
Extrapolation of an Optimal Policy using
Statistical Probabilistic Model Checking

Artur Rataj1 and Bożena Woźna-Szcześniak2

1 IITiS, Polish Academy of Sciences, ul. Ba ltycka 5, 44-100 Gliwice, Poland
arturrataj@gmail.com

2 IMCS, Jan D lugosz University
Al. Armii Krajowej 13/15, 42-200 Czȩstochowa, Poland.

b.wozna@ajd.czest.pl

Abstract. We show how to extrapolate an optimal policy controlling a
model, which is itself too large to find the policy directly using probabilis-
tic model checking (PMC). In particular, we look for a global optimal
resolution of non–determinism in several small Markov Decision Pro-
cesses (MDP) using PMC. We then use the resolution to find a respec-
tive set of decision boundaries representing the optimal policies found.
Then, a hypothesis is formed on an extrapolation of these boundaries
to an equivalent boundary in a large MDP. The resulting hypothetical
extrapolated decision boundary is statistically approximately verified,
whether it indeed represents an optimal policy for the large MDP. The
verification either weakens or strengthens the hypothesis. The criterion
of the optimality of the policy can be expressed in any modal logic that
includes the probabilistic operator P∼p[·], and for which a PMC method
exists.

Keywords: probabilistic model checking, statistical model checking,
non–determinism, optimal policy, extrapolation.

1 Introduction

Probabilistic model checking (PMC) [4] refers to a range of techniques for a
formal analysis of a stochastic system, which is usually a state transition system
with transitions labelled by probability values.

A policy of a decision maker (an agent), controlling a Markov Decision Pro-
cess (MDP), resolves a non–deterministic choice, which exist in each state of an
MDP in the form of a number of probability distributions over states, of which
one is arbitrarily chosen (for details see Sec. 2). An optimal policy [12], in re-
spect to a given property, may in particular correspond to either the minimum
or maximum value of the property. In this paper we consider an MDP with
properties specified in any modal logic that includes the probabilistic operator
P∼p[·], for which exists a PMC method. A common example of such a logic,
for which efficient model checkers exist, is Probabilistic Computation Tree Logic
(PCTL) [3].

Statistical probabilistic model checking (SPMC) [13, 8], including Monte
Carlo simulation and sampling, involves a generation of a large number of ran-
dom paths in a stochastic model, evaluating a given property on each path, and
finally statistically aggregating all these evaluations in order to approximate a
correct value of a property.

We address the issue of an estimation of an optimal policy in a model, which
is too large to have that policy found using PMC, and also too large to have that
policy estimated using SPMC, if an initial, sufficiently precise approximation ζ of
the policy is unknown. In order to obtain ζ, we first find a number of equivalent
optimal policies in several scaled-down versions of the large model. Then, we pose
a hypothesis on an extrapolation of these policies to the large model. Finally, we
strengthen or weaken the hypothesis using SPMC, which approximately verifies,
whether the extrapolated policy is optimal by checking whether the policy has
the largest fitness, when compared to a number of its close variants.

In particular, we begin with searching for a global optimal resolution of non–
determinism [7] in several small MDPs, that model smaller versions of the system
we are interested in. We then estimate equations of decision boundaries, each
representing one of the obtained optimal policies. A hypothesis is then formed
on extrapolating the equations to a large MDP. The resulting hypothetical ex-
trapolated decision boundary is finally approximately verified by estimating if
its fitness is locally maximal using a Monte Carlo DTMC simulator.

The paper is constructed as follows. In Sec. 2 we define the formalism used. In
Sec. 3 we propose a technique which extrapolates and verifies an optimal policy.
In Sec. 4 we present a case study. In the last section we conclude the paper.

2 Preliminaries

Let us define the formalism used throughout the paper. It is fairly standard and
follows [4], where the reader will find an in–depth description.

2.1 Discrete–Time Markov Chains

A discrete-time Markov chain (DTMC) consists of states that represent instan-
taneous snapshots of the system at a given time, and has transitions labelled by
(discrete) probability distributions over the target states.

