
Realizing Uncertainty-Aware Timing Stack in Embedded
Operating System

Amr Alanwar, Fatima M.
Anwar

University of California,
Los Angeles

João P. Hespanha
University of California,

Santa Barbara

Mani B. Srivastava
University of California,

Los Angeles

ABSTRACT
Time synchronization has been studied extensively over the
recent years with an advent of time critical applications for
wireless sensor networks. The distribution of the global ref-
erence time over the radio links is the most popular syn-
chronization mechanism. Often overlooked, the timing un-
certainties spread across transmitter to the receiver, limit
the accuracy of state-of-the-art synchronization protocols.
These timing uncertainties are due to the instability of crys-
tal oscillators and timestamping mechanisms. The effect of
these uncertainties is cumulative in nature and build up the
synchronization error. On the other hand, limited resources
of energy, computational units, storage, and bandwidth are a
driving force towards lightweight protocols. Hence, this pa-
per presents a deep analysis of each source of timing uncer-
tainty and motivates uncertainty-aware time synchroniza-
tion. Extensive experiments are conducted to highlight the
contribution of each source and provide recommendations
for mitigating the resultant timing uncertainty. We have also
proposed a Lightweight Kalman filter based on our analysis
to meet the limited resources constraint.

1. INTRODUCTION
Awareness of time is critical to the reliability, security,

and performance of distributed systems. Furthermore, tra-
ditional clock models do not cover all sources of uncertainties
and synchronization protocols provide fixed accuracy with
no visibility into the resultant uncertainty, even though it
has proven that the knowledge of uncertainty in time en-
hances performance and reduces system complexity. For
example, Google Spanner [5] uses uncertainty in time to
achieve external consistency of global database transactions.
For real-time interactivity in cloud gaming, Outatime [8] re-
laxes the stringent demands on frame speculation, provided

This research is funded in part by the National Science
Foundation under awards CNS-1329755 and CNS-1329644.
The U.S. Government is authorized to reproduce and dis-
tribute reprints for Governmental purposes notwithstanding
any copyright notation thereon. The views and conclusions
contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of NSF, or the
U.S. Government.
Authors emails are {alanwar,fatimanwar,mbs}@ucla.edu,

and hespanha@ece.ucsb.edu.
EWiLi’16, October 6th, 2016, Pittsburgh, USA. Copyright

retained by the authors.

the uncertainty in time is less than 100 milliseconds.
Time synchronization is the process of bringing an entire

network to one common reference time. This reference could
be the local clock time of a node in the network or a third
party device with an accurate sense of time. In most cases,
a reference node (often called the root node) in the net-
work is considered to have the global time. The root and all
the nodes in the network timestamp a common event with
their local clocks. The root broadcasts the global times-
tamp of that common event in the network. Every client
node receives the global timestamp and pairs it with local
timestamp of that event. Sequence of such common events
provides global and local timestamp pairs. Finally the clock
adjustment mechanism depends on these pairs to provide a
mapping between the local and global time. This mapping
is used to adjust the local clock at every client node. How-
ever, as simple as this process may sound, it suffers from
many sources of uncertainties that limit the capabilities of
synchronization protocols. State-of-the-art synchronization
protocol [3] have taken clock drift as the only source of un-
certainty in timing and reported the resultant uncertainty
between the transmitter and receiver. In contrast, we have
pointed out some other sources of uncertainty that have an
equal, if not more, effect on the synchronization accuracy.
We conducted detailed experiments to show the contribu-
tion of each and every source of timing uncertainty from the
transmitter to the receiver. Therefore, we argue that bet-
ter synchronization can be achieved by considering all the
sources of uncertainties and mitigating their effects.

