
Task-Set Generator for Schedulability Analysis using the
TACLeBench benchmark suite

Yorick De Bock
MOdelling of Systems And Internet

Communication (MOSAIC)
University of Antwerp, Belgium

yorick.debock@uantwerpen.be

Sebastian Altmeyer
Faculty of Science

University of Amsterdam, The Netherlands
altmeyer@uva.nl

Jan Broeckhove
MOdelling of Systems And Internet

Communication (MOSAIC)
University of Antwerp, Belgium

jan.broeckhove@uantwerpen.be

Peter Hellinckx
MOdelling of Systems And Internet

Communication (MOSAIC)
University of Antwerp, Belgium

peter.hellinckx@uantwerpen.be

ABSTRACT
Current real-time embedded systems evolve towards com-
plex systems using new state of the art technologies such as
multi-core processors and virtualization techniques. Both
technologies requires new real-time scheduling algorithms.
For uniprocessor scheduling, utilization-based evaluation
methodologies are common and well-established. For multi-
core systems and virtualization, evaluating and comparing
scheduling techniques using the tasks’ parameters is more
realistic. Evaluating these different scheduling techniques
requires relevant and standardised task sets. Scheduling al-
gorithms can be evaluated on three evaluation levels: 1) by
using the mathematical model of the scheduling algorithm,
2) by simulating the scheduling algorithm and 3) by imple-
menting the algorithm on the target platform. Generating
task sets is straightforward in case of the first two levels;
only the parameters of the tasks are required. Evaluating
and comparing scheduling algorithms on the target platform
itself, however, requires real executable tasks matching the
predefined standardised task sets. Generating those exe-
cutable tasks is not standardized yet.

Therefore, we developed a task-set generator that gen-
erates reproducible, standardised task sets that are suit-
able at all levels. Beside generating the tasks’ parameters,
it includes an executable generator methodology that gen-
erates executables by combining publicly available bench-
marks with know execution times. This paper presents and
evaluates this task-set generator. The executables approxi-
mate the wanted execution time on the hardware platform.

CCS Concepts
•Computer systems organization → Real-time sys-
tems; Embedded software; •General and reference →
Empirical studies; Measurement;

EWiLi’16, October 6th, 2016, Pittsburgh, USA.
Copyright retained by the authors

Keywords
Real-Time Systems, Embedded Systems, Schedulability Anal-
ysis, Benchmarks, Task-Set Generator, Software Tool

1. INTRODUCTION
Current evolutions of mechatronics show an exponential

growth in the number of embedded systems used for control
due to the shift from mechanical control towards electronic
control. This evolution creates new opportunities for even
more advanced software based control. On the downside,
it introduces new challenges regarding safety and reliabil-
ity. Both opportunities and challenges will result in more
complex software and hence higher computational require-
ments. These requirements can be tackled by using state
of the art technologies on embedded system. Multi-core
processors is a common solution to increase the computa-
tional power in a single chip. Virtualization techniques is
applied to handle the complexity of the software by decom-
posing the software in to components which can be analysis
independent from each other. For real-time systems, most
applications are composed of recurring tasks with periods,
deadlines and execution times. This collection of tasks is
called a task set. The schedulability of task sets is very
important. Uniprocessor scheduling algorithms are evalu-
ated and compared using the maximum task set utilization
which can be scheduled by the algorithm. For multiproces-
sor scheduling algorithms, however, the complexity of the
analysis methodologies increases dramatically. This is due
to the concurrent execution of tasks and the indeterminism
of most multi-core architectures. Virtualization introduces a
two-level hierarchical scheduling structure where the tradi-
tional analysis techniques can not be applied to. The many
open issues and the practical importance of these technolo-
gies make it a topic of active research.