Definition 1. A DTMC is a tuple D = (S, sι, T,AP, L), where S is a finite set
of states, sι is the initial state, T : S × S → [0, 1] is a transition probability
function such that

∑
s′∈S T (s, s′) = 1 for all s ∈ S, AP is a set of atomic

propositions, and L : S → 2AP is a valuation function which assigns to every
state s ∈ S a set L(s) of atomic propositions that are assumed to be true at that
state.

Observe that each transition represents the possibility to evolve from one
state to another. Moreover, for a state s ∈ S of D, the probability of moving to
a state s′ ∈ S in one discrete step is given by T (s, s′). Further, a path of D is

an infinite sequence ω = s0, s1, s2, . . . of states such that T (si, si+1) > 0 for all
i ≥ 0. Each path of D provides one possible evolution of the Markov chain.

Properties of DTMCs can be written in Probabilistic Computation Tree Logic
(PCTL) [3], a probabilistic extension of the temporal logic CTL [1].

Definition 2 (Syntax). Let a ∈ AP be an atomic proposition, p ∈ [0, 1] a prob-
ability bound, k ∈ IN and ∼∈ {<,≤,≥, >}. The syntax of PCTL is defined
inductively as follows:

φ ::= true | a | ¬φ | φ ∧ φ | P∼p[ψ], ψ ::= Xφ | φ Uφ | φ U≤kφ

PCTL formulae are interpreted over the states of a DTMC or Markov decision
processes (see next section). We say that a state s ∈ S satisfies a PCTL formula
φ, denoted D, s |= φ, if φ is true at the state s. Intuitively, a state s satisfies the
basic state formula P∼p[ψ] if the probability of taking a path from s satisfying
path formula ψ meets the bound ∼ p. Further, the path formula Xφ (operator
neXt) is true, if φ is satisfied in the next state; the path formula φ1Uφ2 (operator
until) is true, if φ2 is eventually satisfied and φ1 is true until then; the path
formula φ1U

≤kφ2 (operator bounded until) is true, if φ2 is satisfied within k
discrete steps and φ1 is true until then.

In practice, it is common to write formulae of the following kind: P=?[ψ],
which asks “what is the probability of ψ to be true”. Also, the following useful
operators can be derived from the above PCTL syntax: Fφ ::= true Uφ (even-
tually φ becomes true) and Gφ ::= ¬F¬φ (φ is true globally), and a bounded
variants of these.

2.2 Markov decision processes

A Markov decision process (MDP), like DTMC, consists of states, representing
possible configurations of the system being modelled, and transitions between
states occur in discrete time-steps. However, at each state the system (decision
maker) may choose any action that is available in this state, and then non–
deterministically move into a new state, while providing the decision maker a
corresponding probability.

Definition 3. An MDP is a tuple M = (S, sι, Act, µ,AP, L), where:

– S, sι, AP and L : S → 2AP are defined as for DTMCs,
– Act is a finite set of actions,
– µ : S × Act → Dist(s) is the (partial) transition probability function, with
Dist(S) denoting the set of all discrete probability distributions over S.

Observe that for each state s ∈ S, the successor state is determined in two stages:
firstly, an available action a ∈ Act (i.e. one for which µ(s, a) is defined) is non–
deterministically selected; secondly, the successor is randomly chosen according
to the probability distribution µ(s, a).

To reason formally about the behaviour of MDPs, normally, the notation of
policies is used. A policy resolves all of the non–deterministic choices in an MDP.

Moreover, under the control of a particular policy, the behaviour of an MDP is
fully probabilistic and, as is for DTMCs, one can define a probability space over
the possible paths through the model. Further, it is possible to reason about the
best– or worst–case system behaviour by quantifying over all possible policies:
for example, it is possible to compute the minimum or maximum probability of
a PCTL property. Finally, the notion of an optimal policy can be used with a
property value optimised by a model checker. For example, Prism [5] can find
an optimal policy with regard to the minimum or maximum possible probability
of a PCTL property [6].

Properties of MDPs can also be written in PCTL, yet with an implicit quan-
tification over policies. For example, the P=? operator used for DTMCs is re-
placed with two variants Pmin=? (the minimum probability) and Pmax=? (the
maximum probability).

3 Approximate extrapolation of policy

LetM = (S, sι, Act, µ,AP, L) be an MDP. We first define an MDP with classified
binary choices (MDPCBC) as follows.

