75



Figure 2(a) shows an example goal model with an AND decomposition, where the 
QNAC value has been calculated for goal B contributing to goal A, resulting in 
“A:20” (Min = Σ𝐶𝑖 + Σ𝐶𝑙𝑖 = Max = Σ𝐶𝑖 + Σ𝐶𝑟𝑖 = Σ𝐶𝑖 = 30 + (-10) as Σ𝐶𝑙𝑖  =  Σ𝐶𝑟𝑖 = 0). 
Figure 2(b) shows an example goal model with an OR decomposition and parts con

tributing both positively and negatively to A. Thus, the QNAC value of goal 
B contributing to goal A is “A:[-10,45]” (Min = Σ𝐶𝐶𝑖 + Σ𝐶𝐶𝑙𝑖  = (-10); Max = 
Σ𝐶𝐶𝑖 + Σ𝐶𝐶𝑟𝑖 = 20 + 25). Figure 2(c) shows an example goal model with an XOR 
decomposition type. Thus, the QNAC value of goal B contributing to goal A is “A:[-
5,25]” (Min = min(𝐶𝑖 ,𝐶𝑙𝑖)= min (10,-5,25); Max = max (𝐶𝑖 ,𝐶𝑟𝑖) = max (10,-5,25)). 

Figure 2: Quantitative aggregate contribution 

Note that aggregate contribution as proposed here abstracts from the contributions of 
constituent parts only, but does not abstract from all combinations of contributions 
and evaluations of constituent parts. In that sense, the abstraction is based on the static 
goal model specification and does not consider the evaluation of the goal model. This 
can clearly be seen in Figure 2(a). Propagating the evaluation of B (50) to A with only 
the aggregate contribution (20) results in 10 and not the correct 25. It is possible to 
consider an aggregate contribution as an abstraction of the evaluation instead of the 
static goal model specification. In that case, however, AND as well as XOR decom-
positions have to be treated like an OR decomposition in Table 1 (i.e., the aggregate 
contribution in Figure 2(a) would be “A:[-10,30]” and in Figure 2(c) “A:[-5,35]”; this 
would ensure that the evaluation of B always falls into the range defined by the ag-
gregate contribution of A on B and the evaluation of A).  

As discussed earlier, a decomposed element may also contribute individually in 
addition to its parts. In Figure 3(a), B contributes to A individually as well, unlike the 
examples in Figure 2. In this case, the QNAC value for B is calculated the same way 
as for the examples in Figure 2 and the contribution of B is added on top. Thus, the 
evaluation of goal A is 40 (10 as shown in Figure 2(c) plus (30 * 100)/100 from B). 

Figure 3: Individual & aggregate contributions (a) and hierarchies (b) 

Proceedings of the Ninth International i* Workshop (iStar 2016), CEUR Vol-1674

76



Figure 3(b) gives an example of a hierarchy of decompositions, where B is decom-
posed into B1, B2, and B3. B2 is then further decomposed into B21 and B22. Using 
bottom-up, forward propagation [1], B2’s QNAC value “A:[-20,15]” is calculated 
before B’s. When B’s QNAC value is calculated, B2’s QNAC range is taken into 
account resulting in “A:[15,50]” (Min = Σ𝐶𝑖 + Σ𝐶𝑙𝑙  = 10 + 25 + (-20); Max = 
Σ𝐶𝑖 + Σ𝐶𝑟𝑟 = 10 + 25 + 15). The same bottom-up approach applies to decomposition 
hierarchies with arbitrary depths and various combinations of decomposition types. 

Qualitative Evaluation Algorithm. This algorithm uses qualitative contribution 
values (e.g., goal B1 contributes “Some Negative” to goal A in Figure 4(b)) and quali-
tative evaluations of contributing elements (e.g., “Satisfied” for goal B1 as indicated 
by a checkmark) to determine an element’s evaluation that is coming from contribu-
tion links (e.g., for goal B). In GRL, a qualitative contribution value may be one of 
the following discrete values [1], listed in descending order: “Make”, “Some Posi-
tive”, “Help”, “Unknown”, “Hurt”, “Some Negative”, and “Break”. “Make”, “Some 
Positive”, and “Help” are positive contributions and opposites of the negative contri-
butions “Break”, “Some Negative”, and “Hurt”. “Make” and “Break” are said to be 
equal strength but in opposite directions, as are “Some Positive” and “Some Nega-
tive” as well as “Help” and “Hurt”. The aggregate contribution calculated for this 
algorithm is referred to as qualitative aggregate contribution (QLAC). 