Parameter-based analysis uses the tasks’ parameters dur-
ing analysis. This results in an one-to-one mapping of task-
set and scheduling algorithm; the schedulability can be anal-
ysed for a specific task set using a certain scheduling algo-
rithm. The parameter-based analysis is more realistic for
multiprocessor scheduling algorithms, and at this moment
the only analysis methodology for the hierarchical schedul-

ing structure in the virtualization technology. The schedula-
bility of a task set is the key criteria for the evaluation and
comparison of scheduling algorithms. Other criteria such
as the number of pre-emptions, energy consumption, sched-
uler overhead, cache performance etc. can also be used the
evaluate and compare scheduling algorithm. The schedula-
bility and other criteria can be evaluated at an early stage of
the design process of the mechatronic system. At this stage
the complexity and cost are relatively low compared to later
stages of the process. However, at the later stages more eval-
uation criteria can be evaluated and compared with other
scheduling algorithms. The performance of scheduling algo-
rithms can be evaluated on three levels:

• Formal proof: at the highest evaluation level, schedu-
lability can be formaly proven by the mathematical
model of the scheduling technique.

• Simulation-based analysis: at the second evalua-
tion level schedulability is validated based on the sim-
ulation model of the scheduling technique. This tech-
nique simulates a task set scheduling based on specific
input parameters covering the target hardware (num-
ber of cores, ...) and the simulator settings (stepsize,
simulation time, ...).

• Implementation-based analysis: at the last evalu-
ation level, real-time tasks are deployed on the target
platform. To schedule the tasks on the target plat-
form, a scheduler and hence a Real-Time Operating
System (RTOS) are required. The scheduler uses the
scheduling algorithm to define the order of execution
of the tasks.

Evaluating scheduling algorithms requires input data. In
this case, a set of real-time tasks is needed to evaluate and
compare different scheduling mechanisms. Depending on the
evaluation level the content and format of the tasks and task
set differ considerably. In the first two levels, synthetic task
sets are required. This implies that the task model should
only include the tasks’ parameters (Worst-Case Execution
Time (WCET), period and deadline) of the different tasks.
It is crucial that the generated values of those parameters are
not biased against any scheduling algorithm. At the third
level, however, the task model is extended with executable
code. The code has to match the existing task parameters.
The executable tasks should be created taking into account
the WCET parameter of the task. The WCET of a task is
expressed in time units and will by consequence differ when
deployed on different target platforms. Therefore the task
model should be injected by different sets of task code when
deployed on different platforms. The latter feature is missing
in current evaluations of scheduling algorithms making them
hard to compare or reproduce across platforms. The goal is
to create executable tasks, based on the synthetic task set,
for a broad set of different architectures and to examine and
compare the performance of the scheduling algorithms. The
execution time of the tasks will be equal to the WCET of
the tasks to test the worst-case scenario for the scheduler.

In this paper we present a task-set generator tool, which
not only generates synthetic task sets, but also the exe-
cutable tasks for a given target platform using publicly avail-
able benchmark programs. This tool can be used to gener-
ate task sets suitable to evaluate and compare scheduling

algorithms at all evaluation levels using standardized, re-
producible and transparent task-set generation techniques.

The rest of the paper is organized as follows. The related
work on generating synthetic task sets and executable tasks
is briefly reviewed in Section 2. The task-set generator tool
and its different parts are discussed in Section 3. Section 4
describes an experimental evaluation of the tool. We con-
clude the paper and give on overview of future research in
Section 5.

2. RELATED WORK
Synthetic task-set generator tools hardly ever exist as in-

dependent tools. They often occur in literature as part
of larger research projects. In [2], Bini and Buttazzo in-
troduced the UUnifast algorithm to generate task sets for
single-core processors. In 2010, Emberson et al. extended
the UUnifast algorithm to multi-core systems by introduc-
ing the UUnifast-Discard algorithm and the RandFixedSum
algorithm [7]. Both, UUnifast and UUnifast-Discard, are
adopted as the standard task generator module in various
real-time scheduling simulation tools [3–5, 11]. SimSo [4]
also includes the RandFixedSum algorithm as an alterna-
tive task-set generator module.

Research on task-set generation tools that generate exe-
cutable tasks is rather limited. TIMES [1], by Amnell et
al., is a tool specifically designed for symbolic schedulability
analysis and synthesis of executable code with predictable
behaviours for real-time systems. It includes a task-set gen-
erator to integrate a set of tasks provided by the user into
specific hardware architectures. Starting from a set of tasks
and their runtimes it will analyse schedulability, given a spe-
cific scheduling method and hardware architecture. After
successful analysis it will generate wrapping code around
predefined tasks to create a compilable source code project
for that specific type of hardware.