Definition 4. An MDPCBC is a tuple X = (S, sι, Act, µ,AP, L), where:

– S, sι, AP and L : S → 2AP are defined as for MDPs,
– Act =

⋃α
i=1Acti is a finite set of actions that is divided into α disjoint classes

Acti according to their meaning as understood in the modelled phenomenon.
Moreover, each class Acti is divided into two disjoint sets of the same size:
Acti↓ and Acti↑.

– µ : S × Act → Dist(s) is the (partial) transition probability function, with
Dist(S) denoting the set of all discrete probability distributions over S, and
the following property: any non–deterministic binary choice q contains ex-
actly two actions aq↓ and aq↑ such that aq↓∈ Acti↓ and aq↑∈ Acti↑.

For example, if Act = Act1 ∪ Act2, then Act1 might represent choices of
either a black or a white ball and Act2 might represent a decisions if to continue
a loop of choosing the balls or, on the contrary, stop the process. Further, if a
non–deterministic binary choice represents a class of actions “a choice of either
a black or a white ball”, then Act1↓ would contain only choices of the black ball
and Act1↑ would contain only choices of the white ball.

Now we define the notation of a decision boundary.

Definition 5. Let X = (S, sι, Act, µ,AP, L) be an MDPCBC, and let the bi-
nary non–deterministic choices between actions belonging to Acti be available at
certain states Si ⊆ S. A decision boundary is a function Di : Si → { false, true}
such that if there is a non–deterministic choice between actions aq ↓ and aq ↑,
then the agent chooses aq↓ if Di(s) = false, and aq↑ otherwise.

Thus, a decision boundary determines a certain policy controlling an MDPCBC,
which then becomes a DTMC, further called a Markov chain with classified
binary choices (MCCBC).

As seen, thanks to the division of Act into classes, we have a number of
class–specific decision boundaries, which individually may be easier to describe
mathematically. On the contrary, mixing actions with vastly different meanings
might produce a common decision boundary which is hard to analyse.

3.1 Method

Let there be a set X = {X1
small, . . . , X

J
small, Xlarge} of MDPCBCs, instantiated

from a common template, but with different values of the parameter N , equal
respectively to {N1

small, . . . , N
J
small, Nlarge}. The parameter does not influence on

the nature of the problem, but merely represents a scale of the problem. N can
be e.g. the number of philosophers in the Dining Philosophers Problem [2]. We
want to estimate an optimal policy of Xlarge. Yet it is impossible to find Xlarge

directly using PMC (e.g. implemented in Prism), due to extensive computational
complexity and memory requirements. Therefore, we will attempt to extrapolate
J optimal policies of J respective Xj

small, j = 1, . . . , J .

Let the decision boundary for class i in Xj
small be Dj

i (s), s ∈ Si, and

let us pose a hypothesis on how Dj
i (s) can be merged into a single function.

The hypothesis is represented by Di(s,N), which generalises all Dj
i (s) so that

Dj
i (s) = Di(s,N

j
small), j = 1, . . . , J . This allows for obtaining a hypotheti-

cal extrapolated decision boundary Di(s,Nlarge), controlling Xlarge. Finally, we
strengthen or refute the posed hypothesis, by locally verifying the fitness of
Di(s,Nlarge) using SPMC.

3.2 Arbitrariness

Let any state in S be represented by a tuple V = (x1, . . . , xd), a
so–called state vector, each of its elements represents some specific phe-
nomenon in a modelled system. For example V might have an interpretation
(temperature,precipitation). Let us build a real coordinate metric space S such
that any state s is mapped to a point Vs in S , having coordinates V . We do
that because we hope that points close in S may intuitively represent similar
situations in the modelled system, thus it is less likely that a decision bound-
ary goes between them. This hopefully simplifies both the shape and semantic
interpretation of Di(s,N).