Figure 1: Uncertainty in a synchronization process

Hardware capabilities have evolved over recent years to
remove certain sources of uncertainties. For example, MAC-
layer time stamping on wireless network greatly reduced tim-
ing uncertainty. Also, many radio transceivers now support
interrupts at transmission and reception times. Certain mi-

crocontrollers have timer capture capability to timestamp
radio transceiver interrupts. Despite these hardware im-
provements, most timestamping mechanisms still suffer from
timing jitter due to various uncertainties involved, prevent-
ing better synchronization accuracy. Main sources of uncer-
tainty are presented in Fig. 1 and are summarized through
the following points:

• Clock drift: instability of the crystal oscillators causes
relative clock drift between the root and the network
nodes. All the node clocks are continuously drifting in
time with respect to the root clock.

• Radio transceiver interrupt generation: the capabil-
ity of radio transceivers to generate an interrupt on
the precise time can be a bottleneck in achieving a
common notion of time. We denote δgr and δgn as ra-
dio transceiver interrupt generation uncertainty at the
root and the node, respectively.

• Interrupt capture: wireless nodes use input capture
hardware module to record the timestamp of an input
signal. The crystal type and frequency, which drives
the timer, affect the accuracy of the timestamp value.
We denote δcr and δcn as interrupt capture uncertainty
at the root and the node, respectively.

• Propagation delay: communication channel types and
the distance between the root and the node affect the
propagation delay uncertainty δd.

We analyze the effects of the above sources of uncertainty
on overall timestamping capability. Through our analysis,
we extract a set of recommendations to enhance the over-
all timing accuracy. In addition, we propose a LightWeight
Kalman filter (LW Kalman) for time synchronization on a
single hop network topology based on these recommenda-
tions. LW Kalman compensates for the uncertainties de-
scribed above and achieves higher synchronization accuracy
without sacrificing the limited resources available on most
wireless devices. In the next section, we describe and ana-
lyze our new clock model, and in section 3, we explain the
LW Kalman synchronization protocol.

2. CLOCK MODEL
Let k be the common event time index (synchronization

message time index). We denote the average relative clock
drift between the master (root) and the slave (node) as φ
and the uncertainty around φ as ñr(k), where ñr(k) has zero
mean. Also, 4nr is relative constant offset between the root
and the node at k = 0.
Time synchronization mainly depends on generating and
capturing radio transceiver interrupts at the common event.
The network nodes get a noisy timestamps of the common
event due to uncertainties. We denote R and N as the noisy
timestamps of the root and the node, respectively. We as-
sume that the root timestamps the event time perfectly and
all the noise is at the node side. The validity of the previous
assumption will be shown later. Both the root and node have
the notion of the common event time as shown in equation 1,
where 4d is the average propagation delay between the root
and node, and δd(k) is zero mean uncertainty associated
with the propagation delay. δgnr (k) is the relative uncer-
tainty in generating interrupt at the radio transceivers, and

Figure 2: Relation between root and node time

δcnr (k) is the relative uncertainty in capturing the times-
tamp of the interrupt on both sides.

R(k) = k

N(k) = k + φ ∗ k + ñr(k) +4nr +4d + δd(k)

+ δgnr (k) + δcnr (k)

(1)

Message based time synchronization protocols depend on
sending synchronization messages every predefined period,
and analyzing a sequence of root and node timestamps can
give a better understanding of the introduced uncertainty.
We denote s(k) as the instantaneous rate of change in times-
tamps between root and node, as shown in equation 2.

s(k) =
N(k)−N(k − 1)

R(k)−R(k − 1)
(2)

Substituting equation 1 in equation 2 results in the fol-
lowing:

s(k) = k + φ ∗ k +4nr + ñr(k) +4d + δd(k)

+ δcnr (k) + δgnr (k)

− [k − 1 + φ ∗ (k − 1) +4nr + ñr(k − 1)

+4d + δd(k − 1) + δcnr (k − 1) + δgnr (k − 1)]

= 1 + φ+4ñr(k) +4δd(k) +4δcnr (k) +4δgnr (k)

(3)

Generally, a linear model is assumed between root and
node in each synchronization period as shown in Figure 2.
The mean, standard deviation and variance of s(k) are ms,
stds, and vars, respectively, where accuracy of this model
depends mainly on vars of the rate of change. Higher noise
in timestamps results in higher values of uncertainties in the
clock model.