In [9] Kramer et al. present a new benchmark generator
methodology for automotive applications. The automotive
industry is characterized by its strong intellectual property
(IP) protection. This results in a lack of realistic real-world
benchmark applications. Kramer et al. propose to solve this
problem by creating new benchmark applications based on
code snippets origination from a well protected database
containing IP protected automotive applications. The tool
however was not yet available at the time of writing.

Wägemann et al. proposed GenE [13], a tool to generate
benchmarks for timing analysis. It combines code patterns
from real-time applications that are both representative for
real-time applications and sufficiently challenging to WCET
analysis tools. In addition to the source code, the gener-
ator also provides the flow facts of the benchmark. Based
on this information it is straightforward to derive an accu-
rate WCET that can be used as a reference to evaluate and
compare the performance of WCET analysis techniques and
technologies.

3. TASK-SET GENERATOR TOOL
The tool presented in this paper will generate task sets

for the evaluation of scheduling algorithms at three levels of

abstraction in the design process. For formal and simula-
tion based analysis, synthetic task sets are generated given
a global utilization range for the task sets. A task set S con-
sists of a set of n independent real-time tasks {τ1, τ2, ..., τn}.
Let τi indicate any given task of the task set. Each task
has three parameters: the WCET C, the relative deadline
D and the period T . The utilization of a task set is defined
as:

Ut =

n∑
i=0

Ui =

n∑
i=0

Ci

Ti
(1)

where Ci is the WCET of task τi and Ti the period of task τi.

For implementation-based analysis, the tasks of the syn-
thetic task sets are extended with an executable instance.
These executable tasks are created by combining benchmark
programs from the TACLeBench benchmark suite [8]. The
benchmark suite is a collection of benchmark programs used
to evaluate timing analysis tools. The task-set generator tool
calculates for each task a combination of benchmark pro-
grams. The summation of the execution time of the selected
benchmark programs equals the required execution time of
the task (within a pre-defined error margin). The tool dis-
tinguishes two types of user-defined input parameters: task
set specific parameters and program specific parameters. The
former are used to generate the synthetic task sets, the latter
are used to select a set of benchmarks which fits the require-
ments of the user and the target platform. The selected set
is used to calculate the sequence of benchmark programs for
each tasks of the generated synthetic task set.

The tool is structured into three major parts which can
operate independently. The first part creates the synthetic
task sets, the second part selects the combination of bench-
mark programs for each task and the last part generates the
source code and the makefile to create the executable tasks.

3.1 The Synthetic Task-Set Generator
To generate task sets to evaluate and compare scheduling

algorithms, the distribution of the utilization of the tasks
must be unbiased towards any scheduling algorithm [7]. The
generator generates periodic tasks with implicit deadlines.
These are tasks with a deadline D equals to the period T
which means that the the task releases a job at every time
interval T . To generate the synthetic task sets, the tool
uses the task set specific parameters as input. The following
parameters are a minimum set of parameters:

• the range of the task set utilization ([Utmin, Utmax])

• the step value between two utilizations (Utstep);

• the number of task sets per utilization (k);

• the number of tasks per task set (n);

• the lower and upper bound of the period (Tl, Tu);

• the level of granularity of the period (T∆);

• the seed value for pseudorandom generators. (s)

In a first step, a utilization Ui for each task τi in the task
set S is defined based on the constraint that

∑n
i=0 Ui = Ut

where Ut is the target utilization. The UUnifast-Discard
algorithm is used to generate the task-specific utilizations.
The input of this algorithm is the utilization of the task set
Ut and the number of tasks in the task set n.

In the second step, the period of each task is defined and
the execution time is calculated for each task. The period
is randomly selected between the given lower Tl and upper
bound Tu. Based on the generated period T and task uti-
lization U , the execution time C is calculated. The mininum
difference between periods of two different tasks is defined
as T∆. To evaluate the effect of an input parameter, pseudo-
random generators are used to generate these values. This
implies that, for example, two identical task sets, in terms
of task utilization, can be generated, but with a different
lower and upper bound of the period. By keeping all other
parameters fixed, all confounding effects are avoided [6].