Due to, amongst others, a finite ||S||, the extrapolation to Di(s,Nlarge) might
be imprecise. Consider the following. See that ||Vs|| = ||S|| is finite, and thus we
can find some ε > 0 which is equal to the closest distance between all possible
pairs (Vs1 , Vs2), s1, s2 ∈ S, s1 6= s2. Therefore, there is an infinite number of
decision boundaries representing a single policy. Let any decision boundary be
represented by a vector of parameters C(N) = (yN1 , . . . , y

N
β), where β ∈ N+ is

a constant specific to a method of the representation. For any class i, we can
extrapolate Di(s,N) by a respective extrapolation of J vectors Ci(N

j
small) to

a single vector Ci(Nlarge), the latter determining Di(s,Nlarge). Yet, as C(N)
is arbitrary due to ε > 0, so is Ci(Nlarge). Moreover, as the extrapolation may

augment the arbitrariness, the multiple possible values of Ci(Nlarge) may in turn
represent multiple Di(s,Nlarge).

Fig. 1. A schematic example of a trajectory of
C1(N) = (y0, y1) in a parameterised Euclidean
space R2. Schematically depicted minimum error E
of a decision maker translates to an optimal policy
of an MDPCBC instantiated with a given N .

y1

y0

E
N=100
N=101
N=102

N=300v

u

Consider the example in Fig. 1(a). C1(100), C1(101) and C1(102) determine
a common segment. We extrapolate that segment with a line in order to find
C1(300) = (u, v), which in turn determines hypothetical D1(s, 300). Yet, as MD-
PCBCs have a finite number of states, C1(300) can not be determined precisely:
minor arbitrariness in the placement of the segment scale up roughly affinely
with the distance to the segment. We thus see, that there is at least a single
reason for Di(s,Nlarge) to be a hit–and–miss when it comes to an estimation of
a strategy for Xlarge.

4 Case study

Let us study an example – an optimal policy of choosing a coin. There are two
coins, a fair one and an unbalanced one. They have the probabilities of the
outcome of heads equal to respectively 0.5 and 0.6. A decision maker flips a
coin N times, deciding before each flip, which of the two coins to choose (for
simplicity, N is even). What is the best policy of maximising the probability of
drawing N/2 heads within these flips? The criterion of optimality is thus

Popt = Pmax=?[F(f = N ∧ h =
N

2
)] (1)

Let N be the scaling parameter discussed in Sec. 3.
Let us first verify a small variant of the model, with N = Nsmall = 100, using

Prism’s PMC capabilities. Prism is able to compute the optimal policy of a
decision maker which has a full knowledge about the system, and the computed
policy is given as a transition matrix of a DTMC, which in the case of our model
is also an MCCBC. The policy is visualised in Fig. 2(a), where f and h are
parts of the vector state which are equal to, respectively, the number of tosses
so far and the number of heads drawn so far.

Let Act1↑ be a choice of the fair coin. The decision boundary, approximated
by visually interpreting Fig. 2(a), is

h & 0.55 (f − (9± 0.5)) (2)

������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������

������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������

1
0
0

fc0 tosses f

h
e
a
d
s
h

hc

100

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16
0.18

30 35 40 45 50 55 60 65 70

P
=
?
[F

(f
=

N
∧
h

=
x

)]

x

strategy given by (2)
choosing always the fair coin

(a) (b)

Fig. 2. (a) Visualisation of the optimal policy for N = Nsmall = 100. Gridded region
depicts unreachable states, white region designates, that a successful policy is no more
possible or a maximum number of tosses is reached, black and grey regions mean
respectively “chose the fair or the unbalanced coin”. White dashed line represents
h = f/2, black dashed line shows an example variation of the decision boundary for a
different fc. (b) Probability distributions of h for two different strategies at f = N =
Nsmall.

Fig. 2(b) depicts probability distributions of h after all Nsmall tosses. As seen,
(2) makes (1) almost twice as large if compared to a state–agnostic approach of
always choosing the fair coin.

4.1 A single small MDPCBC

Firstly, we will attempt to extrapolate from only (2), i.e. let J = 1. Assuming
limited computational resources for finding optimal policies of small models,
J = 1 enables us to use the largest possible N j

small.