We now quantify different kind of uncertainties mentioned
in our model through experimental analysis.

2.1 Experimental Analysis
We use Beaglebone Black (BBB) – an embedded plat-

form loaded with an operating system – and interface it
with AT86RF233, which is a low power, 2.4GHz Zigbee
Transceiver packaged under Atmel AT86RF233 Evaluation
Kit (ATREB233SMAD-EK). We configure one Transceiver
in transmit mode (TX) and the other in receive mode (RX).
Note that the Atmel transceivers provide interrupts on a
GPIO pin at the start and end of frame transmission and
reception. BBB is interfaced to the transceiver, captures
its internal timer upon TX or RX interrupt. The BBB
timer’s clock source is chosen to be pre-scaled versions of

Figure 3: Histogram of TX to RX interrupt gener-
ation uncertainty, using WaveRunner oscilloscope

transceiver’s board clock (2Mhz, 4Mhz and 16Mhz), whereas
the transceiver itself is always clocked at 16MHz. We com-
pare ms and vars of s(k) in equation 3 for different kinds of
uncertainties.

2.1.1 Uncertainty in generating transceiver interrupt
Variety of radio transceivers, nowadays, offer interrupts at

the start and the end of frames. However, these interrupts
are not deterministic and have an uncertainty in their gen-
eration, δgnr (k). We have divided our experiment into two
parts.

TX to RX interrupt generation uncertainty: The BBB
records timestamps for the falling edges of the interrupts,
both at TX and RX. We calculate δgnr (k) by subtracting
the maximum difference of TX and RX timestamps from
the minimum difference of TX and RX timestamps. This
uncertainty has a uniform distribution as shown in Figure
3 and is uncorrelated to time. Our experiments show an
uncertainty of 1.031µsec and a vars of 1.892e-15 in s(k) es-
timation. δgnr (k) contributes by 1.031µs to the offset es-
timation, which is about two timer ticks for 2Mhz clock.
Generally speaking, its contribution is (1.031µs ∗ clockfreq
) timer ticks error for each timestamp, and its effect is cu-
mulative in nature.

RX to RX interrupt generation uncertainty: We configure
three radio transceivers (one TX and two RXs) to measure
RX to RX uncertainty. δgnr (k) is 1.854µs with a mean value
of 0.037408µs as shown in Figure 4, which is almost double
the uncertainty between TX to RX. Therefore, our results
suggest that the reference broadcast [6] is not helpful to de-
crease δgnr (k). However, this behavior may change in wide
wireless networks where the distance between the nodes is
longer and the uncertainty in the propagation delay con-
tributes more as compared to δgnr (k). Comparing the RX
to RX distribution with the TX to RX gives us an under-
standing that most of the noise is at the RX side as the
uncertainty has almost doubled and the two RX resultant
distributions are approximated to a triangular distribution
shown in Figure 4. These results support our initial assump-
tion of considering all the noise at the slave node (RX). This
gives an intuition to avoid reference broadcast based RX to
RX synchronization for better accuracy.

2.1.2 Uncertainty in capturing interrupt
Processors use timer capture to get accurate timestamps

upon a TX and RX interrupt. This capture is done with a

Figure 4: Histogram of RX to RX interrupt gener-
ation uncertainty, using WaveRunner oscilloscope

Table 1: Effect of increasing the frequency on cap-
ture quantization error

Frequency ms vars

2Mhz 1 + 1.2690e-07 3.2733e-15
4Mhz 1 + 1.0447e-07 2.2599e-15
16Mhz 1 + 3.2476e-08 1.4543e-15

hardware support to get rid of the software timer reading
uncertainty. We define two types of interrupt capture, first
one is the asynchronous capture, where the processor timer
and the radio transceiver are clocked using different crys-
tals. The second type is the synchronous capture, where the
processor timer and the transceiver are clocked by the same
crystal.