The number of generated task sets (m) depends on the
number of utilization steps and the number of task sets per

utilization, m =
(

Utmax−Utmin
Utstep

+ 1
)
× k. Another advan-

tage of the pseudorandom generator is its ability to repro-
duce identical tests. An identical set of task sets can be
generated by other parties in the same domain when using
the same input parameters. The generated synthetic task
sets are used to generated the benchmark program sequence
in the second part.

3.2 Benchmark Program Sequence
After the synthetic task sets are generated, a benchmark

program sequence is calculated for every task. The tool
uses the TACLeBench benchmark suite as a source for the
benchmark programs [8]. Within the TACLe project, the
benchmark programs are formatted using the same code for-
matting rules, this results in a main function consisting of
three function calls. These functions are present in every
benchmark program:

• {benchmark program name} init()

• {benchmark program name} main()

• {benchmark program name} return()

The first function initializes the benchmark program, the
second executes the main functionality and the third func-
tion returns a variable for sanity checks. Furthermore, al-
most all benchmarks are platform-independent and can be
compiled to and evaluated on any kind of target platform.
To use the benchmark programs in the task-set generator, in-
formation regarding each benchmark must be accessible for
the tool. This is realized by a complementary description file
for each benchmark. This description file contains all nec-
essary information of the benchmark (location, execution
time,...). Based on the information in the description file
and the selection criteria given by the user, the tool checks
whether the benchmark program is suitable to be used in
the benchmark program sequence. The first round of se-
lection is based on the architecture of the target hardware;
if the description file includes timing information (execution
cycles) of the benchmark program on the given architecture,
the benchmark program is selected. This selection results in
a subset of the benchmark programs which are used to cal-
culate the benchmark program sequence for each task. By

adding more information about the benchmark programs
in their description file, a more precise selection of bench-
mark programs is possible. To prevent non-reproducible be-
haviour, each benchmark program should run at least a min-
imum number of times in a row; due to cache effects and
other micro-architectural features, a program’s execution
time may vary strongly. Yet, when executed in sequence, the
execution time eventually stabilizes. Hence, we also derive
the minimum number of executions until a stable execution
time occurs. This means that when a benchmark program
is selected, the number of times a benchmark program is
executed lies between its minimum number and infinity. A
minimum number of consecutive executions is necessary to
get a reproducible execution time. For each benchmark pro-
gram, the minimum number of executions is different and
does not only depends on the code of the benchmark pro-
gram, but also on the architecture of the target hardware.
The value of this minimum number of executions, has to
be obtained in a measurement based approach by executing
the benchmark program in a loop and varying the loop size.
This minimum number of executions is included in the de-
scription file of the benchmark program. To calculate the
program sequence for each task, we use an Integer Linear
Programming (ILP) model [12] to describe the optimization
problem. This model tries to match the sum of the bench-
mark program execution times with the target WCET of the
task. The number of times a benchmark program is used,
equals or is greater than zero. To build this model, the ex-
ecution time of the benchmark programs must be known.
These are calculated by dividing the number of execution
cycles of a benchmark program by the clock frequency of
the processor of the target platform. The model is also be
aware of the minimum required number of executions of each
benchmark program. This includes in the model as an initial
cost function. If a benchmark program is selected, a cost c
(minimum number of execution multiplied by the execution
time of the benchmark program) is added once. The model
is represented by the the following equations:

Maximize

k∑
i=1

(ciyi + eili)

Subject To

k∑
i=1

(ciyi + eili) ≤ E, i = 1, ..., k

yi =

{
0 for li = 0

1 for li > 0
i = 1, ..., k

li ∈ Z≤0, i = 1, ..., k

yi ∈ {0, 1} , i = 1, ..., k

(2)

where e0, ..., ek is the set of execution times of the subset of
benchmark programs. The number of times a benchmark
program must be executed is represented by l0, ..., lk, and
E represents the targeted execution time of the task. The
initial cost of each benchmark program is represented by
c0, ..., ck. The output of the ILP is for each benchmark pro-
gram the value of l; if l is bigger than zero, the minimum
number of executions for that benchmark program is added
to l and the benchmark program is selected. The tool uses

the GNU Linear Programming Kit (GLPK) [10] to calcu-
late the ILP. The output of this part is an XML file per
task set, containing the selected benchmark programs and
the number of executions of each program. Based on the se-
lected benchmark programs and the number of executions,
the source code is generated.