Extrapolation. In order to extrapolate from a single point, we will form some
supporting hypotheses. It is easy to see that at the state (f = 0, h = 0) the
decision maker should choose the fair coin for any N . This is because he is more
afraid of an excessively large h, rather than of the number of heads drawn being
too small, as the single available unbalanced coin leans towards heads, and thus
it can be used to reduce the deficiency of h. The latter also says, that a high
deficiency of h leads to the choice of the unbalanced coin. Therefore, we know
that at some (f ≥ fc, h = 0), fc > 0, the unbalanced coin is chosen, and that
for any N , the fair coin is chosen for (0 ≤ f < fc, h = 0). We also know that at
(f = N − 1, h = N/2 − 1) the decision maker should maximise the probability
of drawing a head in order to reach (f = N,h = N/2) (the success is assured
only if a head will be drawn, an unbalanced coin is chosen), and that he would
minimise that probability for (f = N − 1, h = N/2) (the success is assured only
if a head will not be drawn, a fair coin is thus chosen). Therefore, we know that
for any N the decision boundary goes between these two states.

0.098

0.1

0.102

9 10 11 12 13

P
=
?

[F
(f

=
N
∧

h
=

N 2
)]

G

P=?, Gi ∈ G10

P=?, Gi /∈ G10

parabola fitted to Gi ∈ G10

cubic parabola fitted to Gi /∈ G10

Fig. 3. Estimation of Popt for N = Nlarge, 5 · 107 samples per MCCBC.

On the basis of (2) we can guess that the decision boundary is a segment. Let
us guess that the placement of the segment scales affinely with N in the sense
that fc ≈ N/G, where G is a constant. This hypothesis is trivially represented
by the following decision boundary:

h > h1(f) =

(
N

2
− 1/2

)
f − fc

N − 1− fc
=

(
N

2
− 1/2

)
f −N/G

N − 1−N/G

thus

Di(s,N) =

G <
N

N − 1

2h+ 1−N
2h− f

if h < f/2

true if h ≥ f/2
(3)

Verification. Using (2) we can estimate G = N1
small/fc ≈ 100/(9± 0.5) ∈”∼,

G =

〈10.5; 11.8〉. Checking statistically Popt in an MDPCBC controlled by (3) for
N = Nlarge = 5000 and G ≈ 11 ∈ G yields the diagram in Fig. 3. An MCCBC
with the highest Popt is found forG = G1 = 11, which agrees with the estimation,
and we may thus strengthen the hypothesis.

Local maxima are seen in the diagram. For example, we statistically checked
MCCBCs for a dense set of values of G in a set G10 such that ∀Gi∈G100.95 ≤
Gi ≤ 10.05, ||G10|| = 51, then we fitted a parabola as seen in the figure, to show
that a local gradient–descent optimiser might be trapped in a local maximum
around G ≈ 10, thus strengthening a respective false hypothesis.

We thus see, that an interval of G wider than the one spanned over G10

should be sampled by such an optimiser. This leads to a considerable numerical
complexity of the resulting SPMC, as we need to use as much as 5 · 107 samples
per a single estimation in order to get a 99% confidence level of ≈ 2.3 · 10−4,
estimated using Asymptotic Confidence Interval [10].

A less precise extrapolation might increase the said complexity even more.
For example,

– a less precise initial estimation of G might result in a larger number of
samples to be gathered, in order to localise the maximum around G = 11;

– if we would merely assume, that the decision boundary is a segment, whose
both ends are unknown and with no known relation, and not that only fc
is unknown as we did so far, we would then need to search within at least
a two–dimensional optimisation space. For example one with the optimised
parameters (G,H) such that the linear boundary of D1(Nlarge) intersects a
pair of points (fc = Nlarge/G, 0), (Nlarge − 1, H).

Obviously, in general, an MDPCBC with N = Nlarge might become unver-
ifiable using both PMC and SPMC, if the extrapolation from PMC–checked
models were insufficiently precise or unknown at all.

4.2 Several small MDPCBCs

We will attempt to estimate D1(Nlarge) using several small MDPCBCs. We won’t
use the reasoning from Sec. 4.1, but instead, an optimiser will analyse a trajectory
of parameters representing different decision boundaries.

Extrapolation. We apply a Nelder–Mead Simplex gradient–descent opti-
miser [9] to a linear combination of f, h,N and 1, with the goal of minimising
the number of wrong choices in models with N = 80, 100 and 120, i.e. J = 3.
We obtain a hypothetical generalised decision boundary

550.876f − 1001.63h− 50.1596N − 15.0067 . 0

thus for N = Nlarge

h & h2(f) = 0.549980(f − 455.298), G ≈ G2 = 10.982 (4)

Testing (4) against the three MCCBC matrices returned by Prism, it turns out
that this boundary always allows for a right choice within the three MDPCBCs
in question. It may be a hint, that the said linear combination has been a right
choice.