In commodity platforms, the transceiver’s interrupt is al-
ways generated in synchronous with the transceiver’s clock,
while the processor timer captures this interrupt using an-
other clock/frequency. Therefore, a capture quantization
error is introduced as shown in Fig. 5. The effect of capture
quantization error is one timer tick for each captured value
in the worst case. However, this effect grows when pro-
cessing multiple timestamps over multiple synchronization
periods. The quantization error and the interrupt capture
type contribute to the relative interrupt capture uncertainty
δcnr .

The capture quantization error can be removed by times-
tamping the radio interrupts at the same frequency as they
are generated. Table 1 shows the decreased values of vars
and ms at 16MHz as compared to other frequencies. This is
because the radio is generating interrupts in synchronous to
16MHz clock, and the processor is capturing these interrupts
synchronously with the same 16MHz frequency. This is an
example of synchronous capture. Unfortunately, this is not
the case in many boards, where the processor and radios are

Figure 5: Quantization error in input capture

Table 2: Analysis of 16Mhz input capture type
ms vars

exp1 1 + 3.2476e-08 1.4543e-15
exp2 1 + 5.4306e-07 2.5578e-15
exp3 1+ 7.5548e-06 3.3785e-15

clocked by different clock frequencies. One way to counter
the quantization error is to make the processor timestamp
the interrupts twice using its rising and falling edge. This
double sampling over short period enhances the results.

Now we show that there is a correlation between δcnr and
the clock used in generating the interrupt. We compare syn-
chronous versus asynchronous capture where all crystals are
clocked at 16MHz. We conduct three experiments to an-
alyze this uncertainty. First experiment (exp1) looks into
synchronous capture where each BBB is clocked by its own
transceiver clock. Then, we swap the clock sources in sec-
ond experiment (exp2) i.e, the TX BBB is clocked by the
RX transceiver clock and vice versa. The goal of this exper-
iment is to have asynchronous capture without introducing
any new clock drift to the equation 3. Finally, we use ex-
ternal clock sources to clock both TX and RX BBB to have
asynchronous capture in the third experiment (exp3). The
external clock sources are Siward (SX-4025), which is of the
same type as the transceiver clocks. Therefore, we have a
fair comparison across all the experiments.

We conduct and compare these experiments at high fre-
quency (16Mhz) to remove capture quantization uncertainty.
Interestingly, introducing external clock sources in the asyn-
chronous capture (exp3) has the worst performance while
the synchronous case (exp1) produces the best results as
shown in Table 2. exp2 shows that the asynchronous cap-
turing without external clocks is better than exp3, but worse
than exp1. Therefore, we conclude that the correlation be-
tween the event capturing clock frequency and the event gen-
erating clock frequency is helpful in decreasing the overall
variance. On the other hand, introducing new clock sources
increases the overall vars.

Also, it is worth mentioning that the transceiver crystals
are much more stable than processor crystals on most em-
bedded platforms. On the other hand, the cost of keeping
the transceiver awake all the time just for the sake of supply-
ing the clock to the processor timer is quite high. Therefore,
we propose a tradeoff where a processor choose transceiver
clock on the transceiver awake time and switch to its own
clock on the transceiver sleep time. However, this configu-
ration needs to internally synchronize different clock sources
before switching. The summary of this section is that syn-
chronous capture is better than the asynchronous one. Also,
synchronous capture on the highest frequency is the best for
timestamping accuracy.

2.1.3 Relative clock drift
Comparing the frequency of a signal generated by the

root and node clocks can be used to determine the rela-
tive clock/crystal drift. In some transceivers, Instantaneous
Frequency Error Calculation (FEC) between the root and
node is calculated upon every received frame to measure
the relative drift. We collect 500 samples of FEC at RX
and calculate the relative crystal drift (fcrystal) between TX
crystal and RX crystal using the equation, (fcrystal[ppm] =

Figure 6: FEC histogram over 500 samples

FEC ∗ (5e5/128)/(fRF [MHz])), where fRF is 2405Mhz in
our experiment. FEC is an 8-bit register represented as a
two’s complement signed value. Figure 6 shows the his-
togram of our 500 samples of FEC. Almost 97% the FEC
sample values are -1, and only 3% of the values give zero rel-
ative offset. The average FEC value is 0.9702. This results
in fcrystal[ppm] = 1.5702. We can relate the crystal drift
fcrystal to ms of s(k) using, ms = 1 + fcrystal[ppm]/1e6.