3.3 Generating Executable Tasks
The final part of the tool-chain generates the source code

for each task and a makefile for every task set. It uses the
task sets from Section 3.2 as input. For each task of a task
set the initialization and main function of all selected bench-
marks are called from within the code of the task. After-
wards a makefile is generated that compiles the tasks for the
target platform. Each benchmark program is called within
a for-loop statement, where l is the loop bound. After the
code of the benchmark programs is appended, additional
lines of code are inserted at the beginning and the end of
the code, depending on the user requirements. This header
and footer code can be added and/or changed in the tem-
plate file. Listing 1 shows an example of generated source
code. Compiling the source code files using the makefile,
results in a set of executables which can be executed on the
target hardware.

Listing 1: Example of generated code of a Task with minimal
header and footer code

// h e a d e r b e g i n
int task (void)
{
// header end

int i ;
for (i = 0 ; i <606; i ++){

b i t o n i c i n i t () ;
b i ton i c main () ;

}
for (i = 0 ; i <103; i ++){

h2 64 de c i n i t () ;
h264dec main () ;

}
for (i = 0 ; i <210; i ++){

n d e s i n i t () ;
ndes main () ;

}
for (i = 0 ; i <308; i ++){

b i t c o u n t i n i t () ;
b i tcount main () ;

}

// f o o t e r b e g i n
}
// f o o t e r e n d

In this section we introduced a task-set generator tool
which can be used to generate tasks for the formal proof,
analysis by simulation and for the analysis on the implemen-
tation level. In the next section, we evaluate the generated
executable tasks by executing them on the target platform
and compare the measured execution times to the targeted
execution times of the tasks.

4. EXPERIMENTAL EVALUATION
In this section, we report on the experiments using the

task-set generator and the results of these experiments. To
compare the performance of the scheduling algorithm on dif-
ferent evaluation levels, the utilization of the generated task
sets must be identical on each level. Consequently, the ex-
ecution time of each task must be equal to the targeted
WCET of the task as used in the the first two evaluation
levels, or at least within an acceptable margin. The aim
of our experiment is to examine the deviations of the task
behaviour at the three evaluation levels: (i) the formal anal-
ysis, (ii) the simulation based analysis, and (iii) the analysis
at the implementation level.

We have generated a number of synthetic task sets and
executables using the task-set generator. To create the ex-
ecutables, we first need to derive the timing behaviour of
the benchmark programs To this end, we have executed and
measured 10 benchmark programs to obtain their execution
times and their minimum required number of executions.
After updating the description files, the task-set generator
calculates the benchmark program sequence of each task.

4.1 Experiment Setup
We have conducted our experiments on a platform with an

Intel(R) Xeon(R) CPU E5-2420 v2 processors at 2.20 GHz.
Xen 4.5 was patched with the latest version of RT-Xen1.
The guest domain was installed with a para-virtualized ker-
nel. Dom0 is booted with two VCPUs, each pinned on a
PCPU, and 4GB memory. The remaining ten cores where
used to run the guest domain. The scheduling algorithm of
the guest OS, patched by LITMUSRT, is a global Earliest
Deadline First (EDF) algorithm. In our experiments tasks
are generated based on the base task from the LITMUSRT

library. For tracing the tasks in the feather-trace tool, in-
cluded by LITMUSRT, was used.