For OR and XOR decomposition, the QLAC value is a range represented by 
“A:[Min,Max]”, where Min is the lowest contribution among the contributing parts 
and Max is the highest contribution among the contributing parts. AND decomposi-
tions are handled the same way, if the purpose is to abstract from the evaluation result 
instead of the contributions only as discussed earlier for QNAC values. 

Figure 4: Contribution combinations (a), QLAC for AND decomposition (b) 

To calculate the QLAC value abstracting contributions only for an AND decomposi-
tion (e.g., the QLAC value of B contributing to A in Figure 4(b)), the count of each 
type of qualitative contribution of the constituent parts of B to A is determined first. 
Then, the dominant for each strength is identified, i.e., a positive contribution and a 
negative contribution of the same strength (bottom-left to top-right diagonal in bold in 
Figure 4(a); e.g., “Make” and “Break”) cancel each other out (= “None”) and any 
remaining ones are dominant. Afterwards, the strongest contribution (most positive or 
most negative depending on the dominant) is combined with the strongest opposite 
contribution (most negative or most positive, respectively) based on Figure 4(a), until 
only either positive or negative contributions are left. Finally, the highest (in case only 
positive contributions are left) or the lowest (in case only negative contributions are 

Aggregate Contribution of Decomposed Intentional Elements

77



left) contribution value is selected as the QLAC value of B to A. If all contribution 
values cancel each other out, the QLAC value is considered to be “Unknown”. 

For example, Figure 4(b) shows an AND decomposition, where the parts of B con-
tribute as follows to A: “Make”, “Help”, “Some Negative”, and “Hurt”. One “Make” 
and zero “Break” result in one “Make” being dominant. Zero “Some Positive” and 
one “Some Negative” result in one “Some Negative” being dominant. One “Help” 
and one “Hurt” cancel each other out. Since “Make” is the strongest remaining con-
tribution, it is combined with the strongest opposite contribution, i.e., “Some Nega-
tive”, resulting in one “Help” according to Figure 4(a) (row 2, column 3). 

Similar to the quantitative evaluation algorithm, decomposition hierarchies of arbi-
trary depths and various combinations of decomposition types are handled with a 
bottom-up approach. 

Mixed Evaluation Algorithm. This algorithm uses qualitative contribution values 
and quantitative evaluations of contributing elements to determine an element’s eval-
uation that is coming from contribution links [1]. Consequently, aggregate contribu-
tions are calculated for this algorithm using the same approach as discussed for the 
qualitative evaluation algorithm. 

4 Conclusions and Future Work 

This paper discusses the issues “Sloth” (Lack of Support for Relationship Abstrac-
tions) and “Wrath” (Analysis Anomalies) in GRL and proposes the concept of aggre-
gate contribution to address them. An aggregate contribution indicates the contribu-
tions of constituent parts for a decomposed parent element, given a sense of the over-
all combined contribution of the parent when all its parts are taken into account. The 
calculation of aggregate contribution for different decomposition types and evalua-
tion algorithms is defined and detailed with the help of illustrative examples. In future 
work, we plan to find ways to abstract other goal modeling concepts such as depend-
encies and indicators for parent elements. 

References 

[1] D. Amyot, S. Ghanavati, J. Horkoff, G. Mussbacher, L. Peyton, and E. Yu, “Evaluating goal models 
within the Goal-oriented Requirement Language”. International Journal of Intelligent Systems (IJIS), 
Wiley, vol. 25, no. 8, pp. 841–877, 2010. 

[2] L. Chung, B.A. Nixon, E. Yu and J. Mylopoulos, Non-Functional Requirements in Software 
Engineering. Kluwer Academic Publishers, 2000. 

[3] ITU-T, User Requirements Notation (URN) – Language definition. ITU-T Recommendation Z.151 
(11/08), Geneva, Switzerland, November 2008; http://www.itu.int/rec/T-REC-Z.151/en. 

[4] jUCMNav, development build 6.0.D0610.v1626, http://jucmnav.softwareengineering.ca/jucmnav. 
[5] G. Mussbacher, D. Amyot, and P. Heymans, “Eight Deadly Sins of GRL”. 5th International i* 

Workshop (iStar 2011), Trento, Italy, CEUR-WS 766:2-7, 2011. 
[6] A. van Lamsweerde, Requirements Engineering: From System Goals to UML Models to Software 

Specifications. John Wiley & Sons Ltd, 2009. 
[7] E. Yu, Modeling Strategic Relationships for Process Reengineering. Ph.D. thesis, University of 

Toronto, Canada, 1995. 

Proceedings of the Ninth International i* Workshop (iStar 2016), CEUR Vol-1674

78


	1 Introduction
	2 Motivating Examples
	3 Inferring Aggregate Contributions
	4 Conclusions and Future Work
	References