FEC results give a proof that the crystal drift affects ms

and does not have high contribution to vars as 97% of the
FEC samples give the same value. Better relative drift can
be calculated by introducing frequency hopping, which gives
more accurate FEC values. Therefore, we suggest to improve
the accuracy of this feature in the transceiver to be used in
the synchronization models.

2.1.4 MAC software package jitter
The timestamp provided by many platforms in wireless

networks is based on n-bits hardware counter concatenated
with n-bits software variable. PulseSync with tinyos [3] and
Atmel MAC Software package use 16-bit hardware counter
combined with 16-bit software variable. Overflows should
be handled carefully to avoid missing interrupts. This adds
several limitation on the whole system. For example, if a
processor works on 16Mhz, an overflow interrupt will fire
almost every 4.096ms which increases the risk of using crit-
ical sections and introduces high amount of overhead, thus
affecting ms. Also, there is a probability of having a race
condition when an interrupt shows up at the overflow edge.

2.1.5 Operating System Uncertainty
The overhead of the Linux kernel contributes significantly

to the end-to-end uncertainty associated with reading a times-
tamp. This uncertainty varies, and is a function of different
factors, such as the system load and CPU operating fre-
quency. A probabilistic estimate of this uncertainty in a
given time window can be made by reading the timestamp
in a tight loop from userspace. By taking the difference of
consecutive timestamps in a given time window, we can cal-
culate the distribution of the OS uncertainty associated with
reading the clock.

3. QOT-AWARE TIME SYNCHRONIZATION
After describing various sources of uncertainties, we im-

plement a synchronization protocol that is Quality of time
(QoT) aware; not only is it controllable but also provides
an observable uncertainty, thus giving an insight into the
achieved performance to the application. The time synchro-
nization service is aware of the underlying clock model and

is able to control its parameters to achieve the required syn-
chronization accuracy.

We propose a Kalman filter based time synchronization
protocol that makes use of the uncertainties exposed by the
clock model. Kalman filter is one of the most popular tech-
niques to estimate unknown parameters. It addresses the
problem of state estimation from actual measurements. It is
a statistically good estimator for noisy measurements with a
gaussian distribution. We implement a Lightweight version
of scalar Kalman for time synchronization to meet sensor
networks limited resource constraints. We assume a syn-
chronization approach which uses one-way packet exchange.
This way the average propagation delay can be estimated
beforehand [9].

3.1 Light Weight Kalman Filter
The frequency offset fo(k) defines the relative clock fre-

quency drift between the root and the node within the syn-
chronization period and it is assumed to be constant within
one period. fo(k) is calculated using equation 4. We de-
note the mean and uncertainty in timestamp values as µq

and eq respectively. eq accounts for the uncertainties in the
transceiver interrupt generation, interrupt capture and the
propagation delay as described in section 2. The next state
of fo(k) is modeled by equation 5, where µrd and erd are
the mean and uncertainty in relative clock drift respectively.
LW Kalman has the capability of compensating for different
sources of uncertainty.

fo(k) =
4R(k)−4N(k)

4N(k)
+ µq + eq (4)

fo(k + 1) = fo(k) + µrd + erd (5)

where

4R(k) = R(k)−R(k − 1)

4N(k) = N(k)−N(k − 1)
(6)

Each node has an estimated global (root) time Ng, which
is the output of the synchronization model at the node.
The synchronization error at the node at any time m is
sync err(m) = R(m) − Ng(m), where R(m) is the actual
global (root) time at m. If we have an estimated frequency

offset f̂o(k), then Ng(m) can be calculated within any time
synchronization period using equation 8.

f̂o(k) =
4R(k)−4N(k)

4N(k)

4R(k) = 4N(k) + f̂o(k) ∗ 4N(k)

(7)

Then at any time index m, where k < m < k + 1,

Ng(m) = R(k) + (N(m)−N(k)) ∗ (f̂o(k) + 1) (8)

Previous work [2] assumed the measurement error to be
zero and applied Kalman filter to the time stamped messages
between master and slave computers. Their results were
compared to NTP protocol. Another work [12] implemented
multi-dimensional Kalman filter at 8Mhz for 36 minutes.
LW Kalman reports better results at only 2Mhz for 1 hour
after choosing the uncertainty covariance matrix properly.