4.2 Execution Cycles of the Benchmarks
We selected 10 benchmark programs from the TACLeBench

benchmark suite. Before these programs can be used to cre-
ate executable tasks, the execution time of the benchmark
must be known. To create reproducible task times, a mini-
mum number of executions is required for each benchmark
program (Section 3.2). For this, we analyse the execution
time of a benchmark program by executing the benchmarks
a statistically relevant number of times l. Typically for each
benchmark we do l = {10, 50, 100, 500, 1000, 2000} measure-
ments. Besides the execution times, we calculate the mean
execution time T . Based on the above measurements a value
l′ exists: ∀l > l′ : l·T ≈ Tl with Tl the execution time of run-
ning the benchmark l times. This value l′ is defined as the
minimum required executions for the benchmark program.
This results in an execution time T and a minimum required
executions l′ for each benchmark program. We analysed the
execution of each benchmark program, and observed that
the execution time has a standard deviation of less than 1%
if the benchmark program is executed for at least l′ times.
To correct for the fluctuation of a task’s execution time, an
extra safety margin M has to be added to the number of ex-
ecution cycles of the benchmark programs. We have found
that a safety margin M = 2% suffices to ensure that the

1https://sites.google.com/site/realtimexen/

Figure 1: Example of a benchmark program description file

Figure 2: Task Set S5

execution time does not exceed the WCET of the task. The
calculated execution times and the minimum required exe-
cutions for the corresponding architecture (in this case x86)
are added to the description file of the benchmark program.
See Figure 1.

4.3 Creating and Executing Tasks
After updating the description files, we generated the syn-

thetic task sets and the executable tasks. We generated 5
randomized synthetic task sets S1, ..., S5, each with 20 tasks.
For each task we executed the ILP program and generated
the source code based on the benchmark sequence of the
task. For our experiment, we have compiled the tasks as
shared libraries to call the task function (Listing 1) in each
job of the real-time task in LITMUSRT. Because the focus
of the experiment lies on measuring the execution time of
tasks, we used one guest with one dedicated core and pinned
the virtual cpu to a physical cpu and execute the tasks one
by one. The runtime of the experiment per task is 10 seconds
and we repeat the experiment 10 times. Since the aim of the
experiment is deriving the execution times of the tasks, the
period of each task is fixed to 1 second, this gives us an equal
number of measurements for each task. This results in 100
measurements for every task of the 5 task sets.

4.4 Results
The experiments shows that the calculated WCET of the

ILP program of each task has a deviation of less than 0.00001%
compared the target WCET generated in the first part of the
task-set generator. Comparing the execution time of the
tasks on the target platform to the target WCET demon-
strates that the execution time does not exceed the target
WCET of the tasks. Secondly, the task with the lowest min-
imum execution time is task τ9 of task set S5, Figure 2, with
an execution time of 96.4% of the target WCET. Decreasing
the safety margin M would result in an higher lower bound
of the execution time. The upper bound of the execution
time, however, would exceed the WCET and could result in
an overload situation.

5. CONCLUSION AND FUTURE WORK
This paper presents a next generation task-set generator

tool. It generates reproducible task sets for the three evalu-
ation levels to evaluate and compare scheduling algorithms
for state of the art technologies. For the first two levels,
synthetic task sets are generated that do not bias against
any scheduling algorithm. Pseudorandom generated values
make it possible to generate reproducible task sets. For the
third level, a new task set generator methodology to create
executable tasks for measurement-based analysis has been
introduced. Using publicly available benchmark programs,
making test sets reproducible and also making this tool open
source enables the possibility to standardize the proposed
methodology.We have evaluated the task-set generator tool
in a number of experiments. They establish that the execu-
tion time of the tasks do not exceed the WCET of the task,
and has a lower bound of 96.4% of the WCET. The devel-
opment of the task-set generator tool is a ongoing process.
At this moment a first version of this tool is publicly avail-
able under the GPL license. This version of the tool can be
used to generate task sets with executable tasks for the x86
architecture using 10 benchmark programs.

As this is the first version of a task-set generator there is
room for many improvements and extensions. We will focus
on the two topics with the highest priority:

1. Synthetic task-set generator:

• Extend the number of supported task models.
The concept is that users should be able to tune
the input parameters in a sense that the gener-
ated task sets support their research goals.

• Extend the number of supported task set genera-
tor algorithms. The intention is to create a frame-
work in which current but also future algorithms
can be plugged in.

2. Benchmark selection:

• Improve the method to create a stable execution
time due to cache effects. This would result more
stable execution times, and would decrease the
safety margin M while not exceeding the targeted
WCETs of the tasks.