Verification. Due a finite number of states in the MDPCBCs from which we
have extrapolated, we may expect imprecisions in (4) as discussed in Sec. 3,
especially that we extrapolate from N j

small ≈ 100 to Nlarge ≈ 5000, i.e. to a
model with a number of tosses about 50 times as large on average.

We know from the reasoning in Sec. 4.1, that N/2−1 ≤ h(N−1) < N/2. For
N = Nlarge, h2(Nlarge−1) ≈ 2498.95, and is thus too small by ≈ 0.05, a difference
which seems to be fairly precise for an extrapolation that distant. Yet, we will
correct that imprecision by placing the segment correctly at f = Nlarge− 1, and
then extracting from (4) merely the value of G2. This boils down to the reuse of
the diagram in Fig. 3. Given the low number of statistically verified MCCBCs
in the diagram and the considerable size of the 99% confidence interval, given in
Sec. 4.1, it can be stated that G2 ≈ G1. We may thus strengthen the hypothesis.

5 Discussion

We are working on a tool for automating the presented extrapolation. As opposed
to the example in the case study, it would apply a number of extrapolating func-
tions beside a linear combination, in order to choose the best extrapolated policy.
For example, the tool could support an extrapolation of oscillating functions like
in [11], in order to deal with models of physical systems involving periodicity. For
example, the scaling parameter might represent a rotational speed of an element,
and the policy would minimise a standing wave in the supporting construction.

References

1. Clarke, E.M., Grumberg, O., Peled, D.: Model checking. MIT press (1999)
2. Dijkstra, E.W.: Hierarchical ordering of sequential processes. Acta Informatica

1(2), 115–138 (1971)
3. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal

aspects of computing 6(5), 512–535 (1994)
4. Kwiatkowska, M., Norman, G., Parker, D.: Advances and challenges of probabilistic

model checking. In: Communication, Control, and Computing (Allerton), 2010
48th Annual Allerton Conference on, pp. 1691–1698. IEEE (2010)

5. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic
real-time systems. In: G. Gopalakrishnan, S. Qadeer (eds.) Proc. 23rd International
Conference on Computer Aided Verification (CAV’11), LNCS, vol. 6806, pp. 585–
591. Springer (2011)

6. Kwiatkowska, M., Parker, D.: Advances in probabilistic model checking. In: T. Nip-
kow, O. Grumberg, B. Hauptmann (eds.) Software Safety and Security - Tools for
Analysis and Verification, NATO Science for Peace and Security Series - D: In-
formation and Communication Security, vol. 33, pp. 126–151. IOS Press (2012)

7. Kwiatkowska, M., Parker, D.: Automated verification and strategy synthesis for
probabilistic systems. In: D.V. Hung, M. Ogawa (eds.) Proc. 11th International
Symposium on Automated Technology for Verification and Analysis (ATVA’13),
LNCS, vol. 8172, pp. 5–22. Springer (2013)

8. Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: An overview. In:
International Conference on Runtime Verification, pp. 122–135. Springer (2010)

9. Nelder, J.A., Mead, R.: A Simplex Method for Function Minimization. The Com-
puter Journal 7(4), 308–313 (1965)

10. Nimal, V.: Statistical Approaches for Probabilistic Model Checking. Master’s the-
sis, Oxford University (2010)

11. Rataj, A.: Fractional genetic programming for a more gradual evolution. In: Pro-
ceedings of the 22nd International Workshop on Concurrency, Specification and
Programming, Warsaw, Poland, pp. 371–382 (2013)

12. Sondik, E.J.: The optimal control of partially observable markov processes. Tech.
rep., DTIC Document (1971)

13. Younes, H., Kwiatkowska, M., Norman, G., Parker, D.: Numerical vs. statistical
probabilistic model checking. International Journal on Software Tools for Technol-
ogy Transfer (STTT) 8(3), 216–228 (2006)