We choose fo(k) to be the state x of Kalman filter. fo(k)
equals s(k)-1 to avoid expensive floating point calculation.

The state transition scalar A and measurement scalar H
equals one. The input control scalar B is equal to zero.
We calculate corrected state x̂′(k) by finding a weighted dif-
ference between the actual measurement z(k) and the pre-

dicted measurement. We define Q and R̃ as the model and
the measurement noise variance, respectively. The time and
measurement update are as following :

1. Project the state and error covariance ahead

x̂′(k) = x̂(k − 1)

P̂ ′(k) = P̂ (k − 1) +Q
(9)

2. Compute the Kalman gain

K(k) =
P̂ ′(k)

P̂ ′(k) + R̃
(10)

3. Update state estimation and error covariance based on
new measurement z(k)

x̂(k) = x̂′(k) +K(k) ∗ (z(k)− x̂′(k)

P̂ (k) = (1−K(k)) ∗ P̂ ′(k)
(11)

3.1.1 Evaluation
We implement LW Kalman and FTSP [9] on the appli-

cation layer of the MAC layer software package in Atmel
AT86RF233 Evaluation Kit (ATREB233SMAD-EK). We should
note that authors in [3] depend on FTSP for single hop syn-
chronization. We make sure that LW Kalman and FTSP
mathematical models are updated in parallel for a fair com-
parison. We compare their synchronization errors over dif-
ferent synchronization period. We make use of two message
types in our system which are as follows:

1. Synchronization message : This is a normal message
in which the root sends its time to node so that it can
update its mathematical models (both FTSP and LW
Kalman models) using the new reading. Its period is
the synchronization period.

2. Query message : This message is used to test the syn-
chronization between the root and the node. We con-
figured the root to send this message every 18 seconds.
FTSP [9] choose a third party node to do this job
and act as a reference broadcaster between the root
and node. However, the uncertainty between the TX
and RX is less than the uncertainty between RX and
RX (established in section 2). Therefore, we configure
the root to send the query message in order to have
the best confidence level in our testing methodology
as done in [3].

LW Kalman has a better mean and standard deviation as
compared to FTSP as shown in Table 3. We know that short
synchronization period costs more bandwidth and power as
it prevents the transceiver to go into deep sleep mode. A syn-
chronization protocol should be able to tune its performance
by choosing a longer synchronization period for an applica-
tion that does not require a very high synchronization accu-
racy, thus conserving resources. We investigate the stability
of LW Kalman and FTSP over longer synchronization peri-
ods, and we find that LW Kalman is more stable over longer

Table 3: Synchronization error mean and standard
deviation for LW Kalman and FTSP

FTSP LW Kalman
Sync. Period mean std mean std

30sec + 0.349 0.611 + 0.160 0.587
1min - 0.139 1.097 - 0.104 0.769
3min - 0.817 2.782 - 0.388 1.432
6min + 0.965 4.623 + 0.495 3.731

Figure 7: LW Kalman and FTSP boxplot for differ-
ent synchronization periods

periods. Also, Fig. 7 visualizes the comparison between the
two protocols over different synchronization periods. The
disadvantage of LW Kalman is that it needs offline train-
ing to calculate the best convaraince values depending upon
the synchronization period. However, this offline training is
only done once for each synchronization period.

LW Kalman source code on top of the modified Atmel
MAC software package and the image used in BBB can be
found in [1].

4. RELATED WORK
The notion of time uncertainty is not new as NTP [10]

computes an uncertain bound on time; it does not expose
this bound to an application however and it becomes invalid
when a clock adjustment is made.