• Increase the number of processor architectures.
This would gave us and other researchers the pos-
sibility to evaluate and compare scheduling algo-
rithms on different target platforms using identi-
cal synthetic task sets.

• Make the selection of the benchmark programs
not only based on the architecture of the target
platform, but also on other criteria. After pre-
selecting the benchmark programs with support
of the chosen architecture, the user will be able
to select an adjusted set of benchmarks. Poten-
tial selection criteria are the use of floating point
units, the size of the benchmarks, or the domain
of the benchmarks.

6. ACKNOWLEDGMENT
This study was funded by the Agency for Innovation by

Science and Technology in Flanders (IWT).

7. REFERENCES
[1] T. Amnell, E. Fersman, L. Mokrushin, P. Pettersson,

and W. Yi. TIMES: A Tool for Schedulability
Analysis and Code Generation of Real-Time Systems.
In Formal Modeling and Analysis of Timed Systems
(FORMATS), pages 60–72. Springer Berlin
Heidelberg, 2003.

[2] E. Bini and G. C. Buttazzo. Measuring the
performance of schedulability tests. Real-Time
Systems, 30(1-2):129–154, 2005.

[3] Y. Chandarli, F. Fauberteau, D. Masson, S. Midonnet,
and M. Qamhieh. YARTISS : A Tool to Visualize,
Test, Compare and Evaluate Real-Time Scheduling
Algorithms. In Proceedings of the 3rd International
Workshop on Analysis Tools and Methodologies for
Embedded and Real-time Systems (WATERS), pages
1–12, 2012.

[4] M. Chéramy, P.-E. Hladik, and A.-M. Déplanche.
SimSo : A Simulation Tool to Evaluate Real-Time
Multiprocessor Scheduling Algorithms. In Proceedings
of the 5th International Workshop on Analysis Tools
and Methodologies for Embedded and Real-time
Systems (WATERS), pages 37–42, 2014.

[5] P. Courbin and L. George. FORTAS : Framework fOr
Real-Time Analysis and Simulation. In Proceedings of
the 2nd International Workshop on Analysis Tools and
Methodologies for Embedded and Real-Time Systems
(WATERS), pages 21–26, 2011.

[6] R. I. Davis and A. Burns. A Survey of Hard
Real-Time Scheduling for Multiprocessor Systems.
ACM Computing Surveys, 1(4):35, 2009.

[7] P. Emberson, R. Stafford, and R. I. Davis. Techniques
for the synthesis of multiprocessor tasksets. In
Proceedings of the 1st International Workshop on
Analysis Tools and Methodologies for Embedded and
Real-time Systems (WATERS), pages 6–11, 2010.

[8] H. Falk, S. Altmeyer, P. Hellinckx, B. Lisper,
W. Puffitsch, C. Rochange, R. B. S. Schoeberl,
P. Waegemann, and S. Wegener. TACLeBench: A
Benchmark Collection to Support Worst-Case
Execution Time Research. In 16th International
Workshop on Worst-Case Execution Time Analysis
(WCET 2016), page 10, 2016.

[9] S. Kramer, D. Ziegenbein, and A. Hamann. Real
World Automotive Benchmarks For Free. In
Proceedings of the 6th International Workshop on
Analysis Tools and Methodologies for Embedded and
Real-time Systems (WATERS), 2015.

[10] A. Makhorin. GNU Linear Programming Kit (GLPK),
2012.

[11] A. S. Pillai and T. B. Isha. ERTSim: An embedded
real-time task simulator for scheduling. In Proceedings
of the IEEE International Conference on
Computational Intelligence and Computing Research
(ICCIC), pages 1–4, 2013.

[12] J. P. Vielma. Mixed Integer Linear Programming
Formulation Techniques. Society for Industrial and
Applied Mathematics (SIAM), 57(1):3–57, 2015.

[13] P. Wägemann, T. Distler, T. Hönig, V. Sieh, and
W. Schröder-preikschat. GenE : A benchmark
generator for WCET analysis. Open Access Series in
Informatics (OASIcs), 47:33–43, 2015.