In recent literature, many time synchronization techniques
use analytical modeling. Adaptive Clock Estimation and
Synchronization (ACES) [7] models the clock directly and
applies Kalman filter to track the clock offset and skew.
In [2], clock is synchronized over the packet switched net-
work using Kalman filtering. But their assumption of con-
stant clock skew over a long time is unrealistic for off-the-
shelf unstable clocks. Seong et al. [4] identified quantization
error in timestamping and compensated for this error using
feed forward filter preceding a PI controller. Xu et al. [11]
uses a Kalman filter based proportional-integral (PI) clock
servo to correct for this quantization error and clock offset
in cascaded real time sensor networks. However, no com-
parison against an existing optimal PI controller has been
given.

5. CONCLUSION
With the advent of time-aware applications that benefit

from the knowledge of uncertainty in time, there is a need

to rethink how time is managed in a system stack. Cur-
rent clock models lack in their ability to expose different
kind of uncertainties present in all the layers of a system
stack, and time synchronization protocols do not provide
any insight into their achieved performance, neither do they
provide any hook to control their performance. In this pa-
per, we present a new clock model exposing uncertainties in
hardware, network stack and the operating system. More-
over, we implement a QoT-aware Kalman filter based syn-
chronization protocol that makes uncertainty in time both
observable and controllable.

We have left for future work to optimize network and hard-
ware resources with the desired timing accuracy, and test
that we can conserve resources in terms of energy and band-
width by making clock models and synchronization protocols
QoT-aware.

6. REFERENCES
[1] Qot-aware time synchronization.

https://bitbucket.org/Alanwar/qot-aware/overview.

[2] A. Bletsas. Evaluation of kalman filtering for network
time keeping. ieee transactions on ultrasonics,
ferroelectrics, and frequency control, 52(9), 2005.

[3] R. W. C Lenzen, P Sommer. PulseSync: An Efficient
and Scalable Clock Synchronization Protocol. In
IEEE/ACM TRANSACTIONS ON NETWORKING.

[4] W. C. C. Seong, S. Lee. A new network synchronizer
using phase adjustment and feedforward filtering
based on low-cost crystal oscillators. In IEEE
TRANSACTIONS ON INSTRUMENTATION AND
MEASUREMENT, VOL. 59, NO. 7, 2010.

[5] J. D. Corbet, J. C. and M. Epstein. Spanner: Google’s
Globally-Distributed Database. In Proceedings of the
10th USENIX Conference on Operation Systems
Design and Implementation (OSDI), 2012.

[6] J. Elson, L. Girod, and D. Estrin. Fine-grained
network time synchronization using reference
broadcasts. ACM SIGOPS OS Review, 36(SI), 2002.

[7] B. R. Hamilton, X. Ma, Q. Zhao, and J. Xu. ACES:
Adaptive Clock Estimation and Synchronization Using
Kalman Filtering. In MobiCom.

[8] K. Lee, D. Chu, E. Cuervo, J. Kopf, Y. Degtyarev,
S. Grizan, and J. Flinn. Outatime: Using speculation
to enable low-latency continuous interaction for
mobile cloud gaming. In ACM MobiSys, 2015.

[9] M. Maroti, B. Kusy, G. Simon, and A. Ledeczi. The
flooding time synchronization protocol. In SenSys,
Proceedings of the 2nd international conference on
Embedded networked sensor systems, 2004.

[10] D. L. Mills. Internet time synchronization: the
network time protocol. Communications, IEEE
Transactions on, 39(10), 1991.

[11] X. Xu, Z. Xiong, X. Sheng, J. Wu, and X. Zhu. A new
time synchronization method for reducing
quantization error accumulation over real-time
networks: theory and experiments. IEEE Transactions
on Industrial Informatics, 9(3):1659–1669, 2013.

[12] Y. Zeng, B. Hu, and S. Liu. Vector kalman filter using
multiple parents for time synchronization in multi-hop
sensor networks. pages 413–421, June 2008.

